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Abstract: The potential of co-digestion mixing thickened secondary sludge (TS) from extended
aeration wastewater treatment plant and locally available substrates (whey, grease and septage)
has been studied in this work, using three steps. The first step was a batch test to determine the
biological methane potential (BMP) of different mixtures of the three co-substrates with TS. The
second step was carried out with lab-scale reactors (20 L), simulating anaerobic continuous stirred
tank reactors, fed by three mixtures of co-substrates that were determined according to the previous
step results. Modeling was applied in the third step, using ADM1 as a mechanistic model to help
understand the co-digestion process. According to the BMP step, septage used as a co-substrate has a
negative effect on performance, and the addition of 10–30% grease or whey would lead to a gain of
around 60–70% in the production of methane. The results from the reactor tests did not validate the
positive effects observed with the BMP assay but confirmed good biodegradation efficiency (>85%).
The main purpose of co-digestion in this scenario is to recover energy from waste and effluents
that would require even more energy for their treatment. The protein and lipid percentages of
particulate biodegradable COD are important variables for digester stability and methane production,
as predicted by modeling. The results of simulations with the ADM1 model, adapted to co-digestion,
confirmed that this model is a powerful tool to optimize the process of biogas production.

Keywords: anaerobic co-digestion; ADM1; BMP; biogas

1. Introduction

The activated sludge process is the one most widely applied to treat domestic wastew-
ater, due to its well-known facility design and operation parameters. Among diverse
activated sludge processes, the extended aeration activated sludge system (EAASS) is the
most widely employed technique for the treatment of domestic wastewater in France, with
more than 60% of domestic wastewater treatment plants (WWTP) and a capacity greater
than the 2000 person-equivalent (PE) volume [1]. The extended aeration process is often
better at handling organic loading and flow fluctuations and has a relatively low sludge
production due to a long sludge age, as there is a greater detention time for the substrate
to be assimilated by microorganisms [2]. Anaerobic digestion is an efficient method to
reduce and valorize waste activated sludge [3]. In France, 97 WWTP were equipped with
anaerobic digestion units in 2018, out of the nearly 20,000 WWTP in France at the time [4].
Almost half of the 97 installations equipped with digesters are activated sludge units
with extended aeration. These facilities treat the effluent of about 30 million PE, close
to 30% of the total PE in France. The biogas produced was mainly used on-site (boiler)
and for the cogeneration of electricity. Sewage sludge from an activated sludge extended
aeration treatment is less fermentable than primary sludge and, therefore, has a naturally
lower methanogenic power [5]. However, we feel that it is important to characterize the
performance achieved in digestion with this kind of sludge.
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The co-digestion of extended aeration activated sludge (EAAS) with other organic
waste that has a higher biological methane potential (BMP) is one possible way to enhance
biogas production and the percentage of CH4 [6,7]. Digesters are also usually oversized,
and the addition of co-substrates can help to enhance gas and electricity production for
little additional expense [8]. The extra power produced may cover the energy needs of
wastewater treatment at a reasonable cost [9]. In France, although the operators sometimes
add fats to the mixture, co-digestion is still rarely used due to regulatory constraints.

Anaerobic digestion is a complex process, one that is relatively slow, quite sensitive to
variations in loads applied, and with a microflora that is also quite fragile in the presence
of toxicants. The co-digestion of substrates of different natures amplifies its complexity, the
relative fragility of the digestion process, and the qualitative and quantitative variability of
the biogas produced. Co-digestion, when applied to EAAS, presents several advantages.
Sludge can be mixed with different types of organic waste, both in order to enhance
biogas production and to valorize the co-substrates via biogas production. By adding
co-substrates, a gain ranging from 13 to 176% in the methane yield was accomplished
compared to the mono-digestion process [10]. This gain concerns the rate of methane
production, which will make the co-digestion process competitive for industrial adoption,
depending on the local context. Indeed, some of the co-substrates cannot always be easily
treated on their own, such as septage from septic tanks, grease from grease traps, or whey
from cheesemakers. Severe environmental pollution in many countries is caused by the
discharge of large quantities of these compounds [11].

Many studies on co-digestion have been conducted with agricultural or municipal or-
ganic waste [10,12,13] but there are very few dealing with EAAS to the best of our knowledge.
The study of this kind of co-substrate will be useful to validate the current results.

The objective of this study was to assess the potential of co-digestion, mixing thick-
ened secondary sludge from extended aeration wastewater treatment plants with locally
available substrates, using the wet mesophilic anaerobic digestion process. The first step
consisted of batch-testing to determine the methane potential of different mixtures of
co-substrates, in order to find the most favorable proportions and to characterize biodegra-
dation kinetics and biogas production. The second step was carried out with lab-scale
reactors simulating anaerobic continuous still-tank reactors, fed by three mixtures of co-
substrates, determined according to previous test results. Simulation using ADM1 as a
mechanistic model was applied in a third step to help our understanding of the co-digestion
process and, more precisely, to help identify the best ratio for “organic couples” that pro-
vide a synergetic digestion performance. This approach, combining a BMP test, a dynamic
study with lab-scale reactors, and modeling with mechanistic models, is still used very
little at present.

To date, in order to simulate the anaerobic digestion process and, more particularly, the
kinetics of the various reactions, the most advanced mechanistic model is ADM1 (anaerobic
digestion model number one), published by the IWA Task Group for the Mathematical
Modeling of Anaerobic Digestion Processes [14,15]. More simple models could be used [16],
but the choice of the mechanistic model ADM1 is justified by infrequency data, erroneous
data, or data that is hard to obtain [17]. For this study, we did not make any particular
extensions to the ADM1 initial model, but we have adapted it by incorporating parameter
data and inputs that are specific to co-digestion.

2. Materials and Methods
2.1. BMP Test

A BMP test was carried out according to the main conditions defined in [18], using
glass bottles with a volume of 1075 mL, closed by a septum, with a reaction volume
of 470 mL and an overhead gas volume of 605 mL. The bottles were kept at 37 ◦C in a
thermostatically controlled chamber. Stirring was carried out by magnetic stirrers. The
inoculum consisted of extended aeration sludge from a local WWTP of 19,500 PE (Haute-
Savoie, France) and was pre-incubated for 3 to 5 days to deplete the residual biodegradable
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compounds. The added volume of inoculum was 30 mL/bottle. The dilution of substrates
was realized with a buffered nutrient solution (pH 7) [19]. Biogas production has been
determined by pressure variation over time using a manometric method with classical
thermodynamic conversion in volume. At the beginning and end of the test (end of biogas
production), Dry matter (DM), volatile solids (VS), and chemical oxygen demand COD
were measured using standardized methods [20]. Biogas composition (CO2, N2 and CH4)
was determined by gas chromatography, using a katharometer as a detector (Shimadzu
GC-2014, with a Supelco stainless steel column: 60/80 Carboxen 1000, 15ft x 1/8in).

The kinetic parameters of biogas production have been calculated using a modified
Gompertz equation, which is useful when the lag phase is present [21]. This equation
(Equation (1)), which represents sigmoidal curves, allows us to assess the lag time. To
take into account two successive phases that may correspond to the consumption of two
substrates sequentially, Equation (1) has been modified (Equation (2)):

Xg = K·e(−e(
k
K ·e(λ−t)+1)

)) (1)

Xg = K1·e(−e(
k1
K1

·e(λ1−t)+1)
)) + (K2 − K1)·e(−e(

k2
K2

·e(λ2−t)+1)
)) (2)

where Xg is biogas production (Lbiogas gVS−1 or COD−1); Ki is ultimate biogas production
(Lbiogas gVS−1 or gCOD−1); ki is the maximum rate of biogas production (t−1); λi is the
lag phase (t).

Three parameters are significant for the kinetics of biogas production (Xg): the ultimate
potential for the production of biogas (Ki); the maximum rate of biogas production (ki); and
the lag phase (λi).

The ultimate potentials were estimated from the average of the last values of the
cumulative biogas production curves. The kinetic parameters were estimated using the
solver function of the spreadsheet by maximizing the coefficient of determination (R2)
between experimental data and calculated ones.

In order to quantify the synergy in anaerobic co-digestion, kinetics parameters ob-
tained for the different mixture assays were normalized by the parameters from the mono-
digestion test with TS according to Equation (3):

Np =
Pmix
PTS

− 1 (3)

where Np represents the normalized parameter; Pmix, the parameter value of the BMP
co-digestion assay; and PTS, the parameter value of the reference TS BMP assay.

Four co-substrates have been tested: extended aeration thickened sludge (TS), grease
(G), septage from a septic tank (SP) and whey (W) (Table 1). The results were compared to
a blank (inoculum + acetate or cellulose). Thickened sludge and grease (produced during
the pre-treatment for the process) had previously been collected at the local wastewater
treatment plant, septage was collected from the septic tanks of individual houses near
the local wastewater treatment plant, and the whey came from the cheese factory of the
agricultural school of La Motte-Servolex, (Savoie, France).

Table 1. Main characteristics of BMP substrates and inoculum (Average ± SD).

Inoculum Thickened Sludge Grease Septage Whey

DM (g·L−1) 36.5 ± 0.5 36.8 ± 3.2 44.8 ± 0.5 42.3 ± 3.3 55.8 ± 3.8

VS (g·L−1) 22.2 ± 0.3 25.6 ± 0.3 37.2 ± 0.3 26.3 ± 0.4 48 ± 0.5

COD (g·L−1) 42.4 ± 2 65.9 ± 2.8 72.5 ± 12.9 23.2 ± 1.12 69.4 ± 4

COD/VS 1.9 2.57 1.95 0.88 1.45
DM: Dry matter; VS: volatile solids; COD: chemical oxygen demand.
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The experimental plan adopted was determined by the proportion of COD, expressed as
a percentage of thickened sludge/co-substrate: 90/10; 70/30; 50/50. For each proportion, the
test was performed in triplicate. The nominal COD content was equal to 6.4 g for each bottle.

The initial substrate-over-inoculum ratio (S/I), expressed in COD, was equal to 4.

2.2. Bioreactor’s Test

The reactors were cylindrical tanks with a volume of 15 L and a headspace volume of
5 L (Figure S1 in Supplementary Materials). Bioreactors were run as continuously stirred
tank reactors (CSTRS) without biomass recycling so that the sludge retention time (SRT)
was equal to the hydraulic retention time (HRT).

The HRT was fixed at 15 days, providing a minimum acceptable SRT, according to
the results of previous BMP tests and recommendations in the literature [3,22,23]. Reactors
were mixed by continuous pumping (2 L/min). Reactors were heated by an external
thermostatic water bath, maintained to 35 ◦C. Sludge was fed at regular intervals every
day to help maintain steady-state conditions in the digester.

The substrates and co-substrates had the same origin as for the BMP test.
Biogas production was determined by a volumetric pulse meter comprising 2 cham-

bers filled with water in communication, regulated by a solenoid valve. Each pulse
corresponded to a volume of 20 mL of water, displaced by the increase in pressure inside
the reactor. Biogas production was also determined by measuring the pressure inside the
reactor, using an accurate 0.1 mbar pressure gauge.

The contents of dry matter (DM), volatiles (VS), total COD (CODt), particulate COD
(CODp) and soluble COD (CODs) were carried out according to standardized methods
(APHA, 1998), 3 times on average per week.

The pH and temperature were measured continuously using a specific probe inside
the reactor.

The VFA contents and the composition of the biogas were measured by gas chro-
matography, approximately once every ten days. The analysis conditions are detailed in
Table S1 (cf. Supplementary Materials).

2.3. Statistical Analysis

Statistical analysis was performed using the StatEL®software (ad Science, Paris,
France).

Statistical analysis was conducted using parametric (one-way and two-way ANOVA)
or non-parametric (Friedman analysis) tests, and the difference between reactors was
expressed as significant, at a significance level of p < 0.05. The p-value is the estimated
probability of rejecting the null hypothesis (hypothesis of “no difference” of the test when
that hypothesis is true).

Post-hoc tests (Newman and Keuls tests) were conducted in order to decide which
groups were significantly different from each other, based on the F-test for Ryan’s test
(ANOVA), and based upon the average rank differences of the groups for the Friedman test.

The non-parametric statistical test was carried out when data did not meet the criteria
for a parametric test (normally distributed, equal variance).

2.4. Modeling and Simulation

The ADM1 model takes into account two extracellular steps (the disintegration and
hydrolysis of substrates) and three steps of microbial anaerobic metabolism (acidogenesis,
acetogenesis and methanogenesis). These reactions are carried out by seven groups of
microorganisms and three types of enzymes. The model assumes constant stoichiometry
coefficients, with the inhibition of the degradation of volatile fatty acids by hydrogen.
The model also considers the inhibition of the growth of microorganisms by pH, and
the inhibition of acetoclastic methanogenesis by hydrogen and ammonium [19]. The
ionic balance and the gas-liquid exchanges are also integrated. This model considers the
mortality of bacterial cells and their recycling into biomass.
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The ADM1 model has been implemented in AQUASIM 2.0 by the IWA Task Group
for the Mathematical Modeling of Anaerobic Digestion Processes. AQUASIM 2.0 is an
open-source software developed in 1998 for the identification and simulation of aquatic
systems [24]. Furthermore, AQUASIM allows researchers to conduct sensitivity analysis
and establish estimation parameters, being divided into variables, processes, compartments
and link interfaces.

The modeling approach is based on the material balance, assuming a continuous
stirred tank reactor with output levels equal to those at all areas inside the reactor.

For this study, the ADM1 model was implemented in AQUASIM as a differential and
algebraic equation (DAE) and used an ideal CSTR compartment.

The model was solved as a system, with the biochemical reactions integrated explicitly
as a system of 26 differential equations (7 groups of bacteria and archaea, 19 catalyzing
processes), 3 physico-chemical liquid phase processes, 15 equations for the mechanisms
of inhibition, and 8 implicit algebraic variables (per reactor). This approach is a tool to
overcome the inherent “stiffness” problem, due to the fast hydrogen and pH dynamics (now
explicitly algebraically calculated), which results in some numerical solvers encountering
difficulty when solving the system of ODEs [17].

The values and the sensitivity of the parameters were determined by statistical fitting
of the experimental data, observed in steady-state using AQUASIM 2.0, which is able
to perform linear sensitivity analysis with respect to a set of selected parameters and to
perform parameter estimation using the weighted least-squares method [24,25].

Our approach to adapting the ADM1 model to co-digestion was to characterize the
actual feed mix with the stoichiometric composition of composite particulate chemical
oxygen demand (CODp), i.e., carbohydrates (Xch), proteins (Xpr), lipids (Xli), and inerts
(Xi). This approach was successful in terms of model predictions [26] and was similar to
the input model for fractionation of COD, described by Arnell et al. [27]. As described by
Feucken et al. [28], ADM1 was modified by introducing three state variables for fractionated
particulate COD (Xch, Xpr, and Xli), and three corresponding hydrolysis processes (first-
order hydrolysis). In AQUASIM, the stoichiometric composition of substrate mix has been
determined by repeating the corresponding characterization using dynamic inputs.

The biodegradable part of particulate COD has been considered, based on COD analy-
sis during the experiment. The ultimate methane potential and the hydrolysis parameter
(khyd) are estimated by fitting to BMP data using the defined model (Equation (1) or (2)).

Specifically, to take into account the mixture composition feeding, the fractionation
of COD, based on substrates proportion, has been applied to the inputs. For example,
with a TS/W mixture at 70/30, the soluble amino acids input has been calculated from the
following equation:

(0.7faa-TS + 0.3faa-W). CODs (4)

where faa-TS is the percentage of amino acids in thickened sludge; faa-W is the percentage of
amino acids in whey; and CODs is soluble COD in g/L.

The missing input state variables required for ADM1 have been found from a dataset
containing the characterization and fractionation of organic substrates, taken from the
literature [29].

Certain kinetic rate equations have been modified to take into account the inhibition
linked to substrate concentration. Non-competitive substrate inhibition has been modeled
using the Andrews–Haldane equation (Equation (5)).

muX =
mumaxX ·Sx

Ks + Sx +
S2

x
Ki

(5)

where mumaxX is the degradation rate constant in kg COD kg COD−1 d−1; Sx is the substrate
concentration in kg COD m−3; Ks is the half-saturation constant in kg COD m−3; and Ki is
the inhibition constant in kg COD m−3.
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3. Results
3.1. BMP Test
3.1.1. Thickened Sludge and Grease Mixtures

The first phase of biogas production, with a very visible plateau, was observed with
100% grease and became less and less visible, depending on the decrease in the proportion
of grease in the mixture (Figure 1A). This behavior has been observed in BMP tests carried
out with the solid fat waste, with a comparable S/I ratio [30], or with grease trap sludge
mixed with sewage sludge [31]. The presence of 10% grease accelerated the production
of biogas and greatly increased the methane potential by a factor of approximately 1.5,
compared to thickened sludge alone (Table 2).

The mixture of thickened sludge and grease in equal parts led to the same biogas
production as the fat alone, but with a shorter lag phase. Note that the increase in the
ultimate production of biogas was not directly proportional to the increase of the share of
grease, which translates as a phenomenon of inhibition.

3.1.2. Thickened Sludge and Septage Mixtures

With more than 10% of sewage matter in the mixture of sludge and septage, a very
strong negative effect on the production of biogas was observed (Figure 1B). The mixture
with 30% of septage led to an inhibition of about 36% of the potential of the sludge alone,
and of about 60% for the mixture with 50% of septage.

With 10% septage, there was a positive effect on the first phase of production but not
for the second phase (Table 2). As modeling two-phase kinetics is not adequate to describe
the shape of the curve exactly, a kinetic with three successive phases was tested, the last
with a lag phase of about 25 days.

Table 2. Kinetic parameters and biogas production rates per removed VS of BMP assays.

* BMP
Reactor

λ1
(d)

λ2
(d)

k1
(LgVS−1d−1)

k2
(LgVS−1d−1)

K1
(LgVS−1)

K2
(LgVS−1) R2

TS 100 1.5 13 0.015 0.051 0.2 0.48 0.993

G 100 0 21 0.012 0.025 0.03 0.82 0.998

TS/G 90/10 0 6.5 0.027 0.04 0.18 0.62 0.993

TS/G 70/30 0 10.4 0.027 0.054 0.1 0.68 0.997

TS/G 50/50 0 10.4 0.028 0.058 0.09 0.78 0.996

SP 100 1 8 0.004 0.017 0.22 0.05 0.977

TS/SP 90/10 0 6.5 0.02 0.026 0.24 0.46 0.993

TS/SP 70/30 0 8.2 0.01 0.023 0.02 0.31 0.993

TS/SP 50/50 0 14.1 0.008 0.017 0.05 0.19 0.995

W 100 0 NaN 0.034 NaN 0.245 NaN 0.975

TS/W 90/10 1 NaN 0.035 NaN 0.68 NaN 0.993

TS/W 70/30 0 4 0.021 0.021 0.1 0.75 0.991

TS/W 50/50 0 16.3 0.019 0.012 0.2 0.52 0.985
* TS: Thickened sludge; G: grease; SP: septage; W: whey. The numbers represent the mixture ratio in its
respective percentages.
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Figure 1. Cumulated biogas production for different mixtures in BMP assays. (A) Grease; (B) Septage;
(C) Whey. TS: Thickened sludge; G: grease; SP: septage; W: whey. The numbers represent the mixture
ratio in their respective percentages. Lines correspond to modeling using Equations (1) or (2).
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3.1.3. Thickened Sludge and Whey Mixtures

The mixtures of 10% and 30% whey accelerated and increased the potential for biogas
production per gram of VS (Figure 1C) compared to sludge alone.

The equal-part mixing led to the same potential as the sludge alone, but the second
phase started later, with a latency time of more than 14 days (Table 2). The production of
biogas was lower with pure whey as the substrate.

Modeling by the modified Gompertz model was satisfactory, with coefficients of
determination between the observed and estimated values of around or above 0.99 (Table 2).
This allowed us to quantify the parameters of the specific production kinetics of biogas
per gram of volatile matter in the mixtures. The mixtures of 10% grease and 10–30% whey
with the sludge thus appear to be very interesting in terms of co-digestion.

The values of kinetic parameters and biogas production per removed VS have been
standardized, taking into account the TS test as a reference and applying Equation (3)
(Table 3).

Table 3. Normalized parameters, taking into account TS as a reference.

* BMP Reactor λ1 λ2 k1 k2 K1 K2 Score

TS 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G 100 −1.00 0.62 −0.20 −0.51 −0.85 0.71 −0.12

TS/G 90/10 −1.00 −0.50 0.80 −0.22 −0.10 0.29 0.39

TS/G 70/30 −1.00 −0.20 0.80 0.06 −0.50 0.42 0.30

TS/G 50/50 −1.00 −0.20 0.87 0.14 −0.55 0.63 0.35

SP 100 −0.33 −0.38 −0.73 −0.67 0.10 −0.90 −0.26

TS/SP 90/10 −1.00 −0.50 0.33 −0.49 0.20 −0.04 0.25

TS/SP 70/30 −1.00 −0.37 −0.33 −0.55 −0.90 −0.35 −0.21

TS/SP 50/50 −1.00 0.08 −0.47 −0.67 −0.75 −0.60 −0.35

W 100 −1.00 NaN 1.27 NaN 0.23 NaN 0.58

TS/W 90/10 −0.33 NaN 1.33 NaN 2.40 NaN 1.39

TS/W 70/30 −1.00 −0.69 0.40 −0.59 −0.50 0.56 0.29

TS/W 50/50 −1.00 0.25 0.27 −0.76 0.00 0.08 0.04
* TS: Thickened sludge; G: grease; SP: septage; W: whey. The numbers represent the mixture ratio in its
respective percentages.

A score was determined, corresponding to the calculated average value of NP, taking
a positive value for lag phases. This score is used to compare and rank the results. Taking
into account the importance of some parameters, and considering the residence time in the
digester, the parameter lag phase 2, K1 and k1 must be considered as essential, and should
be assigned a greater weight, i.e., lag phase 2, K1 and k2 multiplied by 2.

Looking at the different scores, the addition of 10–30% grease or 10% whey would be
the most preferable. Septage used as a co-substrate had a negative effect.

3.1.4. VS Removal Ratio

Looking at the removal of volatile solids, for all the tests, they were on average higher
than 60% and were in line with the observed kinetics (Figure S2 in Supplementary Materials).

3.1.5. Methane Production

Significant variability in the proportion of methane in the biogas produced was
observed for most of the mixtures tested (Table 4). This variability was very low for
mixtures with 10% co-substrates for grease and septage.
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Grease and whey alone produced low quantities of methane. This was due to an
inhibition of the methanogenic flora, and only the hydrolysis–acetogenesis phase was
carried out.

The 10% mixture of grease produced more methane than the thickened sludge alone
and confirms its significance for co-digestion.

Table 4. Methane production with BMP assays.

% CH4 normoL CH4 gVSr−1

BMP Reactor Average SD Average SD

TS 100 62.13 9.3 0.416 0.085

G 100 34.40 14.9 0.327 0.171

TS/G 90/10 69.85 1.6 0.669 0.082

TS/G 70/30 67.86 4.6 0.657 0.041

TS/G 50/50 62.34 17.3 0.699 0.109

SP 100 41.25 14.4 0.140 0.053

TS/SP 90/10 69.16 2.2 0.453 0.114

TS/SP 70/30 70.02 0.6 0.247 0.023

TS/SP 50/50 65.38 12.2 0.160 0.038

W 100 4.26 1.6 0.016 0.003

TS/W 90/10 62.06 5.9 0.719 0.258

TS/W 70/30 55.05 13 0.658 0.030

TS/W 50/50 43.95 2.1 0.296 0.028
Note: TS: thickened sludge; G: grease; SP: septage; W: whey. The numbers represent the mixture ratio in its
respective percentages.

These results show the possibility of using grease and whey as substrates for the
anaerobic co-digestion of thickened WWTP sludge. The level of 10–30% COD of the total
load should not be exceeded, according to the S/I (in VS) ratios tested. These proportions
would lead to a higher production of biogas and an increased methane content.

However, it is not advisable to mix more than 10% of septage as a proportion of the
total COD load. For this proportion, there would be no increase in biogas production, but
the methane concentration would be higher.

The second phase of the study with the CSTR reactors was carried out according to
these conclusions concerning used ratios. The co-substrate septage from the septic tank
has not been tested in this experiment.

3.2. Bioreactor Test

The volumetric loading rates before mixing with the co-substrates were 1.1 ± 0.22 g
VS L−1 d−1 and 1.8 g ± 0.7 COD L−1 d−1. During the period of co-substrate addition, the
loading rates were in the same range of values (Table 5).

Table 5. Volumetric loading rates during the period of co-substrate mixing.

Volumetric Loading Rates TS TS/W TS/G

COD 2.5 ± 0.6 2.5 ± 0.6 2.6 ± 0.6

VS 1.1 ± 0.3 1.3 ± 0.5 1.3 ± 0.2

DM 1.8 ± 0.4 1.8 ± 0.4 1.7 ± 0.2

Mean values ± SD in g L−1 d−1; DM: dry matter; VS: volatile solids; COD: chemical oxygen demand; TS:
thickened sludge; TS/W: thickened sludge/whey; TS/G: thickened sludge/grease.
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The ratios expressed in COD between the substrate and the co-substrate were nomi-
nally fixed in VS at 80/20 for the TS/W mixture and 60/40 for the TS/G mixture.

The COD, VS and DM measurements made it possible to calculate the real average ratios
between the substrate and co-substrate. The nominal ratios have been respected, but only for
DM. For VS and COD, the ratios are 70/30 for TS/W and are close to 50/50 for TS/G.

3.2.1. Biogas Production

The observed production of biogas was of the same order as expected values for a
well-conducted digester with waste activated sludge, i.e., 0.8 to 1.1 L g VSremoved

−1 d−1,
under the same conditions of loadings [32].

By expressing the daily production of biogas per gram of biomass (VS) in the reactor,
the results show that it was the highest for the mixture with whey and the lowest for the
mixture with grease. Mean values were, respectively, equal to 0.43 ± 0.11 L d−1 gVS

−1

(TS/W), 0.29 ± 0.05 (TS), and 0.11 ± 0.05 (TS/G). The differences are significant at p < 0.01
for the values of the mixtures, in comparison with the values for TS (Dunnett’s test, n = 33).

3.2.2. Qualitative Analysis of Biogas

The proportions of CH4 and CO2 were similar between the three feeding conditions
(Table 6).

Table 6. Proportions of CH4 and CO2 in biogas.

Biogas Composition (%) TS TS/W TS/G

CH4 71.3 ± 1.3 69.7 ± 5.4 68.7 ± 1.5

CO2 28.7 ± 1.3 30.3 ± 5.4 31.3 ± 1.5
TS: thickened sludge; TS/W: thickened sludge/whey; TS/G: thickened sludge/grease.

The Kruskal–Wallis test does not allow the H0 hypothesis to be rejected, with the risk
of error p < 0.05. No reactor stood out significantly from the others.

3.2.3. VS and COD Removal

Analysis of the data over the entire period of the test showed a smaller reduction of
volatiles and COD between the input and output for mixing with grease, while removal
was greater than 80% for the other reactors (Table S2 in Supplementary Materials). This
difference is statistically highly significant, at p < 0.000001. The dispersion of the data
around the mean value was also greater for the mixture with grease, with a coefficient of
variation of nearly 30%.

It can be observed that soluble COD had a lower removal yield than particulate COD,
as total COD yield was higher than soluble COD.

The VS removal efficiency has evolved linearly over the applied load for TS and TS/W
mixtures but is less clear for the TS/G mixture (Figure S3 in Supplementary Materials).

The mixture with grease was visually inhomogeneous, and deposits of grease were
observed in various areas of the reactor; this could explain the poorer efficiency of this
mixture for co-digestion.

3.2.4. VFA Measurements

We observed a tendency for the accumulation of volatile fatty acids over time, and
more particularly for acetate (Figure 2). The total VFA concentration between day 35 and
day 70 did not exceed 0.6 g L−1, except for the TS reactor at day 70, due to an accumulation
of acetate. The Kruskal–Wallis test does not allow hypothesis H0 to be rejected, at the risk
of error of p < 0.05, and there were, therefore, no significant differences.



Sustainability 2021, 13, 9199 11 of 19

Figure 2. VFA concentrations on different days. TS: thickened sludge; TS/W: thickened sludge/whey;
TS/G: thickened sludge/grease.

3.3. Modeling with ADM1
3.3.1. Biogas Production Per Reactor

One of the greatest areas of interest in modeling is to simulate biogas production,
according to variations of feeding, with the estimation of the biogas composition. The
comparison of biogas production per reactor between the simulated and experimental
values shows that the simulation with thickened sludge presents a satisfactory adjustment
(R2 = 0.704) but includes a slight underestimation. With the whey mixture, the amplitude
of the variations observed experimentally was not correctly simulated (R2 = 0.321), and for
the mixture with grease, there is a slight underestimation (R2 = 0.643) (Figure 3).

The fractionation of the organic matter into its elementary substrate (amino acids,
long-chain fatty acids, sugars), adjusted to the different mixtures and consideration of
biodegradability of particulate matter, is insufficient to achieve a complete simulation of
the real phenomenon. With the grease mixture, Monod’s equations were modified by the
inhibition equation (Equation (5)) using parameter estimation to determine the value of
the inhibition coefficient.

Before the addition of the co-substrate, real biogas production per reactor was slightly
higher (statistically different at p < 0.00005) for the reactor with TS_W (Table 7). This higher
production was shown in the simulation but was without a statistically significant difference.

The addition of whey as a co-substrate did not influence the average biogas production
per reactor significantly, both in the experiment and in the simulation. The addition of
grease showed a similar behavior between experiment and simulation. This influence was
statistically different at p < 0.00001 for the experiment, and p < 0.005 for the simulation. In
the case of the experiment, the average production was lower (9.82 L d−1 VS 11.6 L d−1 for
TS) and was also lower regarding the simulation (9.11 L d−1 VS 10.01 L d−1 for TS).
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Figure 3. Cont.
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Figure 3. Comparison of biogas flow between experiments (dots) and modeling (dotted lines). (A) TS:
thickened sludge; (B) TS_W: thickened sludge/whey; (C) TS_G: thickened sludge/grease.

Table 7. Comparison between experimental and modeling results for daily biogas production per reactor.

Experimental Results (L d−1) Modeling Results (L d−1)

TS TS_W TS_G TS TS_W TS_G

Before co-substrate addition

Average 7.32 8.81 * 7.02 5.74 6.75 4.71

±SD 1.32 0.98 0.50 2.01 2.64 1.61

Median 6.50 9.00 6.90 5.10 5.58 3.91

After co-substrate addition

Average 11.61 11.94 9.82 * 10.01 10.18 9.11 *

±SD 1.52 2.70 2.05 1.74 1.96 1.47

Median 11.80 12.30 9.90 10.79 10.43 9.17

* Statistically different; TS: thickened sludge; TS_W: thickened sludge/whey; TS_G: thickened sludge/grease.

3.3.2. Biogas Composition

The simulated composition of the biogas did not show any effect from the addition of
the co-substrate (Figure S4 in Supplementary Materials). This confirms the observations of
the experimental values.

3.3.3. pH

Simulations showed the relative stability of the pH (Figure 4), with correct adjustment
to experimental values for thickened sludge, an underestimation for the mixture with
grease, and an overestimation for the mixture with whey.

It was not possible to adjust the modeling using realistic parameters that were respon-
sible for the change in pH.

3.3.4. Microbial Degraders and Population Distribution Profiles Obtained from the
Simulation with ADM1

Experimental microbial population analysis has not been realized in this study, but it is
possible to simulate with ADM1 the growth rate and decay of the different microorganisms
involved in anaerobic digestion.

The microbial degrader population distribution obtained from the simulation shows
that on each day corresponding to the addition of co-substrates, profiles were similar
between the three reactors (Figure 5). On day 70, at the end of the simulation period for
both experiment and simulation, the profiles were different. The main differences were
observed for long-chain fatty acid degraders, sugar degraders and acetic acid degraders.
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Figure 4. Comparison for pH evolution between experiments (dots) and modeling (lines). TS: thickened sludge; TS_W:
thickened sludge/whey; TS_G: thickened sludge/grease.

Figure 5. Biomass degrader distribution profiles obtained from the simulation with ADM1. Xaa: amino-acid biomass; Xpro:
propionic biomass; Xac: acetic acid biomass; Xc4: valeric/butyric biomass; Xfa: long-chain fatty acid biomass; Xsu: sugar
biomass; h2: hydrogen biomass.
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4. Discussion

Among the process parameters impacting heavily on the quantity and quality of
biogas production, co-digestion that is directly linked to feedstock type is one of the main
variables [33].

The results obtained with the BMP tests confirmed the positive effects of co-digestion,
as has been reported in the literature, with compounds that do not inhibit anaerobic
digestion [34,35].

These positive effects, especially those on biogas production and methane, are de-
pendent on their proportions when mixed with thickened extended-aeration sludge. The
results of the reactor dynamic test showed less evidence of the positive effects observed
with the BMP tests and indicate mainly that co-digestion in this case had no adverse effects.

The feed-degradable COD percentage is very important, as previously shown [27,36,37],
and can explain the differences observed in the BMP test and reactor test, especially for less
biodegradable substrates like septage and grease.

The protein and lipid percentages of particulate biodegradable COD are important
stated variables for digester stability and methane production, as predicted by the simula-
tion [27] and confirmed in this study.

Concerning lipid percentages, laboratory- and pilot-scale anaerobic digesters have
shown larger increases in gas production with the addition of readily available high-
strength organic wastes, such as fats, oils, and grease (FOG) [34,38]. Co-digestion of mixed
municipal sludge (primary and thickened sludge) with concentrated external organic
wastes, such as FOG, can result in significantly high methane production at higher organic
loading rates, and lower digester HRT/SRT values, as long as COD and VS destruction do
not drop below an acceptable lower value [39]. However, the anaerobic digestion of high
lipid wastes has been reported to cause the inhibition of acetoclastic and methanogenic
bacteria, substrate, and product transport limitation, sludge flotation, digester foaming,
blockages of pipes and pumps, and clogging of gas collection and handling systems.

The limit for FOG (grease interceptor waste) addition, leading to an inhibited digestion
process, was identified to be between 20 and 40% (v/v) or 65.5 and 83.5% (w/w) of VS as
added [40]. This inhibition has been observed with the BMP test and reactor test in
this experiment.

Increased FOG levels extended the lag phase and eventually displayed strong or
complete inhibition. Operating anaerobic digesters with FOG levels in the concentration
range of 0.1–1.5% (v/v) enhanced biomethane production, resulting in a 2- to 19-fold
increase. The highest biomethane production was observed at 1% FOG (19-fold increase),
with a lag phase of 25 days. LCFAs were degraded by 80–90% during anaerobic digestion,
following a 0.5–1.5% FOG loading. The addition of either 2% or 3% FOG permanently
inhibited biomethane production, due to high VFA accumulation (17–19 g/L) and low
LCFA reduction (29 and 18%), respectively. Under optimum biomethane production
(1–1.5% FOG), Syntrophomonas and Fermentimonas were abundant, indicating their role in
LCFA degradation and acetogenesis [41].

To avoid inhibition during high FOG loadings, this would require microbial acclimati-
zation or substrate pretreatment [8,42,43].

Concerning whey addition, and dairy wastewater by extension, it is important to
assume an organic matter load that is compatible with a CSTR process to avoid any failure
of this non-adapted model in a high-strength load process [44,45]. Indeed, whey has a
high C/N ratio, a low pH, and is rich in easily degradable sugars (mainly lactose), which
could lead to rapid acidification in the digester and, thereby, process inhibition [46,47]. A
correlation study was made on a whey/TS mixture reactor, among pH, COD load, and
the production of biogas, in an attempt to explain the significant variations observed. We
did not obtain any significant correlations between these parameters. The highest level
shown is between the pH and the production of biogas, with a coefficient of determination
R2 of only 0.44 (r = 0.66 at p = 0.00001). The pH reduction observed with this reactor seems
not due to the accumulation of VFAs from the acidogenesis step, as shown by chemical
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analysis, but instead is probably because of the weak buffering capacity of the mixture due
to acidification, as whey has a low pH. Indeed, if the change in pH reflects the excess VFA,
it may also be a sign of the high production of NH4 (protein hydrolysis). It is therefore
necessary to adapt the organic load to the buffering capacity of the reaction medium; the
recommended VFA/alkalinity ratio is 0.2–0.5 [48].

To enhance the nutrient balance with improved pH buffering, and to optimize the
production of methane, a C/N ratio of about 15–30/1 is required [12,33], and this can
be reached by deploying co-digestion. Co-digestion of 10% to 30% whey with thickened
sludge has shown a synergistic effect on biogas production in this study, as also observed
when mixing with poorly degradable substrates [49,50].

The results of simulations with the ADM1 model adapted to co-digestion confirm that
this model is a powerful tool to optimize the process of biogas production. Numerous
publications have been noted, indicating that the disintegration and hydrolysis steps are
limiting factors of the co-digestion process [51].

To improve ADM1 simulation with whey co-substrate, it may be possible to consider
the uptake of lactate and incorporate it in the biochemical process [52]. This does not seem
necessary in our case, both because of the simulation results obtained and also an overly
low concentration of lactic acid in the digester when the proportions of the mixture of whey
is less than 20–30%. However, in the presence of significant lactate concentration, it would
be advisable to add the metabolic pathway of the transformation into methane, which can
lead to complete conversion [53]:

2 lactate + 3 CO2 3 acetate 3 CH4.

Therefore, it seems important overall to respect the C/N ratios recommended for the
whey/thickened sludge mixture, or other co-substrates that are rich in nitrogen to avoid
excess nitrogen causing ammonia formation, together with an increase in pH, and conse-
quently a drop in methane yield or, at the opposite end of the spectrum, nitrogen availability
depletion, resulting in incomplete methanogenesis and reduced biogas productivity.

If the results obtained with the BMP test could lead to a significant increase in pro-
duction, as observed in the literature for dairy whey and grease sludge [54], biomethane
and, therefore, energy, the reactor tests did not validate this hypothesis satisfactorily. Pro-
cess instability was observed in semi-continuous mode, with beverage wastewater as the
co-substrate, which was not predicted by the BMP test [55]. BMP can be used to screen an
array of substrates but is not suitable for predicting continuous performance.

As extended aeration plants necessitate high operational costs, due to high energy
needs, 0.903 ± 0.509 kWh m−3 [56] additional power via co-digestion should not be
considered too much to cover the energy needs. However, reactor tests confirmed good
biodegradation efficiency, and the main purpose of co-digestion, in this case, is to recover
energy from waste and effluents that would require even more energy to treat with this
type of extended aeration process.

5. Conclusions

The results obtained confirm that it is possible to add local organic waste to the anaer-
obic digesters of an extended aeration wastewater treatment plant to treat the thickened
sludge. This addition is even positive, as a way to valorize these effluents into biogas. To
identify good practice for the procedure of co-digestion, it is necessary to abide by the
designed daily volume or mass loads, as well as the residence time required for good
degradation of the co-substrates. Adapted modeling using ADM1 makes it possible to
estimate the proportions of the mixture to be applied, based on data from BMP tests from
the literature or from specific tests, if necessary. This type of approach, combining batch
testing (BMP), dynamic laboratory study, and mechanistic modeling, is to be favored. It
can also be easily adapted for the study of pretreatment if necessary. It is also possible with
this approach to generate the relevant data to test different technical, environmental and
economic scenarios, in order to define competitive processes for industrial adoption.
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