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Abstract: In response to the severe situation of water and land resources in China, this paper uses
the DPSIR (driving force–pressure–state–impact–response) model and two-stage network DEA (data
envelopment analysis) model to evaluate the carrying capacity and utilization efficiency of land
and water resources in 31 provinces of China from 2009 to 2017. The empirical results show that
the carrying capacity and the efficiency values of land and water resources in most areas of China
do not perform well and show a downward trend during the sample period. Specifically, the
carrying capacity of land and water resources show a decreasing trend from north to south and
from east to west. In addition, the response to the current situation of land and water resources
has an important influence on the carrying capacity. The utilization efficiency of water and soil
resources is significantly different in the two stages in most regions, indicating that the efficiency
of economic benefit transformation is far greater than land and water resources development. Our
results shed some insights on land and water utilization efficiency management and provide political
recommendations for different regions.

Keywords: carrying capacity; DPSIR model; network DEA model; utilization efficiency

1. Introduction

With the rapid growth of population and industrialization, as well as urbanization,
global water and land resources security is facing severe challenges [1,2]. From the perspec-
tive of production function, expanding the number of production factors and improving
the utilization efficiency of production factors are the two main driving forces of economic
growth [3]. In the past rough economic growth mode, land and water resources have been
widely used as major inputs in industrial manufacturing, agricultural production, and
urban infrastructure construction. However, the economic growth mainly depends on
increasing the amount of water and land resources to improve the output value, which
could further aggravate the deterioration of the environment such as serious land erosion,
land desertification, and water resource depletion. The contradiction between natural
resource consumption and economic development has increasingly become the focus of
scholars and policy-makers.

As a developing country, China, has the largest population in the world, with only a
quarter of the world’s per capita water resources and less than a third of the land area [4].
Some policies and regulations are made by the Chinese government to realize “high-quality
development” with lower resources consumption. However, due to the imbalance of
economic development and spatial distribution of resources, there is a significant regional
difference in terms of water and land resources usage pattern. For example, the distribution
of water resources in the south of China is much more abundant than that in the north
region. It is necessary to make individual regulations for different areas by fully considering
the condition of resources’ carrying capacity and utilization performance for each area.

The carrying capacity of water and land resources are two important indicators to
measure the space of regional development. Water resources carrying capacity refers to the
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reasonable scale that enables regional water resources system to support sustainable social
and economic development under a certain level of economic, social, and technological
development [5,6]. Additionally, UNESCO defines the land resource carrying capacity
as “the intensity of human activities that can be carried by a region while maintaining
an acceptable standard of living” [7]. However, the water resources and land resources
should be combined and used together in the real-life world. In this way, the compre-
hensive carrying capacity of land and water resources can be defined as the maximum
supporting capacity that can provide for the social and economic development of each
region corresponding to its resource endowment and utilization efficiency under existing
strict environmental regulations.

The majority of existing studies have only focused on the evaluation of the carrying
capacity with a single factor, in which water resources and land resources carrying capacity
are usually considered as independent systems to conduct evaluation, respectively. This
paper intends to use the DPSIR model and the network DEA model to analyze the carrying
capacity and utilization efficiency of water and land resources. The structure of this
paper is organized as follows. Corresponding studies have been reviewed in Section 2.
Section 3 describes the methodology and the data sources. Section 4 presents the analysis
of the empirical results. The last section concludes the main findings and provides policy
implications.

2. Literature Review

Some scholars have performed research to analyze the capacity of water resources
or land resources. Dou et al. established a distributed quantitative model to analyze
the water resources’ carrying capacity of 60 districts in Henan province during different
development periods [8]. Deng et al. quantified the water resource carrying capacity of
the Hanjiang River Basin in China and predicted that the water consumption would be
on the rise in 2035 while the water resource carrying capacity would decline [9]. In terms
of land carrying capacity, Luo et al. investigated the evolution of China’s land carrying
capacity from the perspective of carrier-load [10]. Xue et al. established a three-stage mixed
model to evaluate the comprehensive carrying capacity of land resources in Yangtze River
Delta urban agglomeration and further determine the key factors affecting the carrying
capacity [11]. Most of the existing research about carrying capacity calculation has been
operated from the angle of resource endowment while utilization efficiency should be
another important factor in determining resource carrying capacity.

In addition to the carrying capacity of land and water resources, many studies have
focused on measuring the utilization efficiency of water and land resources combining
with some output variables. The efficiency of resource utilization can be interpreted as
producing the same quantity of goods and services with fewer resources or producing more
output with a certain quantity of resources [12]. Most of these studies use a DEA (data
envelopment analysis) approach to compute the efficiency of land and water resources,
because it could measure multiple input and output variables without considering the
functional relationship between input and output. For example, Ali and Klein used the DEA
model and Malmquist index to estimate the agricultural water use efficiency of agricultural
irrigation areas in southern Alberta from 2008 to 2012 [13]. Xie et al. used the super-
efficiency slack-based measurement (SBM) model to calculate the land-use efficiency [14].
There is a lack of study about measuring the comprehensive carrying capacity of water and
land resources.

The conventional methods for evaluating resource carrying capacity include the
comprehensive index evaluation method [15,16], multiple objective decision method [17],
principal component analysis [18], TOPSIS (technique for order preference by similarity to
an ideal solution) method [19,20], and PSR (pressure state response) method [4]. The DPSIR
model (driving force pressure state impact response framework) is an extension of the PSR
model proposed by the OECD (Organization of Economic Cooperation and Development),
which improves the comprehensiveness of the index system and has been widely applied
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in ecology, environment, and resources studies. [21–23] since the DPSIR model is suitable
for dealing with complex feedback systems, which could be used to evaluate and analyze
the carrying capacity of the integrated system of land and water resources.

It is obvious that measuring the carrying capacity of resources is an important research
topic for maintaining regional sustainable development. However, few studies can calculate
a comprehensive carrying capacity for both water and land resources. In order to fill the
research gaps and satisfy practical needs, this paper will analyze the carrying capacity and
utilization efficiency of water and land resources in China by using the DPSIR and network
DEA model. Our empirical analysis is considerably different from existing studies in at
least two aspects. On one hand, while existing studies employ the DPSIR model to analyze
the carrying capacity of water or land resources in a local region, we study the carrying
capacity of both water and land resources at a whole national level in China. On another
hand, in terms of the utilization efficiency of water and land resources, various studies
treat the production process as a “black box” while the internal structure of the production
process is ignored. Thus, we introduce the network DEA model by dividing the whole
production process into the resource exploitation sub-process and the transformation of
the economic benefit sub-process.

3. Research Methods and Data Sources
3.1. Evaluation System for the Water and Land Resource Comprehensive Carrying Capacity

It is an integral problem-building tool that can be used to integrate knowledge
from multiple disciplines to provide information and support for motivational decision-
makers [24–26]. The key strength of this framework is that it can identify relationships
in environmental management by establishing causal chains from ‘driver forces’, which
put ‘pressures’ in the ‘state’ of society, thereby leading to certain ‘impacts’ that will lead
to various ‘responses’ [27,28]. It is widely used in the study of environmental system
evaluation due to its advantages in constructing complex environmental problems and
determining solutions [29,30]. To be specific, in order to explore the carrying capacity of
land and water resources, this study uses the DPSIR framework to divide the evaluation
index of a natural system into five parts, including the driving force layer, the pressure
layer, the state and the impact layer, and the response layer. The driving force layer (D)
represents the factors for the change of land and water resources carrying capacity caused
by human activities. The pressure layer (P) represents the direct pressure of human beings
on water and land resources. The state layer (S) represents the situation of water and land
resources under the constant pressure of human beings on the environment. The impact
layer (I) represents the reverse effect of the change of land and water resources on the
development of human society and economy. The response layer (R) represents the actions
that humans take in the face of current environmental conditions and bite back.

3.1.1. Constructing Index System

In accordance with relevant research, this paper selects 18 representative indicators to
construct the evaluation index system of the land and water resources carrying capacity of
31 provinces in China from the five aspects of driving force, pressure, state, impact, and
response. Specific indicators and measurement approaches are shown in Table 1.
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Table 1. Specific indicators and measurement approaches related to the DPSIR model.

Indicator Layer Units Calculation Approach

Driving force

Per capita cultivated land area hm2 Area of cultivated land of the year/total
population of the year

Per capita GDP Yuan GDP of the year/total population of
the year

Population density Person hm2 Total population/land area of the year

Water resources per capita m3/person
Total water resources/total population of

the year
Proportion of natural wetland area % Current wetland area/land area

Pressure

Total social water consumption 100 million m3
The total amount of industrial,

agricultural, domestic, and ecological
water of the year

Natural population growth rate % Natural population growth of the
year/average population

Water consumption rate of ecological
environment % Eco environmental water

consumption/average water resources
Development and utilization rate of

land resources % Cultivated land area/land area in
curren year

Water consumption per capita m3/person
Total social water consumption/total

population of the year

State

Matching coefficient of water and
land resources Ten thousand m3 hm2 Total water resources/cultivated land

area of the year

Proportion of effective irrigation area % Effective irrigation area/total sown area
of the year

Crop yield per unit area Kg hm2 Total crop yield/sown area

Impact Urbanization rate % Current urban population/total
population

Multiple crop index Total sown area/cultivated area

Response

Agricultural mechanization degree Kw hm2 Total power of agricultural
machinery/cultivated land area

Proportion of afforestation area % Total afforestation area/land area in
current year

Agricultural water quota m3·ten thousand yuan−1 Agricultural water consumption/total
agricultural output value

3.1.2. Determination of Index Weight

Because the units of various evaluation indexes are different, they cannot be directly
compared when evaluating the carrying capacity of water and land resources. Therefore,
we first standardize the indexes and convert them into dimensionless values in order to
eliminate the influence of dimensions [31].

Then, the mean square deviation method is used to measure the difference degree of
the index value according to the deviation degree of the data from the mean value and
then determine the contribution degree of the index. The greater the difference degree, the
greater the contribution, that is, the greater the weight. The specific formula is as follows:

E(Gj) =
1
n

n

∑
i=1

x′ij (1)

σ(Gj) =

√
n

∑
i=1

[x′ij − E(Gj)]
2 (2)

Wj = σ(Gj)/
m

∑
i=1

σ(Gj) (3)
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where E(Gj) is the mean value of j indicator, x′ij is the standardized value of the indicator,
σ(Gj) is the standard deviation of j indicator, and Wj is the weight of the j indicator.

With the calculated weight, we can use Formula (6) to obtain the comprehensive score
of water and land resources carrying capacity of 31 provinces in China from 2009 to 2017,
where Li represent the carrying capacity value.

Li =
m

∑
j=1

x′ij ×Wj (4)

3.2. Two-Stage Network DEA Model with Undesirable Outputs

Since the use of land and water resources is a complex and mutually influencing
process, the classic DEA models as the CCR or BCC model may lead to unreasonable
evaluation of the use efficiency, and at the same time, much important information will be
lost. Different from the above DEA models, which regard each DMU as a black box, the two-
stage network DEA model will consider the internal structure of the DMU [32,33], where
the DMU represents decision-making units; it refers to each province participating in the
evaluation. Therefore, based on the macro-economic level and the characteristics of water
and land resource utilization, we divide the water and land resource utilization system
into two sub-stages: the water and land resource development stage and the transforming
into economic benefits stage. On this basis, considering that the production process using
resources contains undesirable outputs such as pollutants, a two-stage DEA model with
shared inputs and undesirable outputs is constructed. The model structure is shown in
Figure 1.
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Figure 1. The two-stage DEA structure.

As shown in Figure 1, X1 represents independent input in the first stage, and X2
represents shared input. aX2 is used in the first stage of production, (1 − a) X2 is used in
the second stage of production, where the “a” is the share ratio between the first and the
second stages, between 0 and 1. Z represents intermediate outputs, which are obtained
from the first stage production and enter into the second stage production as input, then
the final desirable output Y and undesirable output B are obtained.

Based on the structure, a two-stage DEA model is constructed to calculate the sub-stage
and overall efficiencies of water and land resources utilization. It is assumed that there are n
DMUs, and each DMU has g independent input variables, m shared input variables, s final
desirable output variables, t undesirable output variables, and q intermediate variables. αi and
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1− αi (0 < αi ≤ 1, i = 1, 2, . . . , m), respectively, denote the share ratio between the first and
the second stages. The specific formula is as follows:

Ek = max

q
∑

p=1
ω1

pZpk+
s
∑

r=1
µrYrk

g
∑

a=1
λaXak+

m
∑

i=1
ν1

i αiXik+
m
∑

i=1
ν2

i (1−αi)Xik+
q
∑

p=1
ω2

pZpk+
t

∑
b=1

θbBbk

s.t.



q
∑

p=1
ω1

pZpk+
s
∑

r=1
µrYrk

g
∑

a=1
λaXak+

m
∑

i=1
ν1

i αiXik+
m
∑

i=1
ν2

i (1−αi)Xik+
q
∑

p=1
ω2

pZpk+
t

∑
b=1

θbBbk

≤ 1, j = 1, 2, · · · , n

q
∑

p=1
ω1

pZpj

g
∑

a=1
λaXaj+

m
∑

i=1
ν1

i αiXij

≤ 1, j = 1, 2, · · · , n

s
∑

r=1
µrYrj

m
∑

i=1
ν2

i (1−αi)Xij+
q
∑

p=1
ω2

pZpj+
t

∑
b=1

θbBbj

≤ 1, j = 1, 2, · · · , n

0 < αi ≤ 1, ν1
i , ν2

i , λa, ω1
p, ω2

p, µr, θb ≥ ε; i = 1, 2, · · · , m

(5)

where Ek is the objective function, i.e., the efficiency value, and X, Z, Y, and B represent
input, intermediate output, expected output, and unexpected output, respectively. v1

i and
v2

i are the weight of shared input between the first and second stages, respectively. λa
is the weight of independent input in the first stage, ω1

p and ω2
p represent the weight of

output and input of Zpj in the first and second stages, respectively. µr and θb represent the
weights of desirable and undesirable outputs in the second stage, respectively. ε is a small
non-Archimedean number. According to the Charnes Cooper transformation, Model (5)
can be simplified into the following mathematical programming model:

Ek = max
q
∑

p=1
W1

p Zpk +
s
∑

r=1
UrYrk

s.t.



g
∑

a=1
λaXak +

m
∑

i=1
π1

i Xik +
m
∑

i=1
V2

i Xik +
m
∑

i=1
π2

i Xik +
q
∑

p=1
W2

p Zpk +
t

∑
b=1

δbBbk = 1

g
∑

a=1
λaXaj +

m
∑

i=1
π1

i Xij −
q
∑

p=1
W1

p Zpj ≥ 0, j = 1, 2, · · · , n

m
∑

i=1
V2

i Xij −
m
∑

i=1
π2

i Xij +
q
∑

p=1
W2

p Zpj +
t

∑
b=1

δbBbj −
s
∑

r=1
UrYrj ≥ 0, j = 1, 2, · · · , n

λa, W1
p , W2

p , Ur, δb ≥ ε; V2
i ≥ π2

i ≥ ε; i = 1, 2, · · · , m

(6)

Using linear programming (6), the optimal solution of the decision variable λa,αi(αi =
π2

i
V2

i
),V1

i (V
1
i =

π1
i

αi
),V2

i ,W1
p ,W2

p ,δb is obtained, then substituted into Equations (7) and (8) to

obtain the efficiency values of the first and second stages of the production system, where E1
k ,

E2
k is the efficiency value of the first and second stages, respectively, and the meaning of other

variables is the same as Equation (5).

E1
k =

q
∑

p=1
ω1

pZpk

g
∑

a=1
λaXak +

m
∑

i=1
ν1

i αiXik

=

q
∑

p=1
W1

p Zpk

g
∑

a=1
λaXak +

m
∑

i=1
V1

i αiXik

(7)

E2
k =

s
∑

r=1
UrYrk

m
∑

i=1
V2

i (1− αi)Xik +
q
∑

p=1
W2

p Zpk +
t

∑
b=1

δbBbk

(8)
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3.3. The Data Source and Illustration of Variables

Considering the availability of data, combined with China’s major policy planning in
recent years, we finally chose the nine years of China’s rapid economic development, and
accurate data can be found for the research period. The data of 31 provincial administrative
regions, including total water resources, land resources (land area), and index of carrying
capacity of land and water resources, are collected from the National Bureau of Statistics,
China Statistical Yearbook, from 2009 to 2017 and local statistical yearbooks. Additionally,
the interpolation method is used to supplement some missing data.

In the development stage of land and water resources, water resources and total land
area are the independent input indexes in the first stage, labor and fixed asset investment
are the shared investment indexes, and water supply and construction land area are selected
as the intermediate output indexes. Then, the intermediate output index, labor force, and
fixed asset investment are taken as the input in the transformation stage of economic
benefits. The total domestic production is viewed as the desirable output index of the
second stage, and the total discharge of industrial wastewater, industrial waste gas, and
industrial solid waste was taken as the undesirable output indexes of the second stage.

4. Results and Discussion
4.1. Analysis on the Results of Carrying Capacity of Water and Land Resources

By calculating Equations (1)–(4), the scores of the land and water-carrying capacity
of each province from 2009 to 2017 can be calculated, respectively, and the results of 31
provinces are presented in Table 2. As shown in Table 2, the average values of all provinces
in China range from 0.287 to 0.508, which means that regional difference widely exists.
According to the Chinese government, the country is divided into four regions, i.e., the
northeast region, east region, west region, and central region. Among the four regions, the
east region has the highest comprehensive carrying capacity of land and water resources,
followed by the central region, then the west region and the northeast region. Figure 2
shows the change trend of the average carrying capacity of water and land resources in
four regions and the whole country from 2009 to 2017. The x-axis represents the year, and
the y-axis represents the average carrying capacity score of regions. The results mean that
the overall carrying capacity of land and water resources in China remains unchanged
during 2009–2017. However, the carrying capacity shows a trend of first increase and then
decrease for the northeast region, and the western region shows a stable trend, while the
eastern and central regions show a fluctuating upward trend.
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Table 2. Comprehensive carrying capacity values of water and land resources in four regions.

2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean

Northeast
Liaoning 0.357 0.363 0.392 0.397 0.389 0.367 0.363 0.357 0.356 0.371

Jilin 0.345 0.362 0.377 0.369 0.366 0.361 0.376 0.376 0.379 0.368
Heilongjiang 0.316 0.319 0.321 0.324 0.317 0.311 0.309 0.306 0.309 0.315

East

Beijing 0.523 0.501 0.527 0.548 0.533 0.488 0.475 0.485 0.494 0.508
Tianjin 0.518 0.499 0.492 0.477 0.462 0.465 0.453 0.476 0.488 0.481
Hebei 0.453 0.441 0.45 0.456 0.451 0.458 0.444 0.463 0.447 0.451

Shanghai 0.472 0.467 0.461 0.477 0.461 0.464 0.469 0.49 0.486 0.472
Jiangsu 0.404 0.407 0.407 0.414 0.407 0.409 0.409 0.422 0.425 0.411

Zhejiang 0.436 0.436 0.43 0.432 0.416 0.416 0.42 0.43 0.423 0.427
Fujian 0.379 0.377 0.413 0.404 0.402 0.397 0.434 0.442 0.434 0.409

Shandong 0.485 0.48 0.491 0.49 0.484 0.502 0.487 0.5 0.496 0.49
Guangdong 0.37 0.374 0.378 0.384 0.373 0.378 0.411 0.404 0.405 0.386

Hainan 0.362 0.347 0.355 0.358 0.356 0.349 0.359 0.365 0.365 0.357

West

Inner Mongolia 0.341 0.335 0.346 0.352 0.356 0.342 0.338 0.338 0.342 0.343
Guangxi 0.332 0.321 0.323 0.326 0.327 0.323 0.331 0.33 0.335 0.328

Chongqing 0.353 0.383 0.395 0.398 0.394 0.393 0.4 0.405 0.394 0.39
Sichuan 0.304 0.292 0.3 0.292 0.296 0.293 0.308 0.321 0.329 0.304
Guizhou 0.32 0.307 0.303 0.304 0.325 0.331 0.348 0.347 0.364 0.328
Yunnan 0.326 0.311 0.315 0.313 0.313 0.308 0.317 0.317 0.313 0.315

Tibet 0.483 0.487 0.496 0.493 0.494 0.494 0.499 0.517 0.504 0.496
Shaanxi 0.344 0.323 0.338 0.339 0.34 0.34 0.338 0.328 0.33 0.336
Gansu 0.29 0.281 0.292 0.288 0.287 0.286 0.294 0.282 0.286 0.287

Qinghai 0.358 0.343 0.346 0.331 0.318 0.319 0.322 0.328 0.331 0.333
Ningxia 0.409 0.39 0.395 0.404 0.403 0.4 0.386 0.382 0.381 0.395
Xinjiang 0.351 0.346 0.338 0.333 0.346 0.345 0.348 0.323 0.334 0.34

Central

Shanxi 0.365 0.361 0.379 0.378 0.38 0.38 0.356 0.34 0.34 0.364
Anhui 0.376 0.371 0.38 0.388 0.413 0.421 0.432 0.425 0.426 0.404
Jiangxi 0.427 0.414 0.415 0.423 0.374 0.374 0.387 0.4 0.398 0.401
Henan 0.476 0.441 0.451 0.452 0.446 0.456 0.446 0.446 0.45 0.452
Hubei 0.344 0.352 0.362 0.373 0.381 0.388 0.391 0.39 0.404 0.376
Hunan 0.389 0.394 0.419 0.433 0.421 0.436 0.447 0.458 0.454 0.428
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Figure 3 visually shows the average carrying capacity of 31 provinces during 2009–2017.
In order to evaluate the ultimate carrying capacity of water and land resources more clearly,
this paper establishes a grading evaluation standard by referring to the existing research
data and combining with the empirical results. The score is between 0 and 1; the higher the
score, the stronger the carrying capacity of water and land resources. The specific classifica-
tion is as follows: poor carrying capacity (less than 0.35), below average carrying capacity
(0.35~0.4), above-average carrying capacity (0.4~0.45), and high carrying capacity (more
than 0.45). Specifically, the poor carrying capacity category consists of 10 provinces, i.e.,
Inner Mongolia (NMG), Xinjiang (XJ), Shaanxi (SN), Qinghai (QH), Guizhou (GZ), Guangxi
(GX), Yunnan (YN), Heilongjiang (HLJ), Sichuan (SC), and Gansu (GS). The below-average
carrying capacity category includes eight provinces, i.e., Ningxia (NX), Chongqing (CQ),
Guangdong (GD), Hubei (HB), Liaoning (LN), Jilin (JL), Shanxi (SX), and Hainan (HI).
Hunan (HN), Zhejiang (ZJ), Jiangsu (JS), Fujian (FJ), Anhui (AH), and Jiangxi (JX) belong to
the above-average carrying capacity category. The last category contains seven provinces,
i.e., Beijing (BJ), Tibet (XZ), Shandong (SD), Tianjin (TJ), Shanghai (SH), Henan (HA), and
Hebei (HE).
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In order to further compare the relations between quantity and the comprehensive
carrying capacity of water and land resources, the two-dimensional coordinate systems are
depicted in Figures 4 and 5. The x-axis in Figures 4 and 5 represents the water resources and
land resources content of each province, respectively, and the y-axis represents the average
carrying capacity score of regions. In the following two figures, the x-axis denotes the quantity
of water and land resources in each province by a min–max standardization, respectively. The
y-axis denotes the comprehensive carrying capacity of water and land resources, in which the
value in each province is also converted by a min–max standardization.

As shown in Figure 4, the provinces are divided into four categories in terms of the
values between the quantity of water resources and comprehensive carrying capacity.
Twelve provinces located in the “low–high” category, respectively, are Beijing, Shandong,
Tianjin, Shanghai, Henan, Hebei, Jiangsu, Zhejiang, Anhui, Fujian, Hunan, and Jiangxi,
in which the water resources are relatively not abundant but the comprehensive carrying
capacity is relatively good. Seventeen provinces such as Guizhou and Gansu belong to
the “low–low” category, which indicates that more than half of the provinces in China face
both water shortage and bad carrying capacity problems. In addition, Tibet is located in the
“high–high” category, while Sichuan is located in the “high–low” category. Turning to the
relations between land resources and comprehensive carrying capacity, most provinces are
concentrated in the second third quadrants, which means that the comprehensive carrying
capacity of different provinces is diverse, although they are lacking in land resources.
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Then, using the index weights obtained from Equation (3) and combining with
Equation (4), we can calculate the scores of 31 provinces under the driving force sys-
tem (D), pressure system (P), state system (S), impact system (I), and response system (R),
respectively. The average values of each province are shown in Table 3.
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Table 3. Average scores of 31 provinces in China under five systems.

D Rank P Rank S Rank I Rank R Rank

Beijing 0.093 6 0.196 2 0.076 5 0.070 5 0.072 7
Tianjin 0.082 11 0.195 3 0.066 8 0.065 7 0.072 8
Hebei 0.063 26 0.178 7 0.052 13 0.049 16 0.109 1
Shanxi 0.065 24 0.179 6 0.019 27 0.037 24 0.065 11

Inner Mongolia 0.116 1 0.131 26 0.030 23 0.041 22 0.025 29
Liaoning 0.077 13 0.148 20 0.056 11 0.045 18 0.044 22

Jilin 0.089 7 0.157 13 0.064 9 0.035 26 0.022 30
Heilongjiang 0.113 3 0.110 30 0.035 21 0.041 21 0.016 31

Shanghai 0.105 4 0.151 17 0.078 4 0.108 1 0.029 27
Jiangsu 0.100 5 0.111 29 0.069 6 0.076 4 0.055 16

Zhejiang 0.085 9 0.150 19 0.078 3 0.053 14 0.060 15
Anhui 0.066 23 0.172 8 0.043 18 0.059 12 0.063 14
Fujian 0.079 12 0.140 23 0.067 7 0.059 11 0.064 12
Jiangxi 0.062 29 0.146 21 0.050 15 0.070 6 0.074 6

Shandong 0.074 18 0.199 1 0.062 10 0.060 10 0.096 3
Henan 0.060 31 0.192 4 0.047 17 0.064 8 0.087 5
Hubei 0.074 17 0.137 24 0.050 16 0.060 9 0.055 17
Hunan 0.062 27 0.133 25 0.056 12 0.076 3 0.100 2

Guangdong 0.076 14 0.118 28 0.051 14 0.078 2 0.063 13
Guangxi 0.061 30 0.144 22 0.028 25 0.048 17 0.047 20
Hainan 0.069 21 0.181 5 0.032 22 0.044 19 0.033 25

Chongqing 0.070 20 0.164 11 0.030 24 0.059 13 0.068 10
Sichuan 0.064 25 0.121 27 0.038 19 0.050 15 0.031 26
Guizhou 0.062 28 0.172 9 0.005 31 0.036 25 0.053 19
Yunnan 0.066 22 0.154 15 0.014 29 0.034 28 0.046 21

Tibet 0.114 2 0.154 16 0.134 1 0.000 31 0.095 4
Shaanxi 0.071 19 0.156 14 0.014 30 0.041 20 0.054 18
Gansu 0.075 15 0.150 18 0.017 28 0.019 30 0.026 28

Qinghai 0.075 16 0.158 12 0.023 26 0.035 27 0.043 23
Ningxia 0.082 10 0.170 10 0.037 20 0.037 23 0.069 9
Xinjiang 0.088 8 0.074 31 0.107 2 0.033 29 0.038 24

First, Inner Mongolia has the highest score (0.116) in terms of the score of the driving
force system, indicating that the carrying capacity of land and water resources in Inner
Mongolia is greatly driven by the local population and the total amount of natural resources,
followed by Xizang (0.114) and Heilongjiang (0.113). These areas have rich land and water
resources and low population density, so the score is high in terms of driving force. The
province with the lowest score of driving force is Henan (0.06), and other provinces
with similar performance included Jiangxi (0.062), Guangxi (0.061), Guizhou (0.062), and
other central and western regions with relatively low economic development and per
capita resources.

Second, the pressure of land and water resources is triggered by the driving force,
which will cause the response of government management. The maximum pressure
scores are found in Shandong (0.199), Beijing (0.196), and Tianjin (0.195), all of which are
in the eastern region with relatively high economic development, where humans have
exerted great pressure on local water and land resources. Xinjiang (0.074) has the lowest
pressure score, followed by Heilongjiang (0.110). The pressure caused by driving forces is
relatively small.

Third, according to the score of the state system, the state of water and land resources
varies in different provinces. The provinces with high land and water resources states
included Xizang (0.134), Xinjiang (0.107), Zhejiang (0.078), Shanghai (0.078), and Beijing
(0.076). Some provinces have a high state because of their excellent resource performance
with respect to low pressure on resources, while others have a high state because of their
relatively good performance with respect to the driving force of social factors. In contrast,
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the provinces with a poor state of land and water resources include Guizhou (0.005),
Shaanxi (0.014), and Yunnan (0.014).

Fourth, the score of the impact factor of land and water resources carrying capacity
is induced by the state of resources. The high impact score refers to the large adverse
effect of the change of land and water resources on human beings and the social economy,
represented by Shanghai (0.108), Guangdong (0.078), Hunan (0.076), and other eastern or
central regions, which are highly dependent on water and land resources. Tibet (0.000),
Gansu (0.019), Xinjiang (0.033), and Yunnan (0.034) are the low-impact regions, whose
social economy and human activities are not negatively affected by the state of water and
land resources.

Fifth, the score of the response system shows the management policy and implemen-
tation strength formulated by the government department when facing the deterioration
of land and water resources and the negative impact on human life. Hebei (0.109), Hunan
(0.100), Shandong (0.096), and other central and eastern regions have taken relatively strong
policy measures. However, Beijing (0.072) and Zhejiang (0.060), which scored well in other
systems, performed moderately. The response score of Shanghai (0.029) was particularly
poor among China’s 31 provinces and cities. The lowest response intensity was found in
Heilongjiang (0.016), Jilin (0.022), and Inner Mongolia (0.025).

Through the evaluation of carrying capacity, it is found that the scores of the driving
force system and the resource state system have a higher effect on the carrying capacity than
the other three systems. Specifically, the pressure system has no significant relationship
with the carrying capacity, which means that the carrying capacity of land and water
resources in a region was not mainly determined by the resource pressure. The scores of
the impact factors of land and water resources show that the areas with greater pressure
on land and water resources have a great negative impact on the development of human
society and economic operation. Therefore, all provinces should pay more attention to the
protection of land and water resources. The negative impacts also increase in provinces
with high driving forces and pressure scores. The score of the response system indicates
that some provinces under great pressure (such as Zhejiang and Shanghai) have not taken
corresponding response measures, and there is still room for further improvement of the
carrying capacity of land and water resources. As long as the government finds out the
problems and relevant policies in time and actively implements them, the state of water
and land resources in this region will not be too bad. Thus, provinces can obtain higher
resource carrying capacity, such as Beijing, Tianjin, and Xizang, and vice versa, such as
Xinjiang and Inner Mongolia.

4.2. Analysis of the Results of Utilization Efficiency of Water and Land Resources

Based on Equations (6)–(8), we can calculate the utilization efficiency of each province
in the whole and two stages from 2009–2017, respectively. The results are shown in Table 4.
First, we take the average efficiency of all DMUs to obtain the efficiency of China in the
first stage, the second stage, and the whole system during 2009–2017, respectively. Figure 6
draws the change trend of the efficiencies during the observation period. The x-axis here
represents the year, and the y-axis represents the average efficiency score.

Figure 6 shows that the overall efficiency value is basically consistent with the change
trend of the second stage, which maintains a continuous and slow decline trend before
2015. After significant growth in 2016, the overall efficiency value drops in 2017. The
results indicate that the efficiency of the economic benefit transformation stage plays a
leading role in the overall utilization efficiency of water and land resources. Additionally,
for the first stage of water and land resources development, the efficiency change trend is
not obvious and only fluctuates in a small range. Comparing the beginning and ending of
the observation period, the efficiency value in the first stage has slightly increased, but the
efficiency value in the second stage drops significantly. As a result, the overall efficiency
value of the whole system decreases during the observation period.
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Table 4. Overall and sub-stage efficiencies of water and land resources utilization in 31 provinces of China.

Province Overall
Efficiency

First Stage
Efficiency

Second Stage
Efficiency Province Overall

Efficiency
First Stage
Efficiency

Second Stage
Efficiency

Beijing 1.000 0.130 1.000 Hubei 0.596 0.195 0.598
Tianjin 0.822 0.208 0.823 Hunan 0.544 0.239 0.541
Hebei 0.577 0.283 0.579 Guangdong 0.579 0.197 0.581
Shanxi 0.605 0.332 0.607 Guangxi 0.477 0.264 0.142

Inner Mongolia 0.788 1.000 0.636 Hainan 0.609 0.139 0.615
Liaoning 0.535 0.285 0.536 Chongqing 0.586 0.115 0.587

Jilin 0.528 0.284 0.555 Sichuan 0.574 0.186 0.579
Heilongjiang 0.616 0.604 0.254 Guizhou 0.603 0.207 0.604

Shanghai 0.742 1.000 0.655 Yunnan 0.590 0.227 0.592
Jiangsu 0.696 0.189 0.697 Tibet 0.995 0.406 0.900

Zhejiang 0.621 0.071 0.622 Shaanxi 0.740 0.266 0.741
Anhui 0.579 0.263 0.580 Gansu 0.638 0.553 0.669
Fujian 0.604 0.136 0.605 Qinghai 0.860 0.517 0.001
Jiangxi 0.496 0.196 0.496 Ningxia 0.520 1.000 0.195

Shandong 0.674 0.146 0.676 Xinjiang 0.789 1.000 0.053
Henan 0.552 0.235 0.552 number (=1) 1 4 1
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Although the average efficiency value can reflect the national utilization status of water
and land resources, the efficiency values of each province are not analyzed. Therefore, we
hope to obtain more effective information about regional water and land use from Table 4.

From the perspective of the overall efficiency of water and land resources utilization,
the efficiency value of Beijing is 1, which is the most effective area of water and land re-
sources utilization among 31 provinces. On the contrary, Guangxi has the lowest efficiency
value, 0.477. According to overall efficiency values, 31 provinces can be divided into four
categories: high efficiency, relatively high efficiency, middle efficiency, and low efficiency.
To be specific, the high-efficiency category includes Beijing, Tibet, Qinghai, and Tianjin.
The relatively high-efficiency category consists of Xinjiang, Inner Mongolia, Shanghai,
Shaanxi, Jiangsu, and Shandong. The middle efficiency category includes Gansu, Zhejiang,
Heilongjiang, Shandong, and so on. The low-efficiency category consists of 11 provinces
such as Hainan, Shanxi, Fujian, Guizhou, Hubei, Yunnan, and Chongqing. In general, the
overall utilization efficiency of water and land resources in most provinces is still at the
middle and low levels.

For the first stage, the four provinces with an average efficiency of 1, respectively, are
Inner Mongolia, Shanghai, Ningxia, and Xinjiang. The result means that the four provinces
have the best performance in the stage of water and land resources development. However,
the efficiency values of other provinces in the first stage are very low, which indicates that
there are significant differences in the development of water and land resources of different
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provinces in China. For the second stage, it is found that the efficiency value for each
province is close to the overall efficiency value of the whole system. In addition, similar
to the first stage, provincial difference also exists in the economic benefit transformation
stage in terms of efficiency value. For example, the efficiency value of Beijing is 1 while the
efficiency value of Qinghai is only 0.001.

5. Conclusions and Suggestions
5.1. The Main Conclusions of This Paper

This study applies the DPSIR model and two-stage network DEA model to analyze
the comprehensive carrying capacity and utilization efficiency of water and land resources
of 31 provinces from 2009 to 2017 in China. The major findings are as follows:

In terms of the comprehensive carrying capacity of water and land resources, except
for Beijing, Tianjin, and Shanghai, most provinces perform relatively poorly. In addition,
the carrying capacity gradually decreases from north to south and from east to west with
the geographical location. Moreover, it is found that the score of the response system
is basically consistent with the ranking of the comprehensive bearing capacity, which
indicates that this system has an important impact on the bearing capacity.

In terms of comprehensive utilization efficiency of water and land resources, the aver-
age overall efficiency of China shows a gradual downward trend during the observation
period. Specifically, the overall efficiency of most provinces is at a relatively low level.
Considering the sub-stages, the efficiency of the transformation stage of economic benefits
in most provinces is much greater than that of the development stage.

In general, it is found that the carrying capacity and utilization efficiency of most
provinces belong to medium–poor, medium–medium, and poor–medium types. In addi-
tion, Beijing, Tianjin, and Tibet perform relatively well in both aspects, while Guangxi and
Sichuan have a relatively low level of carrying capacity and utilization efficiency.

5.2. Policy and Recommendations

Based on the empirical study in this paper, some policy suggestions are provided for
corresponding managers. First, different levels of environmental regulations should be
made for different China’s regions based on the empirical results, in which the western and
southern regions should be restricted by stringent regulations because of the lower level
of carrying capacity and utilization status of water and land resources. Second, managers
need to consider various kinds of environmental protection measures, which include not
only environmental laws and regulations but also some encouraging policies to strengthen
the supervision and publicity of Water and Land Conservation Prevention. Third, a strict
approval system should be constructed to control the total development of water and soil
resources and formulate a clear upper limit of water and land use in combination with
local economic development. Fourth, increasing attention should be paid to the influence
factors to reduce the pressure of carrying capacity of water and land resources, such as
expanding the scope of agricultural mechanization, increasing the area of afforestation, and
saving agricultural water. Finally, the function of technological innovation on water saving
and land pollution controlling should be emphasized, and the corresponding enterprises
to develop and apply advanced technology should be promoted.
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