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Abstract: Soil temperature (ST) plays an important role in agriculture and other fields, and has a
close relationship with plant growth and development. Therefore, accurate ST prediction methods
are widely needed. Deep learning (DL) models have been widely applied for ST prediction. However,
the traditional DL models may fail to capture the spatiotemporal relationship due to its complex
dependency under different related hydrologic variables. Hence, the DL models with Ensemble
Empirical Mode Decomposition (EEMD) are proposed in this study. The proposed models can
capture more complex spatiotemporal relationship after decomposing the ST into different intrinsic
mode functions. Therefore, the performance of models is further improved. The results show that
the performance of DL models with EEMD are better than that of corresponding DL models without
EEMD. Moreover, EEMD-Conv3d has the best performance among all the experimental models. It
has the highest R2 ranging from 0.9826 to 0.9893, the lowest RMSE ranging from 1.3096 to 1.6497
and the lowest MAE ranging from 0.9656 to 1.2056 in predicting ST at the lead time from one to five
days. In addition, the lines between predicted ST and observed ST are closer to the ideal line (y = x)
than other DL models. The results show that our EEMD-Conv3D can better capture spatiotemporal
correlation and is an applicable method for predicting spatiotemporal ST.

Keywords: spatiotemporal soil temperature; ensemble empirical mode decomposition; convolutional
neural network; EEMD-Conv3D

1. Introduction

Soil temperature (ST) is one of the most important factors affecting the processes of
soil properties involved in plant growth [1–4]. It controls physical, chemical, and biological
processes in soil and influences plant growth, development, and soil formation. In agri-
culture, ST plays an important role because it is one of the factors that contribute to seed
germination, and most soil organisms need to function at optimal soil temperature. ST
also affects the rate of nitrification, soil water content, vent ability, and availability of plant
nutrients. In addition, various biochemical processes in soil, such as those caused by micro-
bial activity and non-living chemical processes, are also influenced by ST. Therefore, ST
prediction is of great importance. Usually, prediction methods are mainly focus on the time-
based temperature series of a site, but spatiotemporal ST prediction has been little studied.
In this paper, we investigate a method for predicting spatiotemporal soil temperature.

For ST prediction at one point site and similar time series prediction, statistical models
and machine learning models are usually applied [5–8]. The commonly used statistical
models are Box-Jenkins models, including ARMA and ARIMA [9]. For examples, Shir-
vani et al. [10] predicted the ST anomalies at one grid point using ARIMA model and
Chen et al. [11] forecasted the short-term load of a power system by an adaptive ARMA
model. After this, the most widely applied models for time-series prediction are machine
learning, including artificial neural network (ANN), support vector regression (SVR),
etc. Mihalakakou [12] used a neural network approach to predict surface soil tempera-
ture. Lekkas et al. [13] proposed an application of ANNs to make predictions of floods.
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Abdel-Aal [14] proposed abductive networks and achieved hourly temperature forecasting.
Bilgili [15] compared ANN with linear regression (LR) and nonlinear regression (NLR) in
predicting monthly ST and proved that ANN has better performance than LR and NLR.
Tabari [16] used air temperature and ST as inputs to ANN and realized ST prediction at
different depths over one site. Salcedo-Sanz et al. [17] used SVR to achieve predictions
of long-term air temperature over Australian and New Zealand observational stations.
Kisi [18] compared the performance of ANN, adaptive neuro-fuzzy inference system (AN-
FIS), and genetic programming (GP) in predicting monthly ST and showed that ANN
can better use the data from nearby sites for prediction. Delbari [19] used SVR to predict
daily ST and showed that SVR was effective in predicting deep ST. Recently, DL models
provide some useful insights on solving this problem, especially recurrent neural network
(RNN) and long short-term memory (LSTM) models. For examples, Tokgoz et al. [20]
tested RNN and LSTM on electricity consumption prediction and proved that they have
better results than ANN and ARIMA. Hewage [21] used LSTM to achieve efficient and
accurate prediction of numerical weather forecasts through time series data of weather
information. Although methods are capable of making predictions based on time series.
When predictions are made for spatiotemporal ST data, these methods become a little inap-
plicable. Traditional DL models such as ANN and LSTM cannot guarantee the relationship
of data information in temporal and spatial dimensions at the same time. These methods
of discarding some information will reduce the accuracy of prediction. To capture the
information of the data in both temporal and spatial dimensions, convolution operators
are required. Two-dimensional convolutional neural networks (Conv2D) are suitable for
image processing [22], and they are able to preserve features in temporal dimension on
channels. Three-dimensional convolutional neural networks (Conv3D) are applicable in
the field of video processing [23,24], and 3D convolutional kernels are able to slide in the
temporal dimension, to preserve the temporal information of the input data. In addition to
them, Convolutional LSTM Network (ConvLSTM) [25] is also applicable to spatiotemporal
data in three dimensions. Compared with the traditional LSTM [7], Shi et al. replaces the
point multiplication in LSTM cell with convolution operations, so that the two-dimensional
spatial data can be used as the input of LSTM cells instead of one-dimensional inputs
that drops some spatial information. Hence, in this paper, we test Conv2D, Conv3D and
ConvLSTM models for predicting spatiotemporal ST.

Ensemble empirical mode decomposition (EEMD) is an adaptive decomposition
method for time series processing proposed by Wu and Huang [26], and many mod-
els combined with EEMD have been successfully applied in several fields. For exam-
ple, Wang et al. [27] combined ARIMA with EEMD to predict annual runoff prediction,
Zhang et al. [28] combined multidimensional k-nearest neighbor model with EEMD to fore-
cast closing price and high price of stocks, Zhang et al. [29] combined LSTM with EEMD to
predict land surface temperature. After combining EEMD, the accuracy of the prediction
models all significantly improved. The IMFs obtained from time series decomposed by
EEMD can show more variation patterns of the original time series. EEMD decomposes ST
into features in different modalities that reflect the trend of ST in different situations, thus
converting complex patterns of ST into simple patterns in different modalities helps DL
models to learn the complex nonlinear relationships of ST and further improve prediction
performance of each DL model. Hence, in this paper, we combine EEMD with three DL
models, Conv2D, Conv3D and ConvLSTM, to compare prediction performance of the
models after combining EEMD. The results show that the performance of the DL models
are significantly improved after combining with EEMD, and EEMD-Conv3D has the best
prediction performance.

2. Materials and Methods
2.1. Experimental Data

The study area (33° N–52° N, 112° E–131° E) (Figure 1) of this paper mainly covers
the northeast part of China. The experimental dataset is ERA5 which is downloaded from
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Climate Data Store (https://cds.climate.copernicus.eu/, accessed on 27 February 2021)
on a daily time scale. We used layer 1 (0–7 cm) soil temperature of ERA5 dataset to test
models on predicting spatiotemporal ST. The ST data from ERA5 has units of kelvin (K),
we converted it to degrees Celsius (°C) by subtracting 273.15. The data we used is from
6 July 2012 to 22 September 2020, a total of 3000 days of data, each day’s data are made up
of 400 grids (20 × 20). We divided the selected area equally into four areas and calculated
the statistical characteristics of each area separately. The statistical characteristics of ST
in each area are shown in Table 1. The northwest area with a predominantly temperate
continental climate has a high standard deviation and the ocean-dominated southeast area
has a low standard deviation. The standard deviations of the remaining two areas with
predominantly temperate monsoonal climate are between the above two areas. It shows
that areas near the ocean have less variation in ST.

Figure 1. The geographic extent of the experimental area on the map (33° N–52° N, 112° E–131° E).

Table 1. The Statistical characteristics of the ERA5 dataset in the experimental area.

Data Minimum Maximum Mean Median
Standard
Deviation

Northwest Area
(43° N–52° N, 112° E–121° E)

−37.071 30.835 0.764 0.709 13.616

Northeast Area
(43° N–52° N, 122° E–131° E)

−35.452 29.477 2.967 2.477 12.952

Southwest Area
(33° N–42° N, 112° E–121° E)

−28.354 33.745 11.017 11.944 10.918

Southeast Area
(33° N–42° N, 122° E–131° E)

−27.582 32.727 13.325 14.582 9.462

Overall
(33° N–52° N, 112° E–131° E)

−37.071 33.745 7.018 9.056 12.973

2.2. Methods
2.2.1. Ensemble Empirical Mode Decomposition (EEMD)

Empirical mode decomposition (EMD) is a method for processing signals proposed
by Huang et al. [30,31]. It is capable of adaptively decomposing a complex signal into
a series of intrinsic mode functions (IMFs) according to the characteristics of the signal.
The decomposed IMF contains local characteristic signals of the original signal at different
time scales. The essence of EMD is to identify all the intrinsic oscillation modes contained
in the signal by the characteristic time scales. EMD is adaptive because it is based on the
local characteristics of the signal sequence time scales.

EMD decomposes the original signal into IMFs by the following steps:

1. Find all extreme value points of the signal x (t).

https://cds.climate.copernicus.eu/
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2. Fit the envelopes emax (t) and emin (t) of the upper and lower extremal points with cubic
spline fitting and find the average of two envelope lines m (t), then subtract m (t) in x
(t):h (t) = x (t) − x (t).

3. Determine whether h (t) is IMF according to the preset criterion.
4. If not, replace x (t) with h (t) and repeat the above steps until h (t) satisfies the criterion,

then h (t) is the IMF Ck (t) to be extracted.
5. Every time an IMF is obtained, it is subtracted from the original signal, and the above

steps are repeated; until the last remaining part of the signal rn (t) is just a monotonic
sequence or a constant value sequence.

In this way, the decomposition by the EMD method decomposes the original signal x
(t) into series of IMFs and a linear superposition of the remaining parts as Equation (1):

x(t) =
N

∑
k=0

Ck(t) + rn(t) (1)

Despite EMD has good performance in decomposing signals, EMD also has some
problems and drawbacks, such as endpoint effect and mode mixing. The endpoint effect
refers to the fact that different treatments of endpoints will bring different results in the
EMD decomposition process, while the mode mixing may cause severe mixing of time-
frequency distribution and lead to degradation of decomposition accuracy. On the basis
of EMD, Huang and WU then proposed the ensemble empirical mode decomposition
(EEMD) [26].

EEMD is a signal decomposition method to improve EMD by adding white noise
to the EMD method. The principle of EEMD is that extreme values of the signal affect
IMFs. In addition, if the distribution is not uniform, there will occur mode mixing. EEMD
introduces white noise into the signal to be analyzed, the spectrum of white noise is
uniformly distributed, and white noise makes the signal automatically distributed to a
suitable reference scale. Due to the characteristics of zero-mean noise, the effect of noise will
be offset after several averaging calculations, so that the integrated average calculation can
be directly regarded as the final result. The process of EEMD can be described as follows:

1. Add normally distributed white noise to the original signal.
2. The signal with white noise is taken as a whole and decomposed into IMF using EMD.
3. Repeat the previous steps, adding a different sequence of normally distributed white

noise to the original signal each time.
4. The IMF obtained each time will be integrated and averaged as the final result.

Compared with Fourier transform, wavelet decomposition and other methods, EMD
has the advantages of principal component analysis, adaptive time-frequency analysis and
signal local transient characterization. In addition, EEMD also overcomes the problems
of endpoint effects and mode mixing in EMD, so we use EEMD to process ST data on the
time scale.

2.2.2. Convolutional Neural Network (CNN)

CNN is a feed-forward neural network that includes convolutional computation and
is one of the representative algorithms of DL. It is often used for image recognition, image
classification, and natural language processing. In addition, CNN is also used in remote
sensing science and atmospheric science. In atmospheric science, CNN is used in post-
processing problems for numerical pattern lattice point outputs. In remote sensing science,
especially in satellite remote sensing. CNN is considered to have advantages in computa-
tional efficiency and classification accuracy in resolving geometric, textural, and spatially
distributed features of remote sensing images. Therefore, in this paper we use two kinds of
convolutional neural networks, Conv2d and Conv3d, to predict spatiotemporal ST. Conv2d
is commonly used in computer vision, image processing [22,32–34]. In addition, Conv3d is
commonly used in the medical field (CT imaging), video processing and other fields [24,35].
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The difference between Conv2D and Conv3D is shown in Figure 2. In Conv2d,
a two-dimensional convolution kernel slides in the spatial dimension to extract higher-
order features from the input data (Batch*Height *Width*Channels). The channels of
the input data correspond to sequences of soil temperatures in the temporal dimension
over consecutive days or the sequences obtained after EEMD processing. In Conv3d,
the three-dimensional convolution kernel slides not only in the spatial dimension, but also
in the temporal dimension. Therefore, it can better handle the features of the input data
(Batch*Depth*Height*Width*Channels) in the temporal dimension. The channels of the
input data correspond to one-day ST in the time dimension or a one-day sequence after
EEMD processing.
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Figure 2. The process of two kinds of convolution kernels in convolution operation.

2.2.3. Convolutional LSTM Network (ConvLSTM)

Long short-term memory network (LSTM) is a kind of temporal recurrent neural
network, which is especially designed to solve long-term dependence problem of general
recurrent neural network (RNN). LSTM is suitable for processing and predicting events
with very long intervals and delays in time series. LSTM has achieved good results in fields
of speech recognition, video analysis, sequence modeling [36], etc. The traditional LSTM
network consists of five modules: input gate it, forget gate ft, output gate ot, cell output ct and
hidden state ht five modules, xt denotes the input of LSTM, and the relationship between
them can be represented as Equations (2)–(6), where ‘◦’ denotes the Hadamard product:

it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi) (2)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f ) (3)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc) (4)

ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct + bo) (5)

ht = ot ◦ tanh(ct) (6)

Although traditional LSTM has proven to be powerful in dealing with temporal corre-
lation, it contains too much redundancy for spatial data. To solve this problem, Xingjian
Shi proposed an extension to the traditional LSTM, the Convolutional LSTM Network.
In the ConvLSTM, there are convolutional structures in both the input-to-state and state-to-
state transitions. Therefore, ConvLSTM overcomes the drawback of traditional LSTM that
uses full connections in the input-to-state and state-to-state transitions while processing
spatiotemporal data, resulting in spatial information not being encoded. When using
convolution operators to process input-to-state and state-to-state transitions, the future
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state of a cell in the grid will be determined by the input and past state of its local neigh-
bors. The equations of ConvLSTM are shown as Equations (7)–(11), where ‘∗’ denotes the
convolution operator and ‘◦’ denotes the Hadamard product. To distinguish the tensor of
different dimensions from the traditional LSTM, Xt, Ct, Ht denote the input, cell output
and hidden state respectively:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (7)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (8)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (9)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (10)

Ht = ot ◦ tanh(Ct) (11)

Just like the dimensionality as the input data of Conv3d, input data of ConvLSTM
is also a 5D tensor (Batch*Timestep*Height*Width*Channels). The input of the neural
network module in ConvLSTM is the data in one timestep. For a video, data in one
timestep can be interpreted as a video frame. In our experiments, data in one timestep is
ST data in spatial dimension.

2.2.4. Model Training and Test

In this study, the original spatiotemporal data and the EEMD processed spatiotemporal
data are used to train Conv2d, Conv3d and Conv-LSTM models to predict soil temperatures
one day later, three days later and five days later. Persistent forecasting (PF) [37] is also
involved in the comparison, which is a simple forecasting method that treats the first day’s
temperature as the next day’s forecast. PF can be seen as a minimum criterion to assess the
feasibility of DL methods. Experimental data will be split into two parts. The first part,
including 80% data, is used for training models. The remaining 20% data are used as the
testing set. The overall flow of the experiment is shown in Figure 3.
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Figure 3. Process of model training and overall framework of the experiment.

In the process of training models, we use 10 consecutive days of spatiotemporal ST
data to predict the ST after 1, 3 and 5 days in the future. When raw ST data are input
into Conv3D and ConvLSTM, there is only 1 channel in the data, where the value is the
ST value for a specific area on a particular day. When using EEMD to process ST data,
EEMD decomposes the ST sequence in the temporal dimension for the ST in each grid.
We set the number of IMFs manually. So the temperature sequence of a certain area was
processed by EEMD to obtain 9 IMFs and 1 residual sequence. There are 10 channels of
input in EEMD-Conv3D and EEMD-ConvLSTM. For Conv2D, the input tensor can only
cover the spatial dimension, so continuous sequences about the ST in the time dimension
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are preserved through the channels. Therefore, the input data of Conv2D has 10 times
more channels than the other two models. The parameter settings of each model are shown
in Table 2.

Table 2. The parameter settings of each model.

Models Input Size Kernel Size Strides

Conv2D (20,20,10) 3 × 3 (1,1)
Conv3D (10,20,20,1) (5,2,2,3) × 3 × 3 [(1,2,2,3),1,1]

ConvLSTM (10,20,20,1) 3 × 3 (1,1)
EEMD-Conv2D (20,20,100) 3 × 3 (1,1)
EEMD-Conv3D (10,20,20,10) (5,2,2,3) × 3 × 3 [(1,2,2,3),1,1]

EEMD-ConvLSTM (10,20,20,10) 3 × 3 (1,1)

To evaluate the above models and compare their performance in predicting spatiotem-
poral ST, several statistical evaluation metrics including mean absolute error (MAE), mean
squared error (MSE), root mean square error (RMSE), r-squared (R2) and mean absolute
percentage error (MAPE) are applied to assess model performance. The evaluation metrics
are defined as Equation (12) to Equation (16) (yi is the true value of the testing set, ŷi is the
prediction value of the model). Due to the existence of division in the calculation of MAPE,
the minimum absolute value of the true value is 0.02189 ◦C. Such kind of data that is close
to 0 ◦C will seriously affect the accuracy of MAPE. Therefore, we averaged the 400 grids of
each day before calculating MAPE.

MAE =
∑n

i=1|yi − ŷi|
n

(12)

MSE =
∑n

i=1(yi − ŷi)
2

n
(13)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(14)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (15)

MAPE =
n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%
n

(16)

3. Results and Discussion
3.1. Results

After the models have been trained, we input the test data into each model and
obtain the corresponding prediction results. The prediction results and the true values are
simultaneously reshaped to a 1-dimensional series, and the performance of the models
is assessed using the evaluation metrics. Performance of the models is shown in Table 3.
When predicting ST with a one-day delay, DL models using raw data input did not work
as well as PF. In contrast, when the DL models used the EEMD-processed data as input,
the prediction performance was significantly improved. In addition to this, the DL model
combined with EEMD performs better than PF’s performance. Under the same latency
conditions, ConvLSTM has better performance than Conv2D and Conv3D in predicting
ST using machine models without EEMD. In addition, when the model is combined with
EEMD, EEMD-Conv3D has the best performance.
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Table 3. Estimation results for each model with different delays after training with the ERA5 dataset.

Delay Models MAE MSE RMSE R2 MAPE

PF 1.4749 4.6189 2.1492 0.9713 29.87%
Conv2D 1.7371 5.9179 2.4327 0.9626 40.65%
Conv3D 1.7899 6.3363 2.5172 0.9598 42.36%

1 Day
ConvLSTM 1.7301 5.8763 2.4241 0.9634 40.33%

EEMD-Conv2D 0.9952 1.775 1.3323 0.9887 16.22%
EEMD-Conv3D 0.9656 1.7151 1.3096 0.9893 17.90%

EEMD-ConvLSTM 1.0625 2.1374 1.462 0.9868 21.54%

PF 2.2058 9.7061 3.1155 0.9392 53.00%
Conv2D 2.0167 7.9812 2.8251 0.9489 44.86%
Conv3D 2.1032 8.6639 2.9434 0.9442 46.91%

3 Days

ConvLSTM 1.9651 7.359 2.7128 0.9516 46.30%
EEMD-Conv2D 1.1403 2.3792 1.5424 0.985 19.33%
EEMD-Conv3D 1.0942 2.2378 1.4959 0.9858 19.31%

EEMD-ConvLSTM 1.2281 2.8185 1.6789 0.9819 19.72%

PF 2.4653 11.8385 3.4407 0.9252 59.90%
Conv2D 2.1978 9.3635 3.06 0.9387 54.72%
Conv3D 2.3094 10.2386 3.1998 0.9327 54.94%

5 Days
ConvLSTM 2.0861 8.2726 2.8762 0.949 65.03%

EEMD-Conv2D 1.2865 3.002 1.7326 0.9807 27.41%
EEMD-Conv3D 1.2056 2.7216 1.6497 0.9826 25.90%

EEMD-ConvLSTM 1.3976 3.6842 1.9194 0.9768 21.39%

When the latency of the prediction increases, all models’ performance decreases.
The most significant performance degradation among all models is PF, which already
performs worse than the other DL models. In addition, among the DL models, the models
that incorporate EEMD all perform better. Even the performance under 5-day delay
outperformed the DL models without EEMD under 1-day delay. Figure 4 is scatter plots of
the predicted and true values, which shows the degree of fit between the predicted and
observed values of the DL model. As seen in the scatter plot, the DL model incorporating
EEMD has a better fit. As the delay increases, the predicted values of the model with EEMD
still fit well. With the help of EEMD, models are better able to overcome the decrease in
accuracy of the prediction due to the increase in latency.

For three different delay cases, we randomly select the observation of a particular day
to compare with the predicted results of each model. Figure 5 shows the spatial pattern
of ST on a random day. The EEMD-based models have a high spatial similarity to the
observations. The R2 heat map and MSE heat map based on the observed and predicted
values are shown in Figures 6 and 7. It can be seen that the overall fit of the predicted values
of each model decreases as the delay increases. However, for a particular delay, the model
with EEMD has a better fit. Among the models combined with EEMD, the predicted values
of EEMD-Conv3D have the best fit to the observed values.
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Figure 4. Scatter plots of predicted and observed ST values for each model at different delays.
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Figure 5. Spatial model of ST observed values and predicted values of each model on a random day.
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Figure 6. Heat map of R2, each grid represents the R2 calculated from the observed and predicted
values of this grid (Larger R2 represents a better fit).
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Figure 7. Heat map of MSE, each grid represents the MSE calculated from the observed and predicted
values of this grid (Smaller MSE represents a better fit).
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3.2. Discussion

ST is an important variable in the field of meteorology and is closely linked to seed
germination, plant growth, plant root activity, etc. [38]. It also affects the decomposition
of organic matter in the soil and the release of carbon dioxide [39]. In order to accurately
predict ST, deep learning models using ANN and LSTM have been proposed. These
models provide useful insights on solving this problem and have been shown to have
better performance than statistical models in predicting ST [15]. However, these prediction
models for the time series of ST in a particular area or site are not applicable to the
prediction of spatiotemporal ST. To ensure the spatial correlation of spatiotemporal ST, it
is necessary to use models with convolution operators such as CNN [40]. It is commonly
used in problems such as image classification, computer vision, etc. CNN can be applied
to spatiotemporal ST prediction because the convolution operator can better handle the
spatial features of the data [24]. In addition, Shi et al. proposed ConvLSTM also solves the
problem of data in spatial dimension [25].

As seen in the results, DL models have a role in predicting spatiotemporal ST. Al-
though they did not perform as well as PF in short-term prediction, DL models outper-
formed PF as the prediction delay increased. Unlike the direct data comparison, DL models
are able to capture certain information through the spatiotemporal relationship of the data
and use it to guide the predictive ability of the model. Although the results are not ideal and
flawed, DL models have a tendency to fit the predicted values to the observed values when
compared to the PF that directly uses the observations from a few days ago as the predicted
values. Among DL models, ConvLSTM has the best performance. In contrast, Conv3D,
whose convolutional kernel can only slide in the temporal dimension, does not perform
as well as Conv2D, whose convolutional kernel can only slide in the spatial dimension.
According to the model structure, Conv2D has 10 consecutive days of ST on the channel,
while Conv3D has only 1 day of ST. Convolutional kernels of Conv3D are not sized to
cover the complete time period in the time dimension. So the amount of information in
the time dimension could affect the prediction results. For ConvLSTM, although each
LSTM cell only inputs the soil temperature tensor for one time slice, the structure of the
RNN guarantees the information in the time dimension [36]. In addition, the special gate
structure of LSTM cells not only solves the problem of long-term dependence, but also
controls the amount of historical state information passed through the forgetting gate [7,25].
So the ConvLSTM performs better in the three models.

EEMD processing has played an important role in enhancing DL models. It has
been successful in many time series prediction models to enhance the accuracy of predic-
tion [27,41,42]. In our experiments, DL models with EEMD incorporation have a significant
improvement in prediction accuracy and performance. EEMD decomposes the temperature
series in the temporal dimension into IMFs and residual series. These IMFs can better
reflect the local characteristics of the original data and can better describe the trend of ST,
resulting in a significant improvement in the performance of all models. As IMFs bring
elevation in the number of channels, the 3D convolutional kernel is able to obtain more
partial information. The excessive number of channels in EEMD-Conv2D may lead to
overfitting and make it less effective than EEMD-Conv3D. In addition, one convolution
operator in EEMD-ConvLSTM cell is not enough to cope with the processing of more local
features caused by the increase of channels. Therefore, EEMD-Conv3D is more suitable for
the prediction of spatiotemporal data.

4. Conclusions

Predicting spatiotemporal ST one or more days in advance is challenging. Unlike
when predicting the ST at a site, only a continuous sequence needs to be paid attention to.
In predicting spatiotemporal ST, attention also needs to be paid to the spatial characteristics
of the data. Therefore, we chose Conv2D and Conv3D, which can handle spatiotemporal
properties, to predict ST. In addition to them, ConvLSTM, which uses convolutional
computation to replace the fully connected weight computation in traditional LSTM,
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is also used to predict spatiotemporal ST. On the basis of these three DL models, we
bring in a signal decomposition method EEMD. EEMD was used to decompose the ST
sequence for each grid in the temporal dimension. The decomposed data maintains
connections in the spatial dimension and extends features in the temporal dimension.
After comparing the prediction performance with and without EEMD, the results show
that the prediction performance of the models with EEMD are significantly improved.
Among all models, EEMD-Conv3D has the best performance in predicting spatiotemporal
ST. In this paper, we evaluate our models on the ST prediction problem, but it is not limited
to this domain. We expect the results of this article to be useful in handling more fields
related to spatiotemporal data.
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