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Abstract: The application of wind turbine technology in low wind speed regions such as Southeast
Asia has recently attracted increased attention. Wind turbines are designed as special structures with
low starting torque, and many starting torque minimization processes exist for permanent magnet
synchronous generators (PMSGs). Plurality is applied to decrease the starting torque in radial flux
permanent magnet disk generators. The most popular starting torque minimization method uses a
magnet skew technique. When used at 20◦, this technique reduced starting torque by 4.72% (on load)
under 500 rpm at 50 Hz for 120 min. By contrast, a PMSG with magnet skew conditions set at under
2◦ reduced electrical power by 3.86%. For high-speed PMSGs, magnet skew techniques affect the
generation of heat in the coils (stator), with heat decrease at the middle of the coil, on its surface and
between the coils at 2.90%, 3.10% and 2.40%, respectively. PMSGs were installed in vertical axis wind
turbines (VAWTs), and heat generation in relation to wind speed and electrical power was assessed.
Magnet skew techniques can be used in PMSGs to reduce staring torque, while skew techniques also
reduce electrical power and heat generated at the stator.

Keywords: skewing magnet coil; starting torque; thermal in PMSG; vertical axis wind turbine

1. Introduction

Nowadays, electrical power generation using alternative energy sources, particularly
wind current energy [1], has attracted increasing attention to reduce dependence on the
decreasing supply of fossil fuels and ameliorate environmental pollution. Wind energy
conversion systems (WECS) are classified into two types: geared and direct-drive. WECS
have many advantages including high-efficiency relating to geared drives, higher drive
durability and reliability, lower maintenance, lower vibration and reduction in noise [1,2].
To maximise these advantages, wind turbine producers have fabricated direct-drive WECS.

Direct-drive wind turbines must be economically viable compared to other power
generation systems in terms of cost per unit torque force, torque density, weight of fluent
materials, efficiency, overall volume, overall length, outer diameter, energy efficiency
per charge, annual energy efficiency and overall cost. Energy cost as the bottom line
was compared. Direct-drive electrical generator systems that focused on these criteria
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indicated that permanent magnet (PM) machinery with many pole numbers was the
most appropriate [3,4]. PM machinery can be classified into three types: transverse-flux,
axial-flux, and radial-flux. Transverse-flux permanent magnet (TFPM) machinery operates
as a high torque density force and leakage line flux that generates a poor power factor.
Decreasing torque density of TFPM machinery should reduce the number of poles with low
flux leakage. However, the main problems encountered by the rotating section of TFPM
machinery are the difficult production methods and the large number of parts, resulting
in a weak mechanical structure [5]. Currently, direct-drive (DD) electrical generators
have become popular for wind turbines rated at 4 MW, and are also supplied for higher
power wind turbines. The turbine blades transfer power directly to the DD electrical
generator, thereby eliminating the gearbox. The DD technique has been widely adopted
for economical energy supply by operating an electric generator at lower wind speeds
using a reliable drive process [6]. Size reductions of wind turbine electrical generators
are limited by the ability to radiate heat from the stator winding. Liquid cooling of the
stator winding maximises electricity generation for smaller generator sizes compared to
air-cooled generators of a similar size at optimal cost [7].

Cogging torque is important in the fabrication of PM machines, as the torque is
required to overcome the opposing attractive force between magnets on the rotor and
the iron teeth of the stator [8]. Cogging torque is sensitive at low-speed wind turbine
applications. The PM wind generator eliminates cogging torque due to potential vibrations
and noise to overcome starting turbine difficulty. Low-speed wind turbines focus on
reducing cogging torque [9,10]. The starting speed of a wind turbine is an important factor
for blade design to minimise cogging torque of the PM generator and friction on the shaft.

A wind turbine starting torque is generated by the blades under an exact wind speed.
Blade movement must prevail over friction and cogging torque [11]. A large cogging torque
is produced in a PM generator during start-up, and if the wind turbine fails to overcome
this, it will not start [12]. The optimal cogging torque for a direct-drive PM generator was
found to be between 1.5% and 2% of its minor torque [9]. Axial-flux permanent magnet
(AFPM) machinery reduced the cogging torque by the appropriate values of magnetic pole
arc on the pole pitch ratio [13]. The shape and amplitude occupied to the cogging torque
signal depends on the magnetic pole arc and on the pole pitch ratio. Therefore, decreasing
the magnet pole arc on the pole pitch ratio decreased magnet flux leakage and reduced the
average torque [14].

Many cogging torque reduction methods have been studied, including adjusting the
distance between magnets relative to each other, producing magnets with various pole arcs
on to pole pitch ratios, distribution of slots and slot opening and connecting distributions
of the rotors corresponding to each sector. The skewing technique of rotor magnets and
stator slots is used to proficiently control cogging torque in AFPM machinery. Leakage
inductance and copper losses increase when using skewing stator slots and the cogging
torque of PM machinery decreases. The magnet skewing method using rounded magnets
to form triangular shaped skewing magnets, dual skewed magnets and parallel-sided
magnets can be adapted to decrease cogging torque in AFPM machines [15].

This research studied the relationship between the reduction of starting torque using
the magnet-coil skewing technique at the rotor-stator that generated heat at the stator
winding based on three positions as between the coils, on the surface of the coil and in the
middle of the coil, as shown in Figure 1. The permanent magnet synchronous generator
(PMSG) used the magnet-coil skewing was installed in a vertical axis wind turbine (VAWT)
to collect data and investigate the relationship between heat in the PMSGs, wind speed
and electrical power. Therefore, this investigation was research relationship of the magnet-
coil skewing technique, reducing starting torque, temperature, and electrical power. The
experimental laboratory was guided to installed real experiments (VAWT) for confirmed
utilization in low speed wind turbine.
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magnets installed on Bakelite plates for the rotor section; (c) Permanent magnet synchronous gen-
erator (PMSG) installed with a 3 mm air gap; (d) K-type thermocouple for temperature conduction; 
(e) Magnet skewed between 0° and 20°. 

2. Experimental Study 
This investigation used Bakelite plates for the 10 mm thick fabric of the rotor and 

stator. Specifications of the PMSG disk are shown in Table 1. Accessory of permanent 
magnets and disk rotor were attached on the rotor disc in order to adjust the skewing 
magnet and coil angle to decrease the starting torque, as shown in Figure 1. The air gap 
between the stator and rotor disc could be easily varied for the stator state, while the air 
coils were positioned on the stator disc with a connecting wire to produce a 3-phase PMSG 
[16]. The testing station operated a 3-phase 0.75 hp motor with a direct drive to the PMSG 
disk. The speed of the motor and its direction were powered by a 1-phase inverter. The 
measurement instruments included a torque meter (BCM Sensor Technologies, Model: 
1811, Cap: 500 Nm, Accuracy (torque): 0.5% fs, Supply: ± 15 Vdc, Max. speed: 7000 rpm, 
Load current: < 10 mA). A K-type thermocouple was inserted between the air coils at the 
surface and middle of the air coil, PMSG generator was covered by transparent cast acrylic 
sheets for controlling variable between room and coils temperature. Measurements were 
conducted using a Petit Data logger GL100-WL, GS4-VT (Graphtec), 4 channel, sampling 
intervals for 5 minutes, Temperature range at −200 to 400 °C, Accuracy type K ±0.05% and 
the power was recorded using a 3-phase Power & Harmonic Analyser (Lutron: DW-6095), 
frequency range at 40–60Hz, watt hour range at 0.000 to 9.999 kWh with ± (2% + 0.008 kWh). 
The output of the PMSG was controlled by 450 W lamp load, as shown in Figure 2. 

Figure 1. The PMSG disk: (a) Nine coils installed on Bakelite plates for the stator section; (b) Twelve magnets installed on
Bakelite plates for the rotor section; (c) Permanent magnet synchronous generator (PMSG) installed with a 3 mm air gap;
(d) K-type thermocouple for temperature conduction; (e) Magnet skewed between 0◦ and 20◦.

2. Experimental Study

This investigation used Bakelite plates for the 10 mm thick fabric of the rotor and stator.
Specifications of the PMSG disk are shown in Table 1. Accessory of permanent magnets
and disk rotor were attached on the rotor disc in order to adjust the skewing magnet and
coil angle to decrease the starting torque, as shown in Figure 1. The air gap between the
stator and rotor disc could be easily varied for the stator state, while the air coils were
positioned on the stator disc with a connecting wire to produce a 3-phase PMSG [16]. The
testing station operated a 3-phase 0.75 hp motor with a direct drive to the PMSG disk. The
speed of the motor and its direction were powered by a 1-phase inverter. The measurement
instruments included a torque meter (BCM Sensor Technologies, Model: 1811, Cap: 500 Nm,
Accuracy (torque): 0.5% fs, Supply: ±15 Vdc, Max. speed: 7000 rpm, Load current: <10 mA).
A K-type thermocouple was inserted between the air coils at the surface and middle of
the air coil, PMSG generator was covered by transparent cast acrylic sheets for controlling
variable between room and coils temperature. Measurements were conducted using a
Petit Data logger GL100-WL, GS4-VT (Graphtec), 4 channel, sampling intervals for 5 min,
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Temperature range at −200 to 400 ◦C, Accuracy type K ±0.05% and the power was recorded
using a 3-phase Power & Harmonic Analyser (Lutron: DW-6095), frequency range at 40–60
Hz, watt hour range at 0.000 to 9.999 kWh with ± (2% + 0.008 kWh). The output of the
PMSG was controlled by 450 W lamp load, as shown in Figure 2.

Table 1. Specifications of the PMSG disk.

Item Parameter Value Unit

General data

Number of phases 3 −
Winding resistance per phase 45 Ω

Magnet NdFeB −
Flux density 0.251 Tesla

Air gap 3 mm
Thickness of Bakelite plate 10 mm

Rotor
External diameter 400 mm
Number of poles 12 −

Magnet size 100 × 20 × 5 mm

Stator

Thickness of Bakelite plate 10 mm
External diameter 400 mm
Copper coil size 100 × 70 × 12 mm
Number of coils 9 −

Number of winding turns per coil 900 turnsSustainability 2021, 13, x FOR PEER REVIEW 4 of 14 
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Figure 2. PMSG testing station.

The room temperature in the laboratory was 29 ◦C and the time duration was 120 min
at a speed of 500 rpm. The atmospheric temperature of Rajjaprabha Dam was average 32 ◦C.
Thermocouples were installed at three positions on a 10 kW vertical axis wind turbine
(Rajjaprabha Dam, Surat Thani Province, Thailand) to measure average temperatures
based on real operation of the wind turbine. The PMSG generator was equipped with
20◦ skewing magnets. Temperatures at three positions were recorded by a thermal data
logger, K-type, GL100-WL (Graphtec), as shown in Figure 3. The weather station used a
PROTRONICS, JEDTO: AW002, Outdoor temperature range: −40.0 ◦C to +65.0 ◦C, Wind
speed: 0~100 mph. This instrument to measure the atmosphere temperature, wind speed
and wind current direction.
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Figure 3. A 10 kW vertical axis wind turbine (Rajjaprabha Dam, Surat Thani Province, Thailand) with
thermocouples installed on a PMSG generator to measure heat at the surface of the coils, between the
coils and in the middle of the coils.

3. Results and Discussion

Figure 4a, shows the transient torque at starting time when the coils were skewed in
the stator when operating at a rotation speed of 500 rpm. The coil skew was changed from
0, 5, 10, 15 and 20◦, while the magnets in the rotor stood at 0◦. The starting torque was
increased up to 1.5–2.0 s, 1.3 Nm. Starting torque peak ranged from 4–7.5 s and stabilised
after 7.5 s at 0.9 Nm. A 5◦ coil skew showed lower starting torque compared to the others,
generating peak torque at 5.5–7.0 s with 1.25 Nm.

Figure 4b, shows the transient starting time when the magnets were skewed in the
rotor when operating at a rotation speed of 500 rpm. The magnet skew was changed
from 0, 5, 15 and 20◦, while the coils in the stator were fixed at 0◦. The starting torque
increased up to 1.4–1.6 s, 1.3 Nm, with the peak starting torque at 4.5–7.5 s that stabilised
after 7.5 s at 0.9 Nm. A 20◦ magnet skew gave a lower starting torque compared to the
others, producing peak torque at 5.3–6.5 s with 1.23 Nm.

The starting torque is generated by the quantity of energy variation that corresponds
to the rotation level of the rotor and can be indicated as follows:

Tstarting = −∂W(α)

∂α
(1)
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where Tstarting, W(α) and α are the starting torque, flux in the air gap, and angle of rotor
or stator, respectively. In a PMSG, the starting torque can be obtained by calculating the
partial differential of the flux in the air gap areas related to the rotation angle of the rotor or
stator [17].

T(α) =
Lsπ

2µ0

(
R2

2 − R2
1

) ∞

∑
n=0

GnNL BnNL sin nNLα (2)

where µo, Ls, R1, R2, GnNL, BnNL and NL are the permeability of air, stack length, permanence
magnet radius and stator radius corresponding to the air gap and flux density functions,
respectively. The starting torque of each rotor or stator angle T(α) decreases if GNnl or BNnl
are assumed to be zero, as shown in Equation (2) above.
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Figure 5 shows the comparison between 20◦ skewing magnet at the rotor and 5◦

skewing coils at the stator that change the areas of AB, BC and CD overlapped in the
generator. GnNL can be represented in Equation (3) as follows:

GnNL =
1

nπ

Ns

NP

(
sin n NLaskewing + sin n NLbskewing + sin n NLcskewing

)
(3)

Based on the reduction of GNL level among values of GnNL, where n is 1, this skewing
technique can be eliminated as a notable component of the starting torque. NP is the
number of magnets and NS is the number of coils. The skewing magnets and coil widths
ABskewing, BCskewing and CDskewing are shown in Equation (4) below, and a notable component
of the starting torque can be reduced [17].
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sin n NLaskewing + sin n NLbskewing + sin n NLckewing = 0 (4)
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Skewing magnets and coils with widths of ABskewing, BCskewing and CDskewing gave
the maximum GNL value. The skewing position of the rotor (or stator) changed the areas
for negative and positive maximum flux linkage of coils that affected GNL [18]. The 20◦

skewing magnets and 5◦ skewing coils reduced GNL values, as shown in Figure 4a,b. The
NC value indicates the starting torque per rotation for a rotor fabricated in the stator, as
shown in Equation (5) [19].

Nc =
NP Ns

HCF (NP, NS)
(5)

where HCF (NP, NS) is the peakest common factor of the number of coils and magnets.
Thus, the mechanical angle (αc) at which starting torque generates once can be written as
Equation (6) as follows:

αc =
360◦

Nc
deg(m) (6)

Hence, composing this as an electrical angle (αce) gives Equation (7).

αce =
P
2

αcdeg(e) (7)

Then, the stator contribution transition angle to move the starting torque phase by
180 deg (e), generated in the coils, can be shown as Equation (8) below.
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αskewing =
1
2

αce =
1
2

p
2

αc =
1
2

p
2

360◦

Nc
= 90◦

HCF(NPNs)

Ns
deg(e) (8)

NP and NS of the disk-PMSG relate to 12 magnets and 9 coils, respectively. Therefore,
the optimal value of magnet coil skewing ranged from 0◦ to a maximum of 20◦, as shown
in Figure 5.

Figure 6 compares the magnet and coil skewing angle conditions that affected temper-
ature, starting torque and average electrical power (W) load. Based on the temperature
and magnet skewing angle condition of 0–20◦:

• The temperature in the middle coils ranged from 47–48 ◦C.
• The temperature at the surface of the coils ranged from 43–45 ◦C.
• The temperature between the coils ranged from 40–42 ◦C.
• All three temperature ranges gradually decreased when skewing the magnets. For a

coil skewing angle of 0–20◦:
• The temperature in the middle coils ranged from 47–48 ◦C, with a higher temperature

trend of 48 ◦C at a 10◦ skewing angle.
• The temperature at the surface of the coils ranged from 43–45 ◦C, with a higher

temperature trend of 45 ◦C at a 5◦ skewing angle.
• The temperature between the coils ranged from 41–43 ◦C, with a non-linear trend at

43 ◦C at a 10◦ degree skewing angle.
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All trends were non-linear in behaviour. The main point in thermal modeling is the
analysis of convective heat transfer in a disc-type electrical generator. The heat flux of the
isothermal surface i, illustrated in Figure 1d, is defined by Equation (9) [20]:

qi = hi

(
Tsur f ,i − Tre f ,i

)
(9)

where qi is the heat flux, hi is the average value of the surface area convective heat transfer
coefficient i, Tsurf,i is the temperature of the surface i, and Tref,i is the average bulk fluid
temperature of a closed volume Vi. The stator is ironless and all the losses are in the
copper coils. Both load and no-load losses need to be investigated. No-load losses are
generated by the activation of a rotating magnetic field inducing eddy and circulating
currents in all coil sectors. Circulating currents act in the parallel-connected coils due to
the induction of voltage distinctions between the coils. These coils behave like additional
Joule heating in the winding, even when the generator is operated at no-load. Finally,
the phase currents generated I2R loss in the winding [21]. A small proportion of losses
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occurred in the rotor (magnets) compared to the stator, although this only happened when
the generator was loaded.

Based on the speed rate, the rotor losses accounted for 16% of the entire electrical
losses. The electrical field from the winding fabricated asynchronous time-varying fluxes
into the rotor that caused eddy current losses in the magnet. However, the hysteresis losses
were negligible at low electric frequencies [22]. The eddy current in the winding can be
estimated using the well-known Carter formula [21], as shown in Equation (10) below. This
is highly accurate at low electric frequencies (i.e., f ≤ 50 Hz) [23]. Copper and rotor losses
were computed as shown in Equations (11) and (12) below.

Peddy_coils =

(
π3B2

g f 2LmNt

)
4ρCu(1 + αCu∆Tcoil)

(10)

where Peddy_coil is eddy current loss, Bg is the peak level of air gap flux density caused by
the permanent magnets, Lm is the mean turn length occupied by the magnet, Nt is the
number of turns per coil, ρCu is the density of copper coils, and αCu is a copper thermal
resistivity coefficient.

PCu =
(

3I2
rmsRamb

Cu

)
/(1 + αCu∆Tcoil) (11)

Protor =
(

3I2
rmsRcore

)
/(1 + αcore∆Tcore) (12)

where PCU is copper losses in coils (W), Protor is magnet losses in rotor (W), Irms is phase
rms current (A), Rcu

amb is copper phase resistance at ambient temperature (Ω), Rcore is core
resistance (Ω), αCu is the copper thermal coefficient, αcore is the core thermal coefficient,
∆Tcoil is the temperature rise in coils over ambient temperature (◦C), and ∆Tcore is the
temperature rise in the core over ambient temperature (◦C). The core resistance Rcore
combines the magnet and ironless coils, as shown in Figure 1. Therefore, the thermal
resistivity coefficients of the iron and neodymium magnets were around 300 and 4000 times
lower than the copper wire that generated the thermal conducting range of 0–120 ◦C [21],
respectively. Using this system, variations in resistivity in the iron and magnets can be
neglected, with rotor losses simply calculated as Protor ≈ 3I2

rmsRcore [21]. Therefore, skewing
the magnet and coils affected the temperature of the coils in the stator of the generator, and
this changed the heat flux (hi), eddy current losses (Peddy_coils), copper losses in coils (PCU),
and magnet losses in rotor (Protor) in relation to Equations (9)–(12).

Figure 6a,b shows that temperature in the middle of the coils was highest and caused
by rapid heat flux collection from the copper coils, corresponding to Equation (9). The
skewing magnets range of change of 0–20◦ decreased the temperature at all three points
on the coil, as the neodymium magnet slightly changed in resistivity when operated by
a generator. Temperatures increased between the skewing coils at 10–20◦ as the surface
between the coils was closed and fitted. The cumulative heat flux around the coils is
shown in Equation (9). Moreover, the skewing coils were easily affected by the density of
copper coils (ρCu) and the copper thermal resistivity coefficient (αCu) that accumulated
eddy currents in the coils, as shown in Equation (10), generated higher temperatures.

Figure 6a shows the average starting torque compared with a magnet skewing angle
of 0–20◦. The trend of starting torque was located in the range 1.21–1.27 Nm. Magnet
skewing 0–20◦ slightly decreased the starting torque. This graph had a similar trend to the
temperature graph. The average starting torque compared with the angle was also in the
range of 0–20◦ skewing coils and the trend of starting torque was located in the range of
1.24–1.29 Nm, as shown in Figure 6b. The 5◦ skewing coils were reduced by 4.33% starting
torque when compared with 0◦ skewing coils.

The average starting torque can be explained by Equations (1) and (2), depending
on the flux in the air gap W(α) and the angle of rotor or stator (α). Skewing magnets and
coils were variably affected by W(α) and α [17]. Therefore, the average starting torque was
linearly reduced, corresponding to the 0–20◦ skewing magnet, as shown in Figure 6a. The
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skewing magnet changed the stability of the flux in the air gap. The indicated average
starting torque fluctuated in the range 279–290 W when changed to 0–20◦ skewing coils,
as shown in Figure 6b. However, 5◦ skewing coils gave the lowest torque as this position
reduced the flux in the air gap to generate the average starting torque.

Figure 6a, shows the trend of average electrical power when the skewing magnet
varied by 0–20◦. This reduced linearly from a maximum of 290 W to a minimum of 279 W.
Figure 6b shows the trend of average electrical power when skewing coils varied by 0–20◦.
This increased to a maximum of 290 W. Magnet-coil skewing was affected by field phase
shift between points along the axis of the generator that reduced the induced electrical
power in the PMSG. The electrical power depended on Peddy_coils, Pcu and Protor when
magnet-coil skewing changed shape. This affected Irms inside the stator coils, as shown
in Equations (11) and (12). Skewing coils at 5–20◦ increased the electrical power caused
by the fitting density of copper coils (ρCu). The skewing magnet decreased the degree of
skewing angle but did not affect the density of the copper coils [23] that only changed the
flux through to the coils.

Figure 7 shows the relationship between rotating speed and electrical power by
comparing the optimal conditions of skewing by 0◦ coils and 0◦ magnets, and 20◦ magnets
and 5◦ coils. The skewing magnets and coils were impacted by high electrical power, with
speeds of 400, 450 and 500 rpm relating to 200, 250 and 300 W, respectively. Skewing 20◦

magnets at 400, 450 and 500 rpm reduced electrical power by 3.86%, while skewing 5◦

coils at 400, 450 and 500 rpm reduced electrical power by 0.83%. Conversely, a low speed
between 50 and 350 rpm indicated almost the same values.
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Torque level and mechanical speed were conducted freely at the shaft of the electric
generator in steady-state circumstances. At a low-speed condition, mechanical losses were
linear in proportion to the rotational speed, while circulating current and eddy losses were
exactly proportional to the square of rotation speed. Mechanical and electrical losses are
defined in Equations (13) and (14).

The constant values of km and keddy were fitted to experimental data in Figure 6, while
the circulating current coefficient kcirc was conducted from the loss segregation [21].

Pmech−loss = Kmωm (13)

Pω =
(

keddy + kcirc

)
ω2

m (14)
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where Pmech-loss is the mechanical loss (W), Pω is loss due to eddy and circulating currents
in the coils (W), Km is a constant for mechanical losses (Nm), ωm is angular velocity (rps)
then 1 rps = 60.000000024 rpm, keddy is a constant for eddy current losses (Nm (rad/s)−1),
and kcirc is a constant for circulating current losses (Nm (rad/s)−1). Segregation between
eddy and circulating current losses is plausible by representing the no-load test twice, with
parallel connection and disconnected coils. Moreover, mechanical loss increases had no
impact on the electrical heat generated [21]. Therefore, the skewing coils reduced electrical
power at a higher rate than the skewing magnets due to eddy and circulating currents in
the coils at high speeds of between 350–500 rpm.

Figure 8 shows a comparison between electrical power from a 10 kW VAWT and the
temperature in a PMSG generator under variable wind speeds at Rajjaprabha Dam, Surat
Thani Province, Thailand, during December 2019. Figure 8a shows the average electrical
power data as real measurements from the PMSG of the VAWT, while Figure 8b shows the
average electrical power maximum (2.4 kWh) and minimum (1 kWh), and the comparison
between the temperature in the coils at three positions at average wind speed. The wind
speed was a maximum of 4 m/s and a minimum of 2.7 m/s [24], which elevated the
temperature at the middle, surface and between coil positions. Particularly, 4th and 16th
December were the lower temperature of month leading to the low wind speed and low
power generation. The atmospheric temperature is obviously affected data collection such
as sun shine and raining. Therefore, the temperatures was maximum 36 ◦C and minimum
28 ◦C. The wind speed turned the blades that drove the PMSG generator to produce heat
flux around the coils [20]. Therefore, the wind speed impacted the temperature around the
coils and skewing magnets, and reduced the temperature in the coils.
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4. Conclusions

PMSG generators are popularly fabricated for small wind turbines due to their low
complexity, low cost and easy maintenance. The main generator components are a magnetic
rotor and a coiled stator comprising a very basic electrical generator. Magnets provide a
constant flux through to the coils that generate strong torque at the starting operation and
temperature in coils of the PMSG generator. This study investigated and identified the
reduction of starting torque and temperature by the skewing technique that can be used
for both magnets at the rotor and coils at the stator. Heat was generated at the coils that
affected the skewing magnets and coil behaviour.

Results indicated that 20◦ skewing magnets linearly reduced the heat at the coils, with
maximum reduction of 2.90% at the middle of the coils, 3.10% at the surface of the coils
and 2.4% between the coils. The starting torque reduced by a maximum of 4.72% at 20◦

skewing magnets, while electrical power reduced by a maximum of 3.86%. While the 5◦

skewing coils non-linearly reduced heat at all three coil positions, heat was reduced by a
maximum of 0.72% between the coils, starting torque was reduced by a maximum of 4.33%,
and electrical power was reduced by a maximum of 0.83%. All positions were compared
to magnet coil 0◦ skewing. According to the studied in the real experiment installed in
the 10 kW vertical axis wind turbine that used 20◦ skewing magnet caused the skewing
magnet was easily installed in wind turbine. This investigation indicated that VAWT can
be activated at cut-in 2.2 m/s, maximum power of 2.4 kW and minimum power of 1kW.
The temperature in coils are fluctuated due to in the wind turbine was open systems which
affected atmospheric temperature such as sun shine and raining. Hence, the temperatures
was maximum 36 ◦C and minimum 28 ◦C.

The skewing coils also affected the starting torque, heat and electrical power. They
were more affected by heat flux (hi), eddy current losses (Peddy_coils), copper losses in coils
(PCU) and magnet losses in the rotor (Protor) than the skewing magnets that caused changes
in the shape of the coils. Skewing magnets and coils reduced electrical power at high
speeds of 400-500 rpm. The skewing technique can easily be used to reduce the starting
torque and heat but the electrical power also decreases. Therefore, the PMSG generator can
be applied for low-speed vertical axis wind turbines (VAWTs).
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