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Abstract: Competition among companies is growing globally, with the need to increase productivity
and efficiency in the product sector. However, there is also a growing concern about global warming
and the depletion of natural resources, as well as their effects on human health. In this context,
all human activities that involve intense usage of resources must take into account sustainability
as one of the decision criteria. This work presents the application of decision-making methods to
define the best product mix in the agricultural machinery industry. With this objective, the current
schedule of the production line was identified, along with the production flow, by performing an
inventory analysis and an environmental impact study (endpoint). A total of seven alternatives for
the production mix of grain trailers were defined, considering different materials and production
processes. The selection of the best schedule according to the different criteria was performed
through the analytic hierarchy process (AHP) and data envelopment analysis (DEA) to evaluate the
managerial implications for decision making. The results obtained through AHP identified a single
alternative as being the best, which facilitates the decision making. The DEA method identified two
alternatives as the most efficient, and in this case the manager can choose between a product mix
that generates lesser environmental impact or greater profitability. Although applied to agricultural
industry, the presented methodology can be easily adapted to other activities related to the built
environment, such as construction industry.

Keywords: analytic hierarchy process (AHP); data envelopment analysis (DEA); sustainability;
product mix; agricultural industry; decision making

1. Introduction

The development of manufacturing technologies has led to a revolution in the most
diverse areas of modern society and sustainable development, with advances in manu-
facturing, infrastructure, and technologies [1,2]. This has caused competition between
companies to grow, with manufactures continually seeking higher productivities, product
quality, and manufacturing efficiency [3]. For example, in Brazil, where agribusiness repre-
sents about 22.54% of GDP (and 36% of total exports), it is estimated that the agricultural
machinery industry will grow by an average of 5.8% per year in the next years [4,5]. To
avoid the impact of falling sales, the agricultural machinery industry has manufactured
several product models (product mix) to make the production line more flexible. This has
made it possible to maintain activity during seasonal periods, as 20.1% of the country’s
workforce is employed in various segments of agribusiness [6].

In addition to the need for the industry with a broad product mix, which makes
production planning more complex, there are still problems facing the daily planning of
orders for the shop floor [7]. The production planning and control (PPC) sector is generally
concerned with two criteria: (1) sequencing of the production line, and (2) balancing
the production line. These two criteria seek only to make better use of working time
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on the production lines and do not analyze the environmental impact of manufacturing
technology. In this sense, important criteria in planning the production mix can be focused
on, namely: working time, productivity, and profitability.

Several studies have been conducted on the importance of good planning for the
production mix. For example, configuring the production line according to the products
to obtain good synchronization, allocating the appropriate amount of human resources to
the process to avoid delays [8]. In addition, the formulation of problems for the planning
of aggregated production in the automotive industry makes the workforce more flexible,
with changes in costs and the workload of operators [9]. Improving the allocation and
distribution of labor in the industry, for the purpose of improving the productivity of
operators and the hours worked, can be cited as the task carried out in the automotive,
plastic, and service industries [9–12].

However, the industry seeks greater efficiency in production processes, where in-
creased productivity and profitability are considered the primary criteria behind decision
making. Improvements in the industry generally focus on reducing waste and process
variability, while markets demand greater flexibility and lower product costs [13]. However,
along with technological advances, increased productivity, and competitiveness, there are
also environmental issues that need to be accounted for. In this sense, a strong relation
can be observed between components of the built environment and climate change, with
agriculture and industry being some of these components [14]. Unlike the natural environ-
ment, the built environment is comprised of manmade components. The built environment
influences human choices, which in turn affect global climate and human health [15].

It has been noticed that the monitoring of sustainability becomes important for de-
cision making and management of activities in organizations [16]. As for technological
advances, in a study carried out in Ireland on the use of Smart Farming Technologies
(SFT), it was observed that the cost and high initial investment are the factors that inhibit
the adoption of new technologies by farmers. Another important aspect is the lack of
infrastructure, such as the absence of the internet. However, the use of Cloud Computing
technology among young farmers is higher compared to older farmers [17]. Another
study in Australia’s rice industry sought to understand the barriers to broader adoption
of smart agriculture technologies. The study concluded that agricultural consultants and
extension agents play an important role in assisting the farmer and encouraging smart
agriculture [18].

To assess the best production mix considering the production planning alternatives for
various criteria, multi-criteria decision-making methods (MCDM) can be used. For example,
the application of the analytical network process (ANP) for product mix selection by a
semiconductor manufacturer [19], the development of a model to optimize the selection
of suppliers for the apparel industry, using sustainability criteria [20], and the selection
of suppliers using economic and environmental criteria in a technology company [21].
Decision making is also an important component for smart agriculture in the use and
encouragement of new technologies [17,18].

A growing number of publications can be observed focusing on sustainability in the
agricultural machinery industry, such as: the tractor engine load mode to determine fuel
consumption and exhaust emissions [19]; in agriculture, the work in the rotary harrowing
operation and comparative evaluation of the life cycle [20]; the tractor productivity evalua-
tion that evaluated the efficiency in energy use, fuel consumption, and gas emissions for
plowing work in fields with different lengths [21]; the evaluation of sustainability indicators
focused on productivity and operational performance [22,23]. Nevertheless, there are still
limitations in the analysis of the production mix, especially in the agricultural machinery in-
dustry, including the aspect of environmental impact. Several studies have been conducted
on the environmental impact of various industries, such as choosing outsourced logistics
providers [24], vehicle engine technologies [25], and strengths and weaknesses in the pho-
tovoltaic industry [26]. However, there is a lack of studies to identify the best product mix
in the agricultural industry that considers the environmental impact as one of its criteria.
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Based on this, this study aims to apply two multi-criteria methods for decision making, the
analytic hierarchy process (AHP) and data envelopment analysis (DEA), for the definition
of planning regarding the best production mix, with the environmental impact being one
of the criteria. To achieve this goal, seven production mix configurations were evaluated.
The products that make up the mix are grain trailers and machines used for transporting
and storing fertilizers and fertilizers. Products were evaluated considering the following
quantitative criteria: working time on the production line, productivity, profitability, and
environmental impact which was measured with SimaPro software. After the results were
obtained in each of the methods, AHP and DEA, a comparison was performed to assess
the relationships and implications in the use of the methods, from the point of view of
managerial implications, of the agricultural machinery industry for decision making.

The remainder of this article is structured as follows: The second section briefly
describes the multi-criteria decision-making methods that are the focus of this study: AHP
and DEA. The third section presents the methodology used. The results and discussion
are presented in the fourth section. Finally, the conclusions and final considerations are
presented.

2. Multi-Criteria Decision-Making

There is an increase in the amount of available information, which contributes to the
complexity of decision-making. Generally, decisions are made based on the experience of
the decision-maker, and the divergences between the analysis of decision-makers can be
observed; there may be biased opinions that negatively influence the result [27]. In this
context, the MCDM aims to support decision-makers in making the best choice, enabling
the evaluation of various criteria [28].

Two decision-making methods were used for this study: the analytic hierarchy process
(AHP) and data envelopment analysis (DEA). AHP is a multi-objective decision-making
method that enables the analysis of qualitative and quantitative data [29,30] whilst DEA
categorizes the criteria used as inputs and outputs, where the factors that need to be mini-
mized are placed as inputs and the factors to be maximized are placed as outputs [31,32].

A literature review covering the years 1999 to 2017, in the area of mining engineering
and mining processes, identified that the AHP method is the most used, both individually
and in a hybrid manner [33]. More studies can be cited with the use of AHP in the
automobile industry for manufacturing performance and production flow [15]. In the best
use of equipment, eliminate bottlenecks, and enable training of operators [34].

AHP is one of the most powerful multi-criteria techniques, which was originally
proposed by Saaty in 1980 and applied to a variety of uses, measures intangibles with
the assistance of expert judgments through peer comparisons [35]. Once the criteria are
selected, a paired comparison is performed, with the criteria weights calculated within
the established hierarchy. First, a qualitative value is assigned to the criterion, and then
a numerical value is assigned. Thus, the score is assigned in a way that looks reasonable,
and the reciprocal pair comparisons performed in a carefully designed manner [36].

DEA aims to benchmark the performance of decision-making units (DMUs). Units
that use the same inputs and outputs are evaluated and compared, where the calculated
efficiency is the maximum value, making this simplification effective in avoiding subjective
assumptions. Judgment takes place objectively, and DMUs that fall outside the efficient
boundary can be considered underperforming and further analyzed to determine what
can be done to improve their efficiency [37].

A layout study for a precision part machining industry can be cited as an example of
a combination of the AHP and DEA methods. Qualitative performance data were obtained
by applying AHP, and DEA was applied to identify the efficiency scores considering the
quantitative and qualitative performance data. This enabled determining the best global
alternative [38]. The combination of methods was also used to assess the facility layout
design, where AHP was applied to assess qualitative data for quality and flexibility [32].
Another study combined AHP and DEA methods to evaluate the performance of com-
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panies in the PV energy sector. The AHP was applied to collect expert opinions and the
DEA to measure which companies are the most efficient [26], to evaluate the road safety
performance of a set of European countries (or DMUs), combining the AHP and DEA
method [39], and to classify organizational units, where each unit has multiple inputs and
outputs [40].

3. Materials and Methods
3.1. Data Collection

The methodology proposed in this study was applied to a manufacturer located in
southern Brazil, one of the largest agricultural machinery manufacturers in the country.
It produces tools and machines for grain supply and transport, planting and harvesting,
soil preparation and cleaning, fertilizer distribution, and spraying. The industry studied
is unaware of the multi-criteria methods for decision-making and does not make use of
environmental impact assessment in the manufacture of products.

Altogether, the industry produces five models of grain trailers with capacities of
10,500, 12,000, and 15,000 L, used to transport grains and/or granulated fertilizers. The
product codes and configurations used by PPC for production planning are described
below and are the same as those used in a previous study developed by the authors [41]:

• 10.5DcTmul represents an agricultural machine with 10,500 L of grain and fertilizer
transport capacity. It has carbon steel storage and a multipurpose discharge pipe.

• 10.5DiTmul represents an agricultural machine with 10,500 L of grain and fertilizer
transport capacity. It has stainless steel storage and a multipurpose discharge pipe.

• 12.0DiTmeci represents an agricultural machine with 12,000 L of grain and fertilizer
transport capacity. It has stainless steel storage and a multipurpose discharge pipe.

• 15.0DcTmec represents an agricultural machine with 15,000 L of grain and fertilizer
transport capacity. It has carbon steel storage and a multipurpose discharge pipe.

• 15.0DiTmul represents an agricultural machine with 15,000 L of grain and fertilizer
capacity. It has stainless steel storage and multipurpose discharge pipes.

3.2. Criteria Evaluated

The next subsection details the four quantitative criteria evaluated: productivity, work-
ing time, profitability, and environmental impact. To perform comparisons, a functional
unit of one square meter per product was considered. Energy consumption related to each
product separately was not considered, once the industry does not have this information.

3.2.1. Productivity

The PPC prepares the production plan, where the product mix involves three machines
a day, with the seven alternatives used by PPC for daily planning presented in Table 1. For
example, Alternative 1 considers two 10.5DcTmul products and one 15.0DcTmec product
and Alternative 2 considers two 10.5DcTmul products and one 12.0DiTmeci product.

Table 1. Product mix.

Products
Alternatives

1 2 3 4 5 6 7

10.5DcTmul 2 2 1
10.5DiTmul 2 2
12.0DiTmeci 1 1 1 1
15.0DcTmec 1 1 1
15.0DiTmul 1 2 2

Total product/day 3 3 3 3 3 3 3
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3.2.2. Working Time and Profitability

During the preparation of the master production plan, the PPC also obtains infor-
mation regarding the working time of the production stations and the profitability. The
industry considers this data important for workload planning and product profitability.
Table 2 presents the working time (in hours) and profitability by the production mix
(in US$).

Table 2. Working time and profitability referring to 1 m2 of the production mix.

Production Mix Alternatives Working Time (h) Profitability ($)

Alternative 1 0.7211 $151.64
Alternative 2 0.8587 $173.76
Alternative 3 0.9390 $200.70
Alternative 4 1.0476 $202.69
Alternative 5 0.9100 $180.57
Alternative 6 1.0193 $227.65
Alternative 7 0.8817 $205.53

3.2.3. Environmental Impact Inventory Analysis

This step represents the collection of primary data along with the manufacturing
process of the grain trailer. The life cycle inventory aims to identify and quantify the envi-
ronmental interventions related to the systems, placing the results in a list of environmental
inputs and outputs [42]. The environmental impact study was carried out utilizing the
raw materials used to manufacture the parts for their completion on the assembly line
and analysis from the cradle to the gate. The data was entered into the SimaPro software
version 9.0.0.49, using the libraries (database): Ecoinvent 3 compiled November 2018,
USLCI (the United States Life Cycle Inventory) library updated in September 2015, and
Industry data 2.0 (several datasets were updated and added in April 2015, September 2015,
March 2016, December 2017, and April 2018). The list of materials and processes used and
the corresponding database are presented in Table 3.

Table 3. Origin of materials and manufacturing processes.

Database Materials and Manufacturing Processes un.

Industry data 2.0 Steel, engineering steel kg
USLCI Steel, stainless kg

Industry data 2.0 PVC pipe kg
Ecoinvent 3 Epoxy resin, liquid kg

USLCI Automotive painting, electrocoating m2

Ecoinvent 3 Laser machining, metal, with CO2 h
Ecoinvent 3 Welding, gas, steel m
Ecoinvent 3 Welding, gas, stainless m
Ecoinvent 3 Zinc coat, pieces m2

The materials and processes contained in the database were allocated to the products
under study. The amount of raw materials used to manufacture 1 m2 of the product (grain
trailer) is listed in Table 4, and the processes are presented in Table 5 [43].

Table 4. Materials used per m2 of product [44].

Materials un. 10.5DcTmul 10.5DiTmul 12.0DiTmeci 15.0DcTmec 15.0DiTmul

Steel, engineering steel kg 103.2165 69.7484 55.8541 106.2000 72.9938
Steel, stainless kg 0.0586 25.1762 37.8624 0.0508 34.2421

PVC pipe kg 2.7527 2.7527 0.0000 0.0000 2.7527
Epoxy resin, liquid kg 0.0089 0.1503 0.1503 0.0089 0.1527
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Table 5. Manufacturing processes used per m2 of product [44].

Manufacturing Processes un. 10.5DcTmul 10.5DiTmul 12.0DiTmeci 15.0DcTmec 15.0DiTmul

Automotive painting, electrocoating m2 0.7064 0.3102 0.1880 0.7539 0.3212
Laser machining, metal, with CO2 h 0.0905 0.1100 0.1106 0.1073 0.1175

Welding, gas, steel m 8.2091 7.6495 5.2768 8.6174 7.5135
Welding, gas, stainless m 0.0000 1.0963 1.4728 0.0000 1.1454

Zinc coat, pieces m2 0.1821 0.1821 0.0281 0.1342 0.1821

The ReCiPe 2016 Endpoint (H) V1.03/World (2010) H/H methodology was used
to measure the environmental impact. For this study, only the environmental impact
information of a single endpoint score was used, covering the sum of aspects of human
health, ecosystem quality, and scarcity of resources. The data are listed in Table 6.

Table 6. Single endpoint score environmental impact values.

Production Mix Alternatives
Environmental Impact (Pt)

Human Health Ecosystems Resources Total

Alternative 1 14.50 2.21 0.342 17.052
Alternative 2 19.80 3.87 0.431 24.101
Alternative 3 25.40 5.48 0.528 31.408
Alternative 4 27.10 6.08 0.553 33.733
Alternative 5 21.80 4.42 0.463 26.683
Alternative 6 31.00 7.09 0.626 38.716
Alternative 7 25.60 5.43 0.536 31.566

The three categories (human health, ecosystems, and resources) can be divided into
22 midpoint impact categories. At the midpoint, it can be seen that the categories with the
greatest impact are: global warming, fine particulate matter formation, water consumption,
and scarcity of fossil resources. The use of steel and cutting with a laser machine generates
greater global warming, with the emission of greenhouse gases and particulate matter.
Stainless steel and laser cutting also generate the greatest impacts on water consumption, as
it is used to generate energy in the turbines. Energy consumption also generates a scarcity
of fossil resources, which are obtained from oil, natural gas, and coal. It is observed that
the product mix that most uses stainless steel and laser cutting is the one that generates the
greatest environmental impact [45].

3.2.4. Data Normalization

Table 7 presents the seven alternatives and the four quantitative criteria, namely:
the criteria of working time, productivity, and profitability must be maximized, and the
environmental impact criterion must be minimized (values in bold indicate the best value).

Table 7. Measured criteria values for alternatives.

Product Mix Alternatives Working Time (h) Productivity Profitability ($) Environmental Impact (Pt)

Alternative 1 0.7211 3 $151.64 17.052
Alternative 2 0.8587 3 $173.76 24.101
Alternative 3 0.9390 3 $200.70 31.408
Alternative 4 1.0476 3 $202.69 33.733
Alternative 5 0.9100 3 $180.57 26.683
Alternative 6 1.0193 3 $227.65 38.716
Alternative 7 0.8817 3 $205.53 31.566

Bold is to stress the best result.

The final values, referring to the normalization of the criteria, are shown in Table 7,
and were used to determine the best alternative using the AHP methods. To calculate the
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DEA, the values in Table 6 for working time, productivity, and profitability were adopted,
with the environmental impact value taken from Table 8.

Table 8. Normalized criteria values.

Product Mix Alternatives Working Time Productivity Profitability Environmental Impact

Alternative 1 0.113 0.143 0.113 0.229
Alternative 2 0.135 0.143 0.129 0.162
Alternative 3 0.147 0.143 0.149 0.124
Alternative 4 0.164 0.143 0.151 0.116
Alternative 5 0.143 0.143 0.134 0.146
Alternative 6 0.160 0.143 0.170 0.101
Alternative 7 0.138 0.143 0.153 0.123

Bold is to stress the best result.

It is important to note that in DEA, the environmental impact value was considered
an output criterion. In the AHP, the harmonization and normalization of this value were
carried out, considering that the lower the value, the better. Therefore, the lowest envi-
ronmental impact value was assigned the highest weight. In this sense, the final result in
the DEA indicates that the value is maximized, but as the value has been harmonized and
normalized, it is possible to interpret how to minimize the environmental impact.

In AHP it is possible to include the subjective evaluation of experts. Reliability is
verified through the Consistency Index (CI) and the Coherence Ratio (CR). The consistency
ratio is calculated by the CI/RI ratio, where CI is the consistency index and RI is the random
index, whose value depends on the number of criteria being compared. The comparison
between pairs is considered consistent if CR is less than 0.1 [46]. If CR values exceed the
0.1 thresholds, it indicates that the judgment is inconsistent. In such cases, experts need to
review the values in the pairwise comparison matrix [47].

4. Results and Discussion
4.1. Assessment with the AHP Method

The evaluation of the AHP method was performed considering two situations: (1) all
criteria with the same weights and (2) evaluation of the criteria weights by experts. Table 9
shows the comparison matrix obtained when the same importance was attributed to the
four criteria (0.250).

Table 9. Comparison matrix with equal weights between criteria.

Indicator Working Time Productivity Profitability Environmental Impact Weight

Working time 1 1 1 1 0.250
Productivity 1 1 1 1 0.250
Profitability 1 1 1 1 0.250

Environmental impact 1 1 1 1 0.250

With equal weights in all criteria, a CI = 0 was obtained, indicating coherence between
the weights of the criteria [37]. Table 10 shows the weight of each criterion and presents
the final results for each alternative in the last column.

With a sensitivity analysis, there was a change in the preference of alternatives in
working time (alternative 1 to 4 in 0.34) and profitability (alternative 1 to 6 in 0.33), but
productivity showed no change in preference for alternatives. A comparison between
pairs regarding the criteria was performed, considering the opinions of three experts: a
maintenance coordinator, an industrial manager, and a PPC coordinator. Considering the
evaluation of these specialists a CI = 0.153 was obtained, which divided by the RI led
to a CR value of 0.17, being necessary to conduct a new round of evaluations due to its
inconsistency. The weights of the criteria obtained from the second round of evaluations
are shown in Table 11.
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Table 10. Criteria weights and final result.

Product Mix Alternatives
Working Time Productivity Profitability Environmental Impact

Final
0.250 0.250 0.250 0.250

Alternative 1 0.113 0.143 0.113 0.229 0.149
Alternative 2 0.135 0.143 0.129 0.162 0.142
Alternative 3 0.147 0.143 0.149 0.124 0.141
Alternative 4 0.164 0.143 0.151 0.116 0.143
Alternative 5 0.143 0.143 0.134 0.146 0.142
Alternative 6 0.160 0.143 0.170 0.101 0.143
Alternative 7 0.138 0.143 0.153 0.123 0.139

Bold is to stress the best result.

Table 11. Comparison matrix with expert weights.

Indicator Working Time Productivity Profitability Environmental Impact Weight

Working time 1 3 1/3 1/3 0.161
Productivity 1/3 1 1/3 1/3 0.093
Profitability 3 3 1 1/2 0.309

Environmental impact 3 3 2 1 0.437

In the second evaluation of these three specialists a CI = 0.162 was obtained, leading
to an acceptable CR = 0.071. The final result is shown in Table 12, with a preference for
Alternative 1 indicated.

Table 12. Weights of the experts’ criteria and final result.

Product Mix Alternatives
Working Time Productivity Profitability Environmental Impact

Final
0.161 0.093 0.309 0.437

Alternative 1 0.113 0.143 0.113 0.229 0.1662
Alternative 2 0.135 0.143 0.129 0.162 0.1456
Alternative 3 0.147 0.143 0.149 0.124 0.1374
Alternative 4 0.164 0.143 0.151 0.116 0.1369
Alternative 5 0.143 0.143 0.134 0.146 0.1416
Alternative 6 0.160 0.143 0.170 0.101 0.1354
Alternative 7 0.138 0.143 0.153 0.123 0.1368

Bold is to stress the best result.

In the opinion of experts, environmental impact received the greatest weight. This
was related to the greater dissemination of sustainable development goals (SDGs) in the
media. The SDGs currently represent the most important policy decision-making process
on a global scale defined by the UN [48] and can be used to assist in the implementation
of strategies for sustainable development, both in the public and private sectors [2]. It
was therefore assumed that the weights attributed by experts must be influenced by the
current situation owing to the coronavirus disease pandemic. Several epidemiological
predictions indicate that human lives will continue to suffer from physical distance and
social isolation [49].

With the sensitivity analysis, a change in the preference of alternatives was observed
in working time (Alternative 1 to 4 in 0.53), profitability (Alternative 1 to 6 in 0.52), with no
change observed in productivity amongst the alternatives. To the sensitivity analysis in the
AHP, in both cases (equal weights and expert weights), there is a change in preferences in
alternative 1, being replaced by alternative 4 or 6. The reason for this behavior is a greater
working time in alternative 4, while alternative 6 is more profitable. In the productivity
criterion an inversion of preference for alternatives can be observed, as shown in Figure 1
to normalized values of the criteria.

It is observed that the criteria are conflicting, once less working time leads to lower
profitability and lower environmental impact (alternative 1). The greater the profitability,
the greater the environmental impact (alternative 6). A longer working time also results in
high values of environmental impact (alternative 4).



Sustainability 2021, 13, 9110 9 of 14

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 15 
 

Alternative 4 0.164 0.143 0.151 0.116 0.1369 
Alternative 5 0.143 0.143 0.134 0.146 0.1416 
Alternative 6 0.160 0.143 0.170 0.101 0.1354 
Alternative 7 0.138 0.143 0.153 0.123 0.1368 

Bold is to stress the best result. 

In the opinion of experts, environmental impact received the greatest weight. This 
was related to the greater dissemination of sustainable development goals (SDGs) in the 
media. The SDGs currently represent the most important policy decision-making process 
on a global scale defined by the UN [48] and can be used to assist in the implementation 
of strategies for sustainable development, both in the public and private sectors [2]. It was 
therefore assumed that the weights attributed by experts must be influenced by the cur-
rent situation owing to the coronavirus disease pandemic. Several epidemiological pre-
dictions indicate that human lives will continue to suffer from physical distance and social 
isolation [49].  

With the sensitivity analysis, a change in the preference of alternatives was observed 
in working time (Alternative 1 to 4 in 0.53), profitability (Alternative 1 to 6 in 0.52), with 
no change observed in productivity amongst the alternatives. To the sensitivity analysis 
in the AHP, in both cases (equal weights and expert weights), there is a change in prefer-
ences in alternative 1, being replaced by alternative 4 or 6. The reason for this behavior is 
a greater working time in alternative 4, while alternative 6 is more profitable. In the 
productivity criterion an inversion of preference for alternatives can be observed, as 
shown in Figure 1 to normalized values of the criteria. 

 
Figure 1. Behavior of alternatives in relation to normalized values. 

It is observed that the criteria are conflicting, once less working time leads to lower 
profitability and lower environmental impact (alternative 1). The greater the profitability, 
the greater the environmental impact (alternative 6). A longer working time also results 
in high values of environmental impact (alternative 4). 
4.2. Evaluation with the DEA Method 

Two multi-criteria analyses were performed using the DEA: input orientation-type 
(CRS) and output orientation-type (CRS). In both analyses, it was possible to observe the 
efficiency pattern and backlash. Working time was considered as input data, and produc-
tivity, profitability, and environmental impact as output data, as shown in Table 13. 

  

Figure 1. Behavior of alternatives in relation to normalized values.

4.2. Evaluation with the DEA Method

Two multi-criteria analyses were performed using the DEA: input orientation-type
(CRS) and output orientation-type (CRS). In both analyses, it was possible to observe
the efficiency pattern and backlash. Working time was considered as input data, and
productivity, profitability, and environmental impact as output data, as shown in Table 13.

Table 13. Input and output data.

Production Mix Alternatives
Inputs Outputs

Working Time (h) Productivity Profitability ($) Environmental Impact

Alternative 1 0.7211 3.00 $151.64 0.229
Alternative 2 0.8587 3.00 $173.76 0.162
Alternative 3 0.9390 3.00 $200.70 0.124
Alternative 4 1.0476 3.00 $202.69 0.116
Alternative 5 0.9100 3.00 $180.57 0.146
Alternative 6 1.0193 3.00 $227.65 0.101
Alternative 7 0.8817 3.00 $205.53 0.123

Bold is to stress the best result.

The DEA model with the orientation of input-type (CRS) was when the input of
resources was changed to maintain the same results (outputs). Table 14 shows the results
of comparing the production mix alternatives.

Table 14. DEA Input orientation-type: CRS.

DMU
(Mix Alternatives)

Final Backlash

Standard Efficiency Working Time Quantity of Products Profitability Environmental Impact

Alternative 1 1 0 0 0 0
Alternative 2 0.92 0.0717 0 0 0.023
Alternative 3 0.92 0.0717 0 0 0.008
Alternative 4 0.83 0.1744 0 0 0.013
Alternative 5 0.89 0.1027 0 0 0.026
Alternative 6 0.96 0.0427 0 0.32 0.035
Alternative 7 1 0 0 0 0

Bold is to stress the best result.

Alternatives 1 and 7 (bolded in Table 14) are the most efficient, with a default efficiency
of 1. Alternative 4 is the least efficient, with a default efficiency of 0.83. Regarding the
analysis of backlash, it was observed that it was not necessary to change profitability to
obtain maximum standard efficiency but working times must be reduced (alternatives 2
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to 6), the number of products must be increased (alternative 6), and the environmental
impact must be reduced (alternatives 2 to 6). For the most efficient alternatives, it was
assumed that there was a good relationship between working time on the production line,
with an adequate output of products, profitability, and environmental impact. Alternative
1 had shorter working hours, resulting in lower profitability and environmental impact.
Alternative 7 was the fifth alternative with increased hours of work, and the second
alternative that generated the greatest environmental impact. However, this factor was
offset by profitability, which makes this an efficient alternative.

In the DEA model with output orientation-type: CRS, the results (output) were
changed while maintaining the same resource input. Table 15 shows the results of compar-
ing the seven production mix alternatives.

Table 15. DEA output orientation-type: CRS.

DMU
(Mix Alternatives)

Final Backlash

Standard Efficiency Working Time Quantity of Products Profitability Standardized Environmental Impact

Alternative 1 1 0 0 0 0
Alternative 2 0.92 0 15.83 0.27 0.040
Alternative 3 0.92 0 16.59 0.25 0.019
Alternative 4 0.83 0 40.47 0.60 0.038
Alternative 5 0.89 0 22.97 0.38 0.048
Alternative 6 0.96 0 9.96 0.47 0.041
Alternative 7 1 0 0 0 0

Bold is to stress the best result.

With the output orientation, it can be seen that for alternatives 2 to 6 to obtain maxi-
mum efficiency, it was necessary to increase profitability and the quantities of products
and reduce the environmental impact. Alternatives 1 and 7 were the most efficient.

4.3. Comparison of AHP and DEA Results

Table 16 shows the comparison of the results with the AHP and DEA in the evaluation
of the four models.

Table 16. Ranking of alternatives.

Product Mix Alternatives AHP (Equal Weights) AHP (Weights of Experts) DEA Input–Type: CRS DEA Output–Type: CRS

Alternative 1 1◦ 1◦ 1◦ 1◦

Alternative 2 4◦ 2◦ 4◦ 4◦

Alternative 3 6◦ 4◦ 3◦ 3◦

Alternative 4 2◦ 5◦ 6◦ 6◦

Alternative 5 5◦ 3◦ 5◦ 5◦

Alternative 6 3◦ 7◦ 2◦ 2◦

Alternative 7 7◦ 6◦ 1◦ 1◦

Bold is to stress the best result.

In the four evaluations, Alternative 1 (two 10.5 DcTmul products and one 15.0 DcTmec
product) was the best for planning the production mix, considering the criteria of working
time, productivity, profitability, and environmental impact. Alternatives 2 and 5 showed
the same behavior, considering the AHP with equal weights and DEA. The alternatives of
specialists in the AHP method (2 to 7) presented a divergence in the ranking compared
to the DEA method. Furthermore, it was difficult to obtain as the best solution a single
model that combines a maximum economic result with a low environmental impact.
The alternatives presented criteria that were in conflict. It is generally perceived that
in the industry, a greater profitability will inevitably result in a higher environmental
impact. Therefore, to generate a lower environmental impact, it is necessary to have a
lower production rate and profitability. Such results were also observed in other studies,
where the three pillars of sustainability conflict with one another. The concern was to
obtain a model that can improve processes and satisfactorily address environmental,
economic, and social aspects [50]. Achieving greater profitability can have negative social
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and environmental consequences [51]. Economic growth stimulates demand and favors
the growth of human, material, and financial resources; however, such growth conflicts
with the environment [52].

From the perspective of managerial implications in the industry for decision-making,
it is possible that:

• The best result was focused on a lower environmental impact with the use of AHP.
While using DEA, two efficient alternatives could be obtained: one with less environ-
mental impact and the other with better economic aspects. In this sense, the industry
may prefer a production mix that focuses more on the best economic criteria.

• The AHP method allowed for the assessment of both qualitative and quantitative
criteria [34,35,41]. This aspect is important in the agricultural industry, as some
additional qualitative criteria considered relevant by management could be included
in the analysis.

• Using the AHP method, it was possible to obtain a single alternative as the better one
in the two situations evaluated. This facilitates decision-making from a managerial
perspective.

• A disadvantage of the AHP method is that many comparisons must be made by
experts, based on their subjective and possibly conflicting opinions [43]. In the case
study, two rounds of evaluations were needed to achieve acceptable values [39].

• The DEA method allowed each alternative to list its weights [35]. In this sense,
quantitative values were used, implying that it was only necessary to harmonize
and normalize the value of the environmental impact so that it could be coherently
assessed using the DEA method.

• The DEA method performs a global assessment of alternatives; DMUs that fall outside
the efficient boundary were considered underperforming, and they needed to be
further analyzed to determine the measures to improve their efficiency [40]. In this
study, the results obtained in the backlash were an indication of what can be improved
in each of the alternatives. In the AHP method, the sensitivity analysis to determine
the inversion of preference in the alternatives was considered more laborious.

• One of the disadvantages of DEA is that two or more alternatives can be considered
efficient [35]. In the case studied, two alternatives were considered more efficient: one
with less environmental impact and the other with better economic criteria. Depending
on the situation, such a result can cause difficulties for the decision-maker.

• The AHP method is the most commonly used, both in single and hybrid modes [36].
In this study, the weights of the environmental impact criterion calculated using the
harmonization and normalization of the AHP were also applied to the DEA.

In this study, the application of the AHP and DEA methods sought to evaluate the
best alternative for planning the production mix in the agricultural machinery industry.
However, it was important to consider that the economic criteria of the study are real
aspects used by management in decision-making. The environmental impact criterion was
also added, which is considered relevant given the global context around sustainability.
Although the AHP was also subjectively assessed, the weights attributed may vary depend-
ing on the specialist’s area of expertise. With the application of MCDM, it was possible
to obtain an alternative that was common to both the AHP and DEA methods. The AHP
was considered to enable an improved decision from the managerial aspect, as it indicated
only a single result, and was possible to work in a hybrid way and with qualitative criteria.
The study had limitations in the number of criteria that were evaluated; however, the four
study criteria were considered the most important for the industry under study. Although
MCDM has been applied in the agricultural industry, it presented satisfactory results that
can be replicated in other areas, despite the lack of application of these models in this area.

5. Conclusions

This article proposes the application of multicriteria methods to define the best product
mix in the production planning of the Brazilian agricultural machinery industry. Seven
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alternatives and four criteria were evaluated based on the environmental impact of the
decision criteria. In this practical case, the AHP and DEA methods identified the best
production mix, and a second production mix was also identified by the DEA as being
equally efficient. In this sense, it is possible to assess that the criteria are conflicting, because
selecting a lower environmental impact leads to lower profitability.

From a managerial point of view, the AHP method identified a best alternative, which
facilitates decision-making. However, for the elaboration of the matrix, paired evaluations
are necessary, and this study required two rounds of evaluations with experts. Furthermore,
the AHP method allows the use of qualitative criteria for a future evaluation, in the interest
of the management. The DEA method identified two alternatives as being the most efficient,
wherein the manager needs to choose a mix that generates less environmental impact or
greater profitability. Because of the conflicting criteria, decision making requires further
analysis of the final result. However, the positive aspect of applying the DEA is a global
view, with benchmarking of the performance of the DMUs, making it possible to obtain
improvement with less efficient alternatives.

Although applied to agricultural industry, the presented methodology can be easily
adapted to other products and activities related to the built environment, such as the
construction industry.
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