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Abstract: Although the increase in the frequency and intensity of disasters assigns a key role to
disaster risk management in current debate on sustainable development, the efforts of national and
local authorities to develop risk-informed planning strategies and increase disaster preparedness
are still limited. In multi-hazard urban environments, the main criticality to support risk-informed
planning strategies is the persisting lack of effective knowledge bases focused on the vulnerability of
exposed assets to different hazards. Hence, this contribution, according to the first priority of the
Sendai Framework for Disaster Risk Reduction—understanding disaster risk—and by tidying up
methods and indicators developed in both EU research projects and scientific studies devoted to multi-
risk and vulnerability assessment, aims at better using available knowledge to guide risk-informed
spatial planning. In detail, an indicator-based method to carry out a comprehensive exposure and
vulnerability analysis has been outlined and tested on a case study area, the multi-hazard urban
area of Campi Flegrei, located in the western part of the metropolitan city of Naples in the South
of Italy. The proposed method may contribute to the building up of an effective risk knowledge
base, enabling planners to easily access information on exposure and vulnerabilities to different
hazards, and to differently combine them into output maps capable of supporting risk- informed
planning strategies.

Keywords: exposure; vulnerability; systemic vulnerability; risk-sensitive spatial development; multi-risk

1. Introduction

Despite the emphasis put on disaster risk reduction (DRR) and climate change adapta-
tion (CCA) in all recent documents on sustainable development, urban areas are still prone
to the frequent impacts of individual or coupled hazards. Moreover, the constant growth
of urban population and the increasing interconnectedness among urban elements and
systems result in a growth of their exposure and vulnerability levels. Hence, it is urgent to
develop risk reduction strategies, based on a multi-risk assessment capable of taking into
account the different hazards potentially affecting a given area and their likely interactions,
as well as the different assets exposed to each hazard and their multiple vulnerabilities.

The importance of a better understanding of disaster risk has been also remarked
by the Sendai Framework 2015–2030 that assigned to risk knowledge a fundamental role
to support all the phases of the disaster cycle. The document clearly outlines the key
steps to improve risk knowledge, putting emphasis on the importance of consolidating
the existing knowledge, of considering all risk components (hazard, exposure and vul-
nerabilities) and their potential interactions, of encouraging the use and strengthening of
baselines at relevant spatial scales and their periodical updating as well as of ensuring an
effective dissemination of such knowledge to different stakeholders. Moreover, the Sendai
Framework underlines the importance of promoting comprehensive multi-risk analyses by
taking into account climate change scenarios.

Sustainability 2021, 13, 9055. https://doi.org/10.3390/su13169055 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0565-4313
https://orcid.org/0000-0003-3514-2335
https://doi.org/10.3390/su13169055
https://doi.org/10.3390/su13169055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13169055
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13169055?type=check_update&version=1


Sustainability 2021, 13, 9055 2 of 19

However, even though over the past few decades, the relevance of multi-risk analyses
has been largely recognized, this issue is still mostly confined to scientific debate, while
current practices are often based on consolidated methods and procedures for single
hazard/risk analyses [1–4].

The shift from risk to multi-risk assessment requires a radical change in perspective.
While risk analysis has been for long “hazard-centered”, starting from the characterization
of individual hazards and their spatial distribution that leads to the identification of the
potentially affected areas and elements at risk, multi-risk analysis should be “spatial-
centered”, starting from the selection of a geographical area in order to identify, firstly, the
multiple hazards it is prone to and their potential interactions, and secondly, the exposed
and vulnerable elements both to single hazards as well as to chained or coupled ones [5–8].

Comprehensive multi-risk analyses are paramount to support effective disaster risk
reduction policies in existing urban areas, generally characterized as multi-hazard envi-
ronments, with high levels of exposure and vulnerability, due to the constant growth of
urban population and the increasing concentration of activities and assets. In these areas,
risk-informed planning strategies, by acting on exposure and vulnerability features of ur-
ban areas to different hazards, could largely contribute to reduce current multi-risk levels,
which are generally higher than risk levels measured in respect to individual hazards [5,6].

Nevertheless, even though the pivotal role of spatial planning for effective disaster risk
reduction policies has been largely emphasized by numerous scholars and international
documents on DRR, existing knowledge is often inadequate to support risk-informed
planning strategies, which require detailed information on the vulnerabilities of exposed
assets and systems [3,9,10].

Based on these premises, this contribution is addressed to outline a methodological
path to carry out a comprehensive exposure and vulnerability assessment in urban areas
prone to multiple hazards as a first step towards a multi-risk analysis and aimed at sup-
porting risk-informed planning strategies. In detail, Section 2 highlights the main gaps in
currently available risk knowledge as well as the main outcomes of research works focused
on multi-risk assessment; Section 3 outlines the key steps of the proposed methodological
path; Section 4 provides an application of the methodological path on a multi-hazard urban
environment, the Phlegraen Fields in the metropolitan area of Naples (Southern Italy); and
Section 5 emphasizes the relevance of the proposed methodology for planning issues. The
last Section 6 discusses the obtained results and offers some concluding remarks.

2. Risk Knowledge: Current Gaps and Advances

Despite the recognized importance of comprehensive multi-risk analyses to support
effective DRR and CCA strategies, risk knowledge currently available still shows several
shortcomings: fragmented knowledge bases developed by different authorities in charge
of individual hazards; heterogeneous terminologies and methodologies for hazard and
risk analysis; data and information provided at different geographical scales and not
always up-to-date; frequent lack of in-depth vulnerability analyses as well as of adequate
platforms to collect, synthesize and share existing data and information [11]. All these
shortcomings hinder the possibility to effectively support risk-informed planning strategies:
as the latter act on different spatial scales and according to different aims, they require
both aggregate indexes to select the areas characterized by the highest multi-risk levels and
disaggregate and detailed information on exposure and vulnerability at different scales to
define adequate DRR strategies.

However, in the past decade, significant progress towards the development of com-
prehensive multi-risk analyses has been achieved, even if the increase in knowledge is not
matched by its greater use in practice [12].

The topic of multi-risk analysis has been addressed by numerous scholars and Euro-
pean research projects, although according to different perspectives (e.g., na-tech events,
simultaneous or cascading events, vulnerability to multi-hazard) [13,14], and several review
articles highlight the relevance of multi-risk in scientific literature and the different methods
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so far developed to improve risk knowledge in multi-hazard environments [3,4,6,13–15].
Most of the available methods can be traced back to two large groups: scenario techniques
and indicator-based methods.

Some studies traceable to the first group have developed complex risk scenarios,
based on site-specific hazard data and focused on selected chain of events and elements-
at-risk [16,17]: they clearly highlight how the interactions among different hazards may
amplify the overall risk level in respect to the levels due to individual hazards. However,
although very relevant to understand the complexity of chained events and urban systems
as well as to define comprehensive risk indexes, they do not provide disaggregate data and
information on the different risk components (exposure and vulnerability) useful to better
guide risk-informed planning strategies.

Studies traceable to the second group have developed numerous sets of indicators
aimed at providing a picture of the different risk components [18–21]. According to
indicator-based methods, for instance, Kappes et al. [19], carried out a vulnerability as-
sessment in multi-hazard contexts; Gallina et al. [22] developed a multi-vulnerability
matrix, taking into account the physical and environmental vulnerability of different ex-
posed targets prone to multiple climate-related hazards. However, these studies often
fail in providing a comprehensive multi-risk assessment: focusing on specific “facets” of
vulnerability; in fact, they generally overlook its multidimensional feature [23].

Nevertheless, indicator-based methods seem to be the most adequate to support
risk-sensitive planning strategies [20,24]: they allow providing, without requiring massive
data collection and elaboration or specific technical skills [22], both summary results and
disaggregate information on individual risk components that are crucial, in turn, to support
planning choices.

Therefore, with reference to an indicator-based method, this contribution aims at
providing a methodological path to carry out a comprehensive analysis of exposure and
vulnerability in urban areas prone to multiple hazards. In detail, the proposed path takes
into account the multiple “facets” of vulnerability (physical, social, systemic) and allows
building up a set of “spatialized” data and information, collected through open datasets,
that can be combined into different output maps: from thematic maps, showing the
vulnerability features of selected elements (e.g., residential buildings), to a comprehensive
map, showing the overall levels of exposure and vulnerability of a given area in the face of
multiple hazards. Thus, it provides a screening tool useful to prioritize the most vulnerable
exposed areas and assets, but also to identify effective strategies to reduce their exposure
and vulnerability levels.

3. The Methodological Path

As mentioned above, multi-risk analyses must be tailored to the context; thus, in this
section, the main steps of the methodological path will be roughly presented to be then
further detailed in respect to the selected case study (Section 4).

In order to carry out a comprehensive analysis of exposure and vulnerability of a
selected area, two preliminary steps are required. First of all, available information related
to the different hazards that the selected area is prone to have to be collected and codified.
Secondly, the selected area has to be divided into homogeneous spatial units (HSUs),
obtained through the overlapping into a GIS environment of three basic layers: minimum
census units, as defined by the national census bureau, land uses (as defined by the Corine
Land Cover) and hazard distribution. HSUs allow a “spatialization” of different data and
information that, collected in respect to HSUs, can be then easily aggregated at different
geographical scales.

3.1. Exposure and Vulnerability Indicators

Exposure levels of an urban system or of its partitions depend on the presence and
consistency of “target elements”; that is, the elements that can be potentially affected by
the hazards that a given area is prone to. Hence, their identification depends on the type
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of hazards affecting the selected area. Target elements can be articulated into two main
categories: areal elements (e.g., residential areas, areas devoted to tertiary, commercial,
tourist activities, etc.) and punctual elements (urban facilities, archaeological sites, in-
dustrial plants, etc.). These elements can be investigated through exposure indicators
related to the distribution and density of areal elements or to the location and number of
punctual elements.

Vulnerability has long been one of the most debated concepts in the field of DRR,
and vulnerability analysis is nowadays considered crucial to both risk and multi-risk
assessment: the development of effective disaster risk reduction strategies requires an
in-depth knowledge of “who and what is most vulnerable” [25].

However, vulnerability is a multifaceted concept, referring to “the conditions de-
termined by physical, social, economic and environmental factors or processes which
increase the susceptibility of an individual, a community, assets or systems to the impacts
of hazards” [26].

The diversity of the vulnerability facets is also mirrored by the heterogeneity of the
available methods to analyze and assess it [27,28], which range from fragility curves, to
qualitative and quantitative indicators [20,29].

Among the several dimensions of vulnerability arising from European research
projects [23] as well as from the numerous scientific articles that over the years have
addressed vulnerability issues [30–33], we will focus here on three facets:

• Physical, which is the most investigated facet together with the social one; it is widely
interpreted as the susceptibility of a given element/asset to be damaged (buildings,
infrastructure, forests, etc.) [27,34].

• Social, which is generally related to the capacity of individuals and communities to
cope with the adverse impacts of hazards [32,35].

• Systemic, the less investigated facet, which is typical of complex urban systems, since it
mirrors the propensity of territorial elements to suffer damage (generally a functional
damage) due to their linkages with other elements [36,37]; hence, this vulnerability
facet is mostly related to the type of linkages among territorial elements, rather than to
the hazard typology. Examples of systemic vulnerability are the failure of an electrical
network that may induce cascading effects on several productive activities, or the
permanent or temporary blockage of a road that may impede the accessibility of an
emergency facility.

Despite being the least investigated facet of vulnerability, the concept of systemic
vulnerability has been applied in several areas of natural hazards such as earthquakes,
floods and volcanic eruptions [37–40] and it is nowadays considered as crucial to a better
understanding of the overall vulnerability of urban systems. As a matter of fact, urban
facilities and infrastructure play a crucial role for the “functioning” of urban systems both
in peacetime and, even more, in case of a hazardous event, when their “malfunctioning”
could induce a significant increase in the loss of lives and properties. These elements are
numerous and diversified, ranging from hospitals and schools, to road and rail networks.
In respect to these elements, it is important to analyse, besides their physical vulnerability,
their susceptibility to suffer a reduction or even a loss of functionality due to their linkages
with other elements of the urban system. The loss of functionality of a given element may
influence, in fact, the functioning of the whole urban system, determining its failure in
providing adequate responses in the aftermath of a hazardous event.

The focus on the three vulnerability facets is closely related to the adopted spatial-
planning perspective. These facets are crucial indeed to support planning strategies aimed
at recovering/regenerating existing urban areas, whereas they also provide useful insights
for emergency management. For instance, physical vulnerability is paramount to support
retrofitting strategies, while social vulnerability indicators may be very useful to better
drive regeneration strategies at neighborhood or municipal scale. Moreover, systemic
vulnerability indicators, by identifying the main shortcomings of urban facilities, strategic
equipment and/or infrastructure, can support strategic plans at a metropolitan or regional
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scale towards the relocation of urban facilities or strategic equipment as well as towards
the strengthening of the mobility networks.

Thus, the assessment of the vulnerabilities of exposed targets through qualitative-
quantitative indicators allows:

• Characterizing some relevant aspects of exposed elements or systems through simple
indicators or through their combinations into compound indicators;

• Replicating the analysis by adapting the set of indicators to different contexts and at
different scales, by easily comparing different urban areas or territorial systems.

The set of vulnerability indicators can be outlined based on some European research
projects and scientific articles (Table 1) that over the years have provided methods and
tools to assess vulnerabilities both in a single-risk and in a multi-risk perspective.

Table 1. Main references for the selection of indicators.

EU Projects Vulnerability Facets

ARMONIA
2004–2007

physical v.
social v.

systemic v.

ENSURE
2008–2011

physical v.
social v.

systemic v.

MOVE
2008–2011

physical v.
social v.

systemic v.

RESIN
2015–2018

physical v.
social v.

systemic v.

References Vulnerability facets

Cutter et al., 2008 social v.

Barbat et al., 2010 physical v.

Kappes et al., 2012 physical v.

Tilio et al., 2012 systemic v.

Welle et al., 2013 social v.

Scaini et al., 2014 systemic v.

Aliabadi et al., 2015
physical v.

social v.
systemic v.

Khademi et al., 2015 systemic v.

Papathoma-Köhle et al., 2017 physical v.

Elboshy et al., 2019
physical v.

social v.
systemic v.

In detail, several indicators aimed at assessing physical vulnerability of built environ-
ment in the face of natural hazards [27,34,41,42] have been so far defined in the field of
engineering studies; they generally refer to the structural features of buildings as well as to
their maintenance (e.g., construction typologies, age of buildings, conservation degree) [43].
More recently, some indicators related to the physical vulnerability of the built environment
to climate related hazards (e.g., floods, heat waves) have been also developed, such as the
imperviousness of the urban fabrics’ surfaces and the vegetation index [44].

Available indicators useful to characterize social vulnerability generally include popu-
lation structure, such as the old-age index, the percentage of elderly and children compared
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to the resident population, which allows defining a dependency ratio and the difficulty
of autonomous travel in case of evacuations; the education rate and presence of social
marginalization; and employment levels, which affect the capacity of individuals to cope
with hazards’ impacts [45].

Indicators related to systemic vulnerability generally refer to the type of available
urban facilities and infrastructure, to their functional role/relevance in a given context
as well as to their redundancy. In particular, available studies on systemic vulnerabil-
ity often refer to the redundancy of territorial facilities, to the accessibility levels of the
different areas/facilities as well as to the redundancy and connectivity of the transport
networks [46,47].

3.2. From the Selection of Indicators to the Output Maps

Once the set of indicators has been selected, each indicator can be measured through
data collected from different datasets. The raw data deriving from the available datasets
have to be associated to the different HSUs and to the specific indicator, homogenized and
normalized according to a common scale of values [10]. It is worth pointing out that while
exposure, physical and social vulnerability indicators can be measured through a “soft”
reprocessing of data extracted from existing databases (e.g., National Census, Copernicus
layers), systemic vulnerability indicators require more in-depth analyses of features and
functional roles of urban and emergency facilities as well as of road and railway networks,
that, however, can be obtained thanks to GIS tools and do not require in situ surveys.

Then, as for hazards, all the selected exposure and vulnerability indicators require a
coding process, in order to combine them into a comprehensive exposure and vulnerability
assessment. Moreover, due to the heterogeneity of the collected data, all exposure and
vulnerability indicators can be homogenized and normalized in a range from 0 to 1,
according to the formulas:

e′x,y,z = (ex,y,z − ex,y,z,min)/(ex,y,z,max − ex,y,z,min) (1)

v′x,y,w = (vx,y,w − vx,y,w,min)/(vx,y,w,max − vx,y,w,min) (2)

where:

• ex,y,z is the not homogeneous exposure level of exposure indicator z attributed to the
element y;

• vx,y,w is the not homogeneous vulnerability level of vulnerability indicator w attributed
to the element y.

The main output of this process is represented by single homogenized maps where
each HSU is related to values of e′, v′ ranging from 0 to 1. Then, in order to switch from a
collection of maps related to each homogenized indicator to a comprehensive exposure
and vulnerability map, the different indicators can be combined with each other. In detail,
exposure and vulnerability values, calculated in respect to each hazard, can be combined
to obtain a total exposure value multiplied by vulnerability values:

VEx = ∑ e′x,y,z

(
v′x,y,1 + v′x,y,2 + . . . + v′x,y,n

)
(3)

where the total value VE of a given area to the hazard (x) is given by the sum of each
exposure indicator (z) multiplied by the sum of the vulnerability indicator values (n).

This step allows obtaining two main outputs:

• Single maps showing the distribution of exposure and vulnerability levels (EV Map),
in respect to the hazard (x), for each class of exposed element;

• Single maps showing the distribution of exposure and vulnerability levels (EV Map)
in respect to the hazard (x), with a scale normalized on the worst case (maximum
value of VEx,y) (Figure 1).
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Figure 1. The process from data extraction to the output maps.

These maps can be obtained by multiplying exposure levels with the sum of vulnera-
bility indicators’ values attributed to each class of exposed elements, or by considering the
total exposure value with its vulnerability value for each hazard following the Formula (3).

Finally, besides the EV maps related to each hazard, it is possible to carry out a
comprehensive EV map, which provides a summary value of exposure and vulnerability
levels of each HSU in respect to all hazards affecting the case study area. To this aim, the
selected indicators have to be hierarchically ordered [19]. Such a hierarchy can be defined
only in respect to a selected case study area, since it depends on the relevance of each
indicator to each considered hazards. In detail, an indicator that is significant for all the
considered hazards will have a greater weight than an indicator exclusively referred to a
single hazard. Hence, physical vulnerability indicators, which generally refer to individual
hazards (seismic, landslides, etc.) will generally have a lower weight in respect to other
indicators, such as social (e.g., population age) or systemic vulnerability indicators (e.g.,
accessibility), which refer to multiple hazards.

Following this approach, the formula (3) can be redefined as follows:

VE = ∑ ex,y,z
(
∑ wv

)
(4)

where w is the weight assumed by each vulnerability indicator, according to its relevance
in respect to each hazard. Such relevance has been defined according to the selected
scientific literature—that generally provides vulnerability indicators in respect to specific
hazards—and measured according to a binary approach (yes/no).

4. The Case Study Area: A Multi-Hazard Urban Environment in Southern Italy

The case study area—the Phlegraean Fields, located in the western part of the metropoli-
tan city of Naples, in Southern Italy (Figure 2)—represents a paradigmatic example of a
multi-hazard urban environment: in addition to the volcanic hazards, this area is prone to
several natural and man-made hazards and is characterized by a high population density
and a relevant historical, archaeological and natural heritage. Moreover, it is worth noting
that, compared to other volcanic areas characterized by a central volcanic system, such as
the Vesuvian area, in the Phlegraean Fields, the area of possible opening of eruptive vents
is very large, with significant consequences in terms of extension of the potentially affected
territory [48].
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Figure 2. The case study area.

The selected case study area includes twelve municipalities: four of them are entirely
included in the “red zone” of the Phlegraean Fields, which is classified as the highest risk
area; the others are partially included in the red zone or included in the “yellow zone”
(including part of the capital city of the Metropolitan area, that is the City of Naples),
classified as areas at medium risk. Only one of the selected municipalities is not included
in the volcanic area of the Phlegraean Fields: the Municipality of Qualiano. Nevertheless,
the latter has been included in the case study area since, although not affected by volcanic
hazard, it is enclosed between two municipalities partially included in the volcanic zone:
Giuliano in Campania, partially included in the red zone, and Villaricca, which is part of
the yellow zone.

Besides volcanic hazards, the case study area is also prone to other hazards, namely
earthquakes, since all the selected municipalities are classified as areas at medium-high
seismicity (corresponding to the seismic zone 2), landslides (10% of the overall territorial
surface) and hydraulic hazard (10% of the overall surface). Moreover, the case study area
hosts numerous hazardous industrial plants: 40% of the total hazardous industrial plants
of the Metropolitan City of Naples are located in the case study area.

The twelve selected municipalities host more than 1,400,000 inhabitants (ISTAT 2019),
which is about half of the inhabitants of the Metropolitan City of Naples, made up of
92 municipalities.
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Once the case study area has been identified, all the available information on the
different hazards that this area is prone to have been collected.

In particular, the case study area is prone to different sudden-onset hazards that,
according to the terminology reported in numerous international documents (Hyogo
framework, Sendai Framework, UNISDR Glossary 2004, 2016), can be classified as fol-
lows: geophysical hazards, whose origin is purely natural; hydrometeorological hazards,
whose origin is however natural, but altered in different ways by anthropogenic pressures;
anthropogenic hazards, such as industrial accidents, whose origin is purely anthropic
(Table 2). Table 2 also shows the codes assigned to each hazard. The coding process is
also adopted to identify the classes of elements at risk and the exposure and vulnera-
bility indicators in order to combine all the data into the comprehensive exposure and
vulnerability assessment.

Table 2. Considered typologies of hazards and codes.

Geological and Geophysical Code

Earthquakes Eq
Volcanic Eruptions

lava flows LF
pyroclastic flows PF
ashes As

Landslides La

Hydrometeorological

Floods Fl
Extreme temperatures (heat waves) HW

Anthropogenic

Industrial accidents IA

Then, the whole area has been preliminarily divided into homogeneous spatial units
(HSUs), obtained through the overlapping into a GIS environment of census units provided
by the Italian Institute of Statistics (ISTAT), Corine Land Cover areas and hazard levels,
namely hydraulic and landslide hazard levels and volcanic classification, being the whole
territory included in the same seismic zone (zone 2), according to the national seismic
classification issued in April 2021 (Figure 3).

Figure 3. The case study areas divided into HSUs.
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Then, according to the hazard features of the case study area, exposed targets have
been identified and classified and, for each class of exposed elements, exposure and
vulnerability indicators have been selected, based on the references provided in Table 1.
The selected set of indicators (Table 3) is composed of:

• Indicators deriving from standard datasets (e.g., National Statistics, Copernicus) al-
ready available and spatialized, which only need to be systematized and homogenized.
They can be easily reprocessed according to the different goals and scaled to different
spatial units.

• Specific indicators referable to specific hazards or spatial scales that must be identified
through devoted analysis (focus).

Table 3. Selected exposure and vulnerability indicators.

Classes of Exposed
Elements Exposure Indicators Vulnerability

Indicators
Vulnerability
Dimensions Data Sources

Residential areas
n◦ of residential
buildings/total

Utilization degree Physical National Census
Urban density Physical Copernicus HRL

Construction type Physical National Census
Imperviousness Physical Copernicus HRL
Vegetation index Physical Copernicus HRL

Conservation degree Physical National Census
Age of buildings Physical National Census

Buildings’ material Physical National Census
Number of

storeys(height value) Physical National Census

Commercial, touristic,
tertiary areas

n◦ of non-residential
buildings/total

Utilization degree Physical National Census
Urban density Physical Copernicus HRL

Construction type Physical National Census
Imperviousness Physical Copernicus HRL
Vegetation index Physical Copernicus HRL

Urban Facilities n◦ of buildings or areas

Hierarchical level Systemic Focus
Strategic role Systemic Focus
Accessibility Systemic Focus
Redundancy Systemic Focus

Historical and cultural
heritage

n◦ of building or site

Construction type Physical MiBACT database
Imperviousness Physical Copernicus HRL
Vegetation index Physical Copernicus HRL

Cultural value Systemic MiBACT database

Transport
infrastructure

length of roads Hierarchical level Systemic Focus

number of road access
Presence of bridges,

tunnels or underpasses Physical OpenStreetMap

Imperviousness Physical Copernicus HRL
length of railways Strategic role Systemic Focus

n◦ of railway stations Connectivity Systemic Focus
Redundancy Systemic Focus

Industrial sites n◦ of sites

Type of production Physical Regional registers
Distances from

residential/natural
areas

Physical Focus

Population population density

Age—old age index Social National Census
Education Social National Census

Employment Social National Census
Autonomy—%

children and elderly Social National Census

Immigrants and
refugees Social National Census
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The selected exposure and vulnerability indicators have been measured based on
three main sources:

• The census data provided by the Italian Institute of Statistic (ISTAT). The national
census provides, for each census unit, data on population (age, education, employ-
ment, etc.) and building stock (occupied or empty dwellings, age of buildings, etc.).
Even though some census data at the municipal scale are permanently updated, data
provided for individual census units are available only in respect to the last census,
which dates to 2011.

• The Corine Land Cover layer released by Copernicus and updated to 2018, together
with the Urban Atlas layer and the High-Resolution Layers, which provide useful
data related to both imperviousness and tree cover density.

• The Open Street Map layers updated to 2020, integrated with other sources such as
the Geonational web-GIS for information on educational facilities, the portal of the
Ministry of Cultural Heritage (MiBACT) for the information on cultural heritage, the
regional technical maps for the location and features of the transport network.

The raw data derived from these datasets have been associated with the HSUs previ-
ously identified and subsequently processed as exposure or vulnerability indicators.

All exposure and vulnerability indicators have been homogenized and normalized in
a range from 0 to 1, according to the Formulas (1) and (2) (see Section 3).

The outputs of this process are single homogenized maps related to each selected
indicator: in these maps, HSUs are ranked through normalized values of e′, v′ ranging
from 0 to 1 (Figures 4 and 5).

Figure 4. Maps of exposure and vulnerability: population density (exposure).
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Figure 5. Maps of exposure and vulnerability: age of residential buildings (physical vulnerability).

Then, following the formula (3) (see Section 3), it is possible to carry out single EV maps
for each class of exposed element in respect to each considered hazard. Figures 6 and 7
show the EV maps for residential areas and cultural heritage in the face of seismic
hazard, respectively.

Figure 6. Exposure and vulnerability levels of residential building stock in the face of earthquakes.
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Figure 7. Exposure and vulnerability levels of cultural heritage in the face of earthquakes.

Finally, a summary value of exposure and vulnerability levels of each HSU in respect to
all the hazards affecting the case study has been calculated by weighting each vulnerability
indicator, according to its relevance in respect to each considered hazard (Table 4) and a
comprehensive EV map for the case study area has been carried out (Figure 8).

Figure 8. Comprehensive EV map.
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Table 4. Indicators’ weight according to the relevance for each hazard.

Vulnerability Indicators
W

Eq LF PF As La Fl HW IA
Utilization degree 0.88

Urban density 0.75
Construction type 0.13
Imperviousness 0.25
Vegetation index 0.38

Conservation degree 0.50
Age of buildings 0.13

Buildings’ material 0.13
Number of storeys (height value) 0.25
Presence of bridges, tunnels . . . 0.75

Cultural value 0.88

Ph
ys

ic
al

V

Type of production of industrial sites 0.88
Distances of industrial sites from . . . 0.13

Hierarchical level 0.88
Strategic role 0.88
Accessibility 0.88
Connectivity 0.88Sy

st
em

ic
V

Redundancy 0.88
Age—old age index 1.00

Education 0.88
Employment 0.88

Autonomy—% children and elderly 0.88So
ci

al
V

Immigrants and refugees 0.88

A Focus on Systemic Vulnerability

As remarked in Section 3, systemic vulnerability indicators require in-depth and
tailored-to-the-site analyses of features and roles of urban facilities and transport networks.
In the case study area, it has been analysed according to a set of indicators related to:

• Location, redundancy, accessibility, hierarchical levels and role in emergency phase of
urban facilities;

• Connectivity and redundancy of road and railway networks.

In particular, the hierarchical level of urban facilities has been defined according to the
area served of each facility (regional, municipal, neighbourhood). The same criterion has
been applied to the transport networks (e.g., a higher hierarchical level has been attributed
to primary roads in respect to secondary and tertiary ones). Moreover, the strategic role of
urban facilities has been defined according to their relevance in the emergency phase, in
that the maximum value has been assigned to the facilities directly involved in emergency
(e.g., hospitals, fire brigades, etc.). All this information can be easily collected from existing
spatial plans at provincial/municipal scales as well as by emergency planning tools.

Accessibility levels depend on the relative distances between urban facilities and
residential areas. The accessibility indicator refers to each HSU and has been calculated as
the minimum physical distance on the road network between each facility and the closest
residential areas.

Connectivity represents the degree of connection of each HSU to the primary road
and railway networks. Connectivity has been measured through the physical distance of
each HSU from the closest junction of the primary road network and the closest railway
station and its value increases as the mutual distance decreases.

Redundancy refers to both urban facilities and transport networks. The former takes
into account the presence of alternative facilities with a limited increase in travel time. The
latter considers the presence of alternative routes to the main one.

According to these indicators, the systemic vulnerability levels in the case study areas
have been defined as shown in Figure 9.
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Figure 9. Systemic vulnerability levels.

As remarked in Section 3, the output maps provide different outcomes. In detail,
comprehensive EV maps might allow prioritizing, according to a multi-hazard perspective,
“hotspot” areas that require urgent measures to reduce exposure/vulnerability. These
measures can be then outlined according to the output referred to the single EV maps, to
the single classes of exposed elements in respect to individual/multiple hazards. These
maps may support, for instance, risk-informed recovery and requalification strategies
capable of reducing physical vulnerability of residential areas or cultural heritage in
the face of seismic or flood events. It is worth noting that each output map may also
allow identifying “thematic hotspot” areas related to the considered topics (e.g., exposure,
physical, social, systemic vulnerability). For example, the systemic vulnerability map shows
“thematic hotspot” areas, exclusively related to the selected set of systemic vulnerability
indicators. These thematic hotspot areas differ from those identified by the Comprehensive
EV map (Figure 8) that takes into account all exposure and vulnerability indicators in a
multi-hazard perspective.

5. From Risk Knowledge to Risk-Informed Planning Strategies

As remarked above, planning strategies aimed at reducing multi-risk levels in urban
environments require detailed information on the vulnerabilities of exposed assets and
systems [3,9,10] that nowadays are often partially available, largely fragmented and difficult
to combine each other. Thus, the outlined methodological path represents a first attempt
to overcome the main shortcomings of available risk knowledge and to provide planners
with homogeneous and update information on the different risk dimensions. Moreover,
the “spatialization” of risk knowledge allows aggregating data and information at different
scales: all data and information related to each HSUs can be, in fact, easily scaled up
to municipal, provincial or even regional levels. Finally, the adoption of an indicator-
based approach provides planners with a constantly updatable baseline against which the
impacts of alternative planning choices on the overall levels of exposure and vulnerabilities
as well as on specific risk dimensions (e.g., physical or systemic vulnerability) can be
easily measured.
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As remarked in Section 2, nowadays, risk knowledge as well as risk reduction strate-
gies are mostly entrusted to sectoral authorities and tools (e.g., basin authorities, flood
management plans), while spatial plans generally collect and assemble available knowl-
edge without developing further analysis, and size their development choices to hints
and constraints provided by sectoral plans, without a proper assessment of the impacts
of alternative planning choices on current multi-risk levels and, namely, on exposure and
vulnerabilities features of the area at stake. To date, while knowledge frameworks that
planning tools are based on have been significantly enriched, including data and informa-
tion related to numerous environmental issues (e.g., consistency and quality of natural
resources), they still struggle to effectively embed risk knowledge. Moreover, adequate
tools aimed at evaluating the impacts of alternative planning strategies on existing multi-
risk levels are still often missing. Furthermore, the Strategic Environmental Assessment
(SEA), a mandatory tool all over Europe for a wide range of plans and programs, still
devotes limited attention to risk issues. While its crucial role in improving environmental
protection in the EU has been clearly recognized [49] and numerous scholars have empha-
sized over time its potential for better integrating risk and more recently climate issues in
spatial planning at different scales [50–53], SEA is still mostly focused on the impacts of
alternative planning decisions on natural resources with a limited attention to determine
whether they are likely to reduce/increase existing multi-risk levels.

Thus, even though the proposed methodology might represent a useful tool to support
risk-informed spatial planning strategies, “plan-making” processes should be adequately
revised to ensure a proper integration of risk issues in decision-making, with a particular at-
tention to the relationships among sectoral and spatial plans as well as to the improvement
of the current tools for plans and programs’ evaluation.

In particular, the provided screening tool might be particularly relevant to determine
whether urban regeneration policies are likely to have significant effects on existing expo-
sure and vulnerability levels. According to the goals set by the Agenda 2030 and in line
with the target of zero soil consumption by 2050, set by the European Commission [54],
nowadays, planning processes are mostly oriented to regenerate existing settlements, often
located in areas prone to multiple hazards. Hence, in the absence of an adequate multi-risk
knowledge base against which the impacts of alternative planning strategies can be mea-
sured, and namely of disaggregate information on exposure and vulnerabilities in the face
of different hazards, outlined strategies and measures may also result into an increase in
current exposure and vulnerability levels in these areas. Moreover, the assessment of the
likely impacts of alternative strategies and measures on current multi-risk levels would
also contribute to deduct the decisions related to risk reduction from the purely technical
domain to which they are generally entrusted and to favor, on the opposite, participatory
processes and shared decisions on conflicting planning choices aimed, for example, at
improving sustainability through the controversial practices of “densification” [55], which
may increase, in turn, exposure and vulnerabilities to existing hazards.

6. Conclusions

This contribution provides a first answer, certainly not exhaustive, to the priorities set
by the Sendai Framework and namely to the need of improving risk knowledge, by better
using already existing knowledge as well as by taking into account all risk components
(hazard, exposure and vulnerabilities), in a multi-risk perspective.

In detail, the research work has been addressed to set up a methodological path aimed
at developing a comprehensive exposure and vulnerability assessment in multi-hazard
urban environments, based on the significant outcomes so far provided by European
research projects as well as by scientific literature focused on multi-risk and, above all,
on vulnerability assessment. The methodological path has been tested on a case study
area, the Phlegraen Fields, a multi-hazard urban area located in the western part of the
metropolitan city of Naples, in Southern Italy.
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It is worth underlining that even though all the key steps of the methodological path—
hazards’ identification and codification, selection of exposure and vulnerability indicators
and their codification, normalization and spatialization, criteria for data aggregation to
carry out heterogeneous output maps—have to be calibrated from time to time in respect
to the geographical area at stake, it may represent a useful guide to better adapt existing
risk knowledge to planning needs, allowing the building up of a “flexible” knowledge,
capable of guiding and evaluating different planning strategies at different geographical
scales. As all data and information are referred to in HSUs, output maps can be carried
out in respect to HSUs or to their aggregations in larger units defined by administrative
boundaries (e.g., municipalities) or land uses (e.g., urban areas) or hazardous areas (e.g.,
volcanic zones). Moreover, the different output maps (single EV maps referred to each
indicator and to each hazard, EV maps referred to single classes of exposed elements and
related to each hazard, comprehensive EV maps) are suitable to inform and assess different
planning strategies: from new green corridors at a metropolitan/municipal scale, up to
retrofitting interventions at a neighborhood scale. Furthermore, the systemic vulnerability
map may represent a relevant guide to identify and strengthen the shortcomings of urban
facilities, to support both a more effective emergency management and a better functioning
of urban facilities in peace time.

However, the outlined methodological path also reveals some weaknesses: first of
all, in order to set up a screening tool easily achievable starting from a “soft” reprocessing
of data extracted from existing databases or at least through data elaboration into a GIS
environment, some fine-grained indicators that, according to selected scientific literature,
might be relevant in respect to specific hazards (e.g., ground-floors‘ usage, types of roofs)
have been neglected, as they require detailed in situ analyses. Furthermore, the relevance
of each indicator in respect to each hazard has been defined according to a binary approach
(yes/no), which does not highlight the different levels of importance that each indicator
may have in respect to each hazard. A more detailed assessment could be performed
through specific estimation methods (e.g., multicriteria analysis) that could represent one
of the future developments of the research work.

Finally, it is worth noting that the methodological path for a comprehensive exposure
and vulnerability assessment represents only a first step towards a comprehensive multi-
risk assessment. Further steps should devote more attention to the potential interactions
among the different hazards that may influence each other, arising complex chains of
secondary hazards, impacts and damage. However, the analysis of the mutual influences
among hazards and vulnerabilities would require a shift from an indicator-based method
to the development of risk scenarios.
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