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Abstract: COVID-19 is a terrible virus that has impacted human health and the economy on a global
scale. The detection and control of the pandemic have become necessities that require appropriate
monitoring strategies. One of these strategies involves measuring and quantifying the virus in water
at different stages of the Urban Water Cycle (UWC). This article presents a comprehensive literature
review of the analyses and quantifications of SARS-CoV-2 in multiple UWC components from 2020 to
June 2021. More than 140 studies worldwide with a focus on industrialized nations were identified,
mainly in the USA, Australia, and Asia and the European Union. Wastewater treatment plants were
the focus of most of these studies, followed by city sewerage systems and hospital effluents. The
fewest studies examined the presence of this virus in bodies of water. Most of the studies were
conducted for epidemiological purposes. However, a few focused on viral load and its removal using
various treatment strategies or modelling and developing strategies to control the disease. Others
compared methodologies for determining if SARS-CoV-2 was present or included risk assessments.
This is the first study to emphasize the importance of the various individual components of the UWC
and their potential impacts on viral transmission from the source to the public.

Keywords: COVID-19; urban water cycle; monitoring; epidemiology

1. Introduction

Coronavirus disease 2019 (COVID-19) is responsible for a disastrous pandemic that,
as of June on 2021, has resulted more than 3 million deaths and more than 180 million
infected people worldwide. SARS-CoV-2 that causes COVID-19 is characterized by its
efficient transmission via liquid droplets (saliva and nose), aerosols and surfaces that have
been touched by symptomatic or asymptomatic patients [1–3]. The virus can enter the body
through the eyes, nose or throat. A rapid growth in infections has been observed throughout
the world, with epicenters in Asia, Europe and North America. The pandemic is generating
abrupt and radical changes in global dynamics in terms of economic, social, environmental
and human health issues. The ongoing rise in infections, deaths and inadequate human
immune system responses highlights the importance of a careful evaluation of SARS-CoV-2.
In particular, evaluations should focus on the short- and long-term impacts on public
health, different viral transmission routes, and potential strategies for the prevention and
control of the virus [4–9].

According to the literature, the main transmission routes for other viruses are either
through direct contact or through microscopic droplets or aerosols generated from sneezes
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and the saliva of infected individuals [10]. Many reports have indicated the survival of a
variety of viruses during water treatment processes, including corona and enteroviruses.
The SARS outbreak in Hong Kong in 2003, where the infection of over 300 people was
linked to a faulty sewage system, proved that wastewater could be a significant source of
viral transmission. Also, different coronavirus survival times have been reported at various
stages of wastewater treatment processes, hence, recent publications and reports have
raised concerns about the possibility of SARS-CoV-2 spread via wastewater [11] and that
this could generate new transmission routes, such as faecal transmission, when ingested
orally after the discharge of wastewater into drinking water [11,12]. SARS-CoV-2 and its
transmission via water and wastewater requires more attention and research.

The objective of this article is to present a global review of the studies published
between 2020 and 2021, in which measurements of SARS-CoV-2 levels were carried out on
the different components of the urban water cycle. The aim is to establish and analyze the
usefulness of these information as an epidemiological and public health monitoring tool
for the control of the COVID-19 pandemics. The article is divided into three parts. First,
the presence of viral nucleic acid found in the feces of patients infected with COVID-19 is
discussed in order to show the main sources of SARS-CoV-2 RNA in wastewater. Second,
the concept and components of the urban water cycle are presented as well as the sources
of SARS-CoV-2 in wastewater. Finally, an analysis of the applications of SARS-CoV-2
measurement data in studies worldwide is performed.

2. COVID-19 and Its Presence in Human Faeces
2.1. Diarrhea and Its Association with COVID-19

Depending on the types of analyses carried out in different patients, the COVID-19
symptoms that are associated with the gastrointestinal system are nausea, vomiting, abdom-
inal pain, diarrhea and loss of appetite, all of which can also occur simultaneously [13,14].
According to the meta-analysis of international data conducted by D’Amico et al. [15],
found that the range of patients with diarrhea was between 2 and 50% and, when calculat-
ing an overall rate, the approximate value was 10% of patients with COVID-19.

However, when patients from China were excluded, that proportion was 18.3%. In
another study of hospitalized patients (39 studies, 8,521 patients), the pooled prevalence
for diarrhea was slightly higher at 10.4%. Overall, 5–20% of confirmed COVID-19 patients
experience diarrhea as one of their initial symptoms, suggesting that faeces are the main
vector for the virus to enter into wastewater treatment plants (WWTPs). Moreover, faeces
from the asymptomatic infected population may be another source of/virus in wastewater.

The dynamics between pathogenesis and diarrhea are not fully understood [15–17].
However, several authors have suggested that SARS-COV-2 infects human cells through
angiotensin-converting enzyme II (ACE2) [15,18–23]. Further research is needed to under-
stand the consequences of SARS-CoV-2 in faeces and its potential impact on urban water.

2.2. COVID-19 in Faecal Samples

A wide variety of studies have shown viral nucleic acids in faecal samples and anal
smears from patients with COVID-19. Some studies also recorded faecal measurements
from patients after recovery from COVID-19 and discovered the presence of viruses in their
faecal matter [24–27]. Table 1 shows some reports on the occurrence of the virus in patient
faecal samples.
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Table 1. Reported evidence of SARS-CoV-2 measurements in faecal samples.

Authors Country Number of Patients Comments

[26] China 73 The viral RNA test results remained positive in faecal matter forlonger than
in pharyngeal swab samples.

[28] China 305
Based on a comparison between two series of patients, there was a higher
positivity rate for the group with severe symptoms vs. those with mild
symptoms (94.6% vs. 82.5%)

[29] Singapore 18 Using PCR, the virus was detected in the faecal matter of four out of
eight patients.

[20] China 84 Faecal samples from a higher proportion of patients with diarrhea (69%)
were positive for virus RNA than from patients without diarrhea (17%).

[30] China 42

The presence of SARS-CoV-2 RNA in the faeces of COVID-19 patients was
not associated with gastrointestinal symptoms or disease severity.
Faecal samples from 67% of patients remained positive for viral RNA after
pharyngeal swabs were negative.

[31] USA 1 Analysis of faecal matter obtained on day 7 of the disease yielded
positive results.

[22] China 10
Rectal smears from eight children consistently tested positive even after their
nasopharyngeal tests were negative, increasing the possibility of faecal-oral
transmission.

3. Urban Water Cycle as Tool for SARS-CoV-2 Epidemiology
3.1. Urban Water Cycle

According to Peña-Guzmán et al. [32], the Urban Water Cycle (UWC) is the spatio-
temporal interaction between water and hydrological processes, as well as the supply,
treatment, distribution, consumption, collection, and reuse that is carried out in urban or
partially urban areas. Based on the interconnections and multiple processes that exist within
this cycle, many authors [11,33–38], have examined how SARS-CoV-2 can be monitoring
into urban waters, mainly wastewater and affluents.

As shown in Figure 1, traces of virus can enter the urban water cycle mainly through
the use of water by people infected with COVID-19. The traces in wastewater are associated
with the discharge of fluids or faeces from the infected population. Depending on the city
‘s sanitation infrastructure, wastewaters are discharged directly into the receiving water
bodies (e.g., surface waters) or sent to WWTPs. These WWTPs may or may not remove the
virus, depending on the treatment technology that is applied.

Figure 1. Movement of water flow within the urban water cycle in times of COVID-19.
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3.2. Wastewater and SARS-CoV-2

The introduction of SARS-CoV-2 into wastewater through human waste sources is a
global health concern during the current pandemic. Further, our limited understanding
of potential virus transmission through wastewater and the viability, persistence and
inactivation of the virus using current treatment processes lead us to question the current
water quality and wastewater management strategies [39]. This suggests the need for
precautions and the strict control of faeces of infected patients with the coronavirus (mainly
in hospitals). At the same time, there has been increased management, measurement
and monitoring of wastewater quality related to viral presence [40,41]. This is because
in wastewater could result in high concentrations of viral RNA in the receiving water
bodies if the wastewater is not adequately treated [42]. Hence, to help contribute to
the monitoring of the virus across the globe, academic and governmental communities
(mainly in developed countries) have initiated strategies that seek to report and quantify
the presence of the virus in wastewater and surface water sources. Multiple approaches
have been implemented, such as risk assessments of contact with contaminated water,
quantification of genetic chains, determination of SARS-CoV-2 genetic chain, detection
methodologies, evaluation of treatment efficiencies and epidemiological assessment and
surveillance. These approaches are being used to obtain additional information on the virus,
to better understand its presence and control its transmission through wastewater [43–48].
According to [49], viral RNA can be detected in wastewater, even when only one person
in a population of 10,000 is infected with SARS-CoV-2. This emphasizes the high levels
of potential for viral transmission through wastewater and the importance of the high
sensitivity of current measurement methods. A total of 142 studies were found in scientific
articles in 38 different countries (Table 2). This table shows the country where the study
was conducted, the component of the UWC where the measurements of SARS-CoV-2 are
carried out, and the specific objective of the study. The search for studies was carried out
between January 2020 and June 2021 in scientific article databases.

Table 2. Analysis of SARS-CoV-2 in components of the UWC.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[50] Argentina X X

Wastewater
from a

pumping
system and a
water surface

Identify the presence
of SARS-CoV-2 in

surface waters and
use the results as an
epidemiological tool.

[51] Argentina X
Wastewater

of one
WWTP

Compare various
methods to

determine RNA
SARS-CoV-2.

[43] Australia X X

Wastewater
of two

WWTPs and
non-treated
wastewater

Evaluate the
presence of

SARS-CoV-2 in
wastewater and

apply results as an
epidemiological tool.

[52] Australia X
Wastewater

of one
WWTP

Comparison of
decay of

SARS-CoV-2 of three
types of wastewaters

(treated and
non-treated).

[53] Australia X
Wastewater

of one
WWTP

Improve methods to
detect SARS-CoV-2.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[54] Australia X
Wastewater

of three
WWTPs

Evaluation as an
epidemiological tool

[55] Australia X

Wastewater
of three
sewer

networks

Evaluation of new
method for

SARS-CoV-2
measurement in

wastewaters

[56] Bangladesh X Wastewater
from a sewer

Evaluation of the
genetic load in
sewers waters

[57] Belgium X
Wastewater
from four
hospitals

Evaluation of a
measurement kit for

SARS-CoV-2 in
hospital wastewaters

[58] Belgium X
Wastewater

of eight
WWTP

Comparison of
bioanalytics

methods for RNA
SARS-CoV-2

analysis.

[59] Brazil X Wastewater
at the sewer

Use as an
epidemiological tool
to evaluate the virus

presence in
wastewaters.

[60] Brazil X X X

Wastewater
of two

WWTPs,
eight sewer

locations and
wastewater

of two
hospitals

Use as an
epidemiological tool
to evaluate the virus

presence in
wastewaters.

[61] Brazil X
Wastewater

of two
WWTPs

Risk evaluation for
WWTP workers

using QMRA.

[62] Brazil X
Wastewater

of two
WWTPs

Risk evaluation for
WWTP workers

using QMRA.

[63] Brazil X X

Wastewater
of two

WWTPs, 17
sewer

specific
locations

Use as an
epidemiological tool
to evaluate the virus

presence in
wastewaters.

[64] Brazil X X X

Wastewater
of one

WWTP, 17
sewer

networks
and a river

Evaluation of
presences of

SARS-CoV-2 in
different types of

waters.

[65] Canada

Wastewater
of one

WWTP
(treatment
processes)

Comparison of
methods to identify

proteins of
SARS-CoV-2 in
wastewaters.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[66] Canada X

Solids at the
sieving

system and
primary

treatment at
a WWTP

Detection of
SARs-V-2 RNA en

solids resulting from
primary clarification

of wastewaters

[67] Canada X
Wastewater

of five
WWTPs

Detection of
Genomic variants of

SARS-CoV-2 in
wastewaters based

on PCR

[68] Canada X
Wastewater

of one
WWTP

Evaluation of
inter-laboratory

result variability for
SARS-CoV-2

analysis.

[69] Canada X X

Wastewater
of sewer

network and
lake

Use as an
epidemiological tool
to evaluate the virus

presence.

[70] Canada X
Wastewater

of three
hospitals

Evaluation of a
relationship between

SARS-CoV-2
dynamics COVID-19

related
hospitalizations.

[71] Canada X
Wastewater

from two
hospitals

Evaluation of the
prevalence of

SARS-CoV-2 contact
surfaces and

wastewaters of two
hospitals.

[72] Canada X X

Wastewater
of one

WWTP and a
sewer

network

Evaluation and use
of a new extraction

method for
ARS-CoV-2 analysis.

[73] Chile X
Wastewater

at three
sewer points

Evaluation of
microbiome profiles
using nanopores and

their relationships
with SARS-CoV-2.

[74] Chile X
Wastewater
at two sewer

points

Use as an
epidemiological tool
to evaluate the virus

presence.

[75] China X X X

Wastewater
of two

WWTPs,
rivers, lakes

and 24
hospitals

Use as an
epidemiological tool
to evaluate the virus

presence.

[76] China X

Wastewater
from one
hospital

following the
treatment

Evaluation of the
viral load of RNA
SARS-CoV-2 of a

hospital septic tank
and and its

treatment by
disinfection.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[77] China X X

Wastewater
of four

WWTP and
six hospitals

Use as an
epidemiological tool
to evaluate the virus

presence.

[78] Czech
Republic X Wastewater

of 33 WWTPs

Use as an
epidemiological tool
to evaluate the virus

presence.

[57] Denmark X X

Wastewater
of 11 WWTPs

and two
hospitals

Evaluation of a kit
for SARS-CoV-2

analysis in hospital
wastewaters and

WWTPs.

[79] England X
Wastewater

of one
WWTP

Use as an
epidemiological tool
to evaluate the virus

presence.

[80] England X
Wastewater

of one
WWTP

Use as an
epidemiological tool
to evaluate the virus

presence.

[81] England X Wastewater
of six WWTP

Use as an
epidemiological tool
to evaluate the virus

presence. And
evaluation of RNA

removal in treatment
processes.

[82] Ecuador X River waters

Evaluation of
SARS-CoV-2

presence in surface
waters.

[83] Finland X
Wastewater

of two
WWTPs

Evaluation of
characteristics and

stability of
SARS-CoV-2 RNA at
different laboratory

temperatures.

[84] France X
Wastewater

of one
WWTP

Use as an
epidemiological tool
to evaluate the virus
presence based on
PCR (RT-qPCR).

[85] France X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters.

[57] France X
Wastewater

of one
WWTP

Efficiency evaluation
of a kit for
measuring

SARS-CoV-2
concentrations in
wastewaters of

WWTPs.

[86] France X

Wastewater
from two

sewer
networks

Correlations
between RNA
SARS-CoV-2

registered positive
cases.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[87] France X Wastewater
of 10 WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[88] Germany X
Wastewater

of nine
WWTPs

Comparison of
SARS-CoV-2
measurement

methods.

[89] Germany X
Wastewater

of two
WWTPw

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[90] Germany X
Wastewater

of one
WWTP

Evaluation of
methods for the

detection of
SARS-CoV-2 for

wastewaters.

[91] Germany X X

Wastewater
of two

WWTPs and
a sewer
network

Detection of new
variants of

SARS-CoV-2.

[92] Greece X

Wastewater
of 1 WWTP
and analysis

by sewer
system

modelling

Development of a
mathematical model

at different spatial
levels, using

physicochemical
parameters to
rationalize the
quantitative

measurements of
RNA SARS-CoV-2.

[93] Greece X
Wastewater

of one
WWTP

Use different
alternative

methodology to
detect SARS-CoV-2.

[94] Hong
Kong X X X

Wastewater
of one

WWTP, a
sewer

network and
a hospital

sewer

Use as an
epidemiological tool
to evaluate the virus

presence.

[95] Hungary X
Wastewater

of three
WWTPs

Use as an
epidemiological tool
to evaluate the virus

presence.

[96] India X
Wastewater

of six
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[34] India X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[45] India X

Wastewater
of one

WWTP (virus
decay was
estimated)

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[97] India X X

Wastewater
of six

WWTPs, two
hospital
effluents

Correlations
between

SARS-CoV-2 levels
in wastewaters and
positive COVID-19

cases

[98] India X

Water of five
lakes from

urban,
peri-urban
and rural

zones

Evaluation of
SARS-CoV-2

presence in lakes
associated with

different land uses.

[99] India X X

Wastewater
of one

WWTP and
eight

wastewater
pumping
stations

Use as an
epidemiological tool
to evaluate the virus

presence.

[100] India X X X

Wastewater
of six

WWTPs,
wastewater
pumping

stations and
water

surfaces

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[101] India X
Wastewater

of two
WWTPs

Comparison of
SARS-CoV-2

removal by two
wastewater
treatments.

[102] India X
Wastewater

of two
WWTPs

Evaluation of
treatment efficiency

removal of
SARS-CoV-2

[103] India X
Wastewater
of a sewer
network

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[104] Iran X
Wastewater

of two
WWTPs

Evaluation of the
presence of

SARS-CoV-2 in
wastewater and air

samples and
exposure risk

assessment for
WWTP workers

using QMRA.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[105] Iran X
Wastewater
of a sewer
network

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[106] Israel X X X

Wastewater
of 16

WWTPs, one
hospital
effluent,
seven

locations at
the sewer

system

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[107] Israel X
Wastewater

of two
WWTPs

Evaluation of RNA
SARS-CoV-2

behaviors in an
activated sludge

treatment.

[108] Italy X X

Wastewater
of three

WWTP and
three

receiving
bodies

Quantification of
RNA SARS-CoV-2 in

wastewaters and
source waters for
epidemiological

applications.

[109] Italy X

Wastewater
before

treatment of
three WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[110] Italy X
Wastewater

of five
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[111] Italy X
Wastewater

of two
WWTPs

Evaluation of
various methods for

detection of
SARS-CoV-2 in
wastewaters.

[112] Italy X X

Wastewater
of two

WWTPs and
four

pumping
locations of a
sewer system

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[113] Italy X
Wastewater

of eight
WWTPs

Alternative methods
for measurement of

SARS-CoV-2.

[114] Japan X X

Wastewater
of one

WWTP and a
river

Quantification of
RNA SARS-CoV-2 in

rivers receiving
wastewater
discharges.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[48] Japan X
Wastewater

of three
WWTPs

Alternative methods
for measurement of

SARS-CoV-2.

[115] Japan X
Wastewater

of four
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[116] Mexico X
Wastewater

of two
WWTPs

Correlations
between RNA

SARS-CoV-2 and
registered positive

cases.

[117] Netherlands X
Sewer system
wastewater
in six cities

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[118] Netherlands X
Wastewater

of eight
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[119] Netherlands X Sewer system
wastewater

Emplean una
metodología

alternativa para la
detección de

SARS-CoV-2 con
fines

epidemiológicos.

[120] Netherlands X
Sewer system
wastewater
of an airport

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[121] Pakistan X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[122] Qatar X
Wastewater

of five
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[123] Russia X

Ten
inspection
boxes for

wastewater

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[124] Saudi
Arabia X

Wastewater
of one

hospital

Correlations
between

SARS-CoV-2 genes
hospitalizations.
Included gene

detection in septic
tank and activated
sludge treatment

effluents.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[125] Saudi
Arabia X

Hospital
wastewater
effluent (at
the septic
tank and
biological
treatment)

Verification of the
efficiency of the

results as a tool for
an epidemiological

model. Also, the
capacity of a water
treatment system is

evaluated.

[126] Serbia X
Three points

in river
waters

Evaluation of RNA
SARS-CoV-2 levels

in a river before and
after a discharge of

treated water from a
WWTP

[127] Singapore X Local sewer
network

Use of wastewaters
to evaluate

COVID-19 in a
residential building.

[128] Slovenia X
Non-treated
wastewater
of a hospital

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[129] South
Africa X

Wastewater
of four

WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[130] South
Africa X

Wastewater
of four

WWTPs

Quantification of
RNA SARS-CoV-2 in
4 WWTP influents.

[131] Spain X
Wastewater

of three
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological
applications and

evaluation of tertiary
treatment impacts

on SARS-CoV-2
removal.

[132] Spain X Wastewater
of six WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[133] Spain X
Wastewater

of one
WWTP

Quantification and
behavior of RNA
SARS-CoV-2 in

water and sludge of
a WWTP.

[134] Spain X
Wastewater

of two
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[135] Spain X
Wastewater
of a sewer
network

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[136] Spain X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[137] Spain X
Wastewater

of two
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[138] Spain X Wastewater
of 32 WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.
Evaluation of a

technique to analyze
SARS-CoV-2.

[139] Spain X Wastewater
of 32 WWTP

Evaluation of the
relationship between

positive cases of
COVID-19 and

SARS-CoV-2 levels
in wastewaters.

[111] Sweden X
Wastewater

of three
WWTP

Evaluation of
different methods

for measuring
SARS-CoV-2 in
wastewaters.

[140] Sweden X X

Wastewater
of one

WWTP and
five locations
at the sewer

system

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[141] Switzerland X
Wastewater

of three
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[142] Switzerland X
Wastewater

of one
WWTP

Method evaluation
for the detection of

SARS-CoV-2 in
wastewaters

[143] Turkey X X

Wastewater
of seven

WWTPs and
manholes

Evaluation of
SARS-CoV-2

presence in sludges
from wastewater

treatment.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[144] UAE X X

Wastewater
of eleven
WWTPs,
manholes
and sewer
pumping
systems

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[145] UAE X X

Wastewater
of three
WWTPs,

sewer system
and nine
pumping
systems

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[146] USA X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[147] USA X
Wastewater

of one
WWTP

Use as a tool for
determination of

SARS-CoV-2
genome.

[148] USA X
Wastewater

of one
WWTP

Use as a tool for
determination of

SARS-CoV-2
genome.

[149] USA X

Solids from
sedimenta-

tion primary
treatment of

a WWTP

Evaluation of the
presence of

SARS-CoV-2 in
sludge in a WWTP.

[150] USA X
Samples from

four sewer
interceptors

Determination of
different genotypes

of SARS-CoV-2.

[151] USA X
Wastewater

of one
WWTP

Description of an
analytical technique

to detect and
quantify genetic

material of
SARS-CoV-2

[152] USA X
Wastewater

of nine
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[153] USA X
Wastewater

of two
WWTP

Used of
concentration

methods to evaluate
SARS-CoV-2 RNA.

[154] USA X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[155] USA X X

Wastewater
of one

WWTP and a
hospital

Comparison and
validation of

molecular
techniques for
monitoring of

SARS-CoV-2 in
wastewaters.

[156] USA X
Wastewater

of one
WWTP

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[157] USA X

Wastewater
of three

interceptor
sewer

networks

Use of SARS-CoV-2
to anticipate

pandemic infection
peaks.

[158] USA X

Wastewater
from a local

sewer
network

Evaluation of an
alternative method

to detect
SARS-CoV-2.

[159] USA X X
Wastewater

of six
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[160] USA X
Wastewater

of two
WWTPs

Comparison of
methods conducted
in 32 laboratories to

identify
SARS-CoV-2.

[40] USA X

Wastewater
of two

WWTPs and
solids from
sedimenta-

tion primary
treatment

Evaluation of
SARS-CoV-2 in

WWTP.

[161] USA X

Wastewater
from a

university
sewer

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[162] USA X
Wastewater

of one
WWTP

Evaluation of
different methods
for SARS-CoV-2

analysis in
wastewaters and

sludge.

[163] USA X X

Wastewater
of 10 WWTPs

and eight
locations of
the sewer

system

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[164] USA X
Wastewater

of two
WWTPs

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[165] USA X

Wastewater
from a local

sewer
network

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[166] USA X Wastewater
of 12 WWTPs

Determination of
optimal monitoring

frequency for
epidemiological

purposes.

[167] USA X

Wastewater
from a

university
sewer

network

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[168] USA X X X

Wastewater
of two

WWTPs, one
river, one
lake, three

water
treatment
plants *

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[169] USA X X

Wastewater
of five

WWTPs and
one point in a

local sewer
system

Quantification of
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[170] USA X
Settled solids
from seven

WWTPs

Comparison of
recorded CO-VID-19

rates with
SARS-CoV-2

measurements and
generation of a mass

balance model
between solids and
SARS-CoV-2 RNA.

[142] USA X
Settled solids

from one
WWTP

Valuation of
detection methods
for SARS-CoV-2 in

wastewaters.

[171] USA X
Wastewater

of two
WWTPs

Variability of RNA
SARS-CoV-2 WWTP

during different
periods of the

pandemic.

[172] USA X

Wastewater
from a local

sewer
network

Correlation between
COVID-19 in saliva
RNA SARS-CoV-2

levels in
wastewaters
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Table 2. Cont.

Author Country WWTP Hospital
Effluent

Sewer
Network

Surface
Water

Drinking
Water

Component
of the UWC Study Objective

[173] USA X

Wastewater
from a local

sewer
network

Use as an
epidemiological tool
to evaluate the virus

presence.

[174] USA X Local sewer
network

Quantification of de
RNA SARS-CoV-2 in

wastewaters for
epidemiological

applications.

[175] USA X
Settles solids

from one
WWTP

Evaluation of RNA
SARS-CoV-2 in

solids.

[176] USA X X

Wastewater
of a WWTP

and
wastewater

catchment in
40 states

Use as an
epidemiological tool
to evaluate the virus

presence.

[177] USA X Wastewater
of 39 WWTP

Use as an
epidemiological tool
to evaluate the virus

presence.

[178] USA X Wastewater
of 39 WWTP

Use as an
epidemiological tool
to evaluate the virus

presence.

[179] USA X Wastewater
of 39 WWTP

Use as an
epidemiological tool
to evaluate the virus

presence.

[180] USA X
Wastewater

of six
WWTPs

Comparison of
different methods
for SARS-CoV-2
quantification.

[181] USA X Wastewater
of 14 WWTPs

Use as an
epidemiological tool
to evaluate the virus

presence.

[182] USA X
Wastewater

of nine
WWTPs

Use as an
epidemiological tool
to evaluate the virus

presence.

* Concentrations are not detected in drinking water and in surface source waters. For this reason, analysis of these UWC components is
not included.

4. Analysis for Each UWC Component
4.1. Wastewater Treatment Plants (WWTPs)

As indicated in Table 2, most studies have reported the presence of the virus in WWTPs,
either in wastewater entering the plant, in effluents or at different stages of the treatment
processes. These studies account for 84% of the reported cases. Additionally, more than
50% of the WWTP component measurements were carried out in more than two WWTPs
that were located in different cities in the same country. One of the main objectives for this
type of monitoring is to use WWTPs as an epidemiological surveillance system. According
to [183], WWTPs capture the viral loads of 104 to 106 individuals in a single sample,
which facilitates spatial analyses and accelerates epidemiological investigations. Hence, the
obtained biological measurements (quantity and occurrence) of SARS-CoV-2 from WWTPs
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could reflect the community’s health and act as an indirect population-level diagnostic tool.
Indeed, the study of WTPs by [152] allowed them to identify growth trends in viral loads
according to study area and analysis time, which allows government entities to exercise
specific epidemiological control measures. On the other hand, Kumar et al. [34], evaluated
the temporal variation of COVID-19 occurrence in India. This information could be used
for controlling the growth of the virus in wastewater. Results from Ahmed et al. [43],
Trottier et al. [85], Randazzo et al. [131], Medema et al. [117], Hasan et al. [144] and
Wurtzer et al. [84], among others, led to the conclusion that these analyses could generate
early warnings about the presence of the virus that include individuals with mild and
no symptoms.

In addition, the wastewater component of the UWC makes it possible to understand
the behavior of SARS-CoV-2 and the capacity of the WWTPs to eliminate this virus. Wastew-
ater effluent discharges generally flow into receiving water bodies that are then used as
drinking water supply sources for cities located downstream within the watershed. In
some cases, these waters are reused for other purposes [184], creating a public health
problem [185,186]. The removal of SARS-CoV-2 from wastewaters was evaluated by West-
haus et al. [88]. They observed that while three conventional activated sludge treatment
plants did not efficiently remove SARS-CoV-2, ozonation treatment improved the removal
performance. Besides, Balboa et al. [187], Randazzo et al. [131] and Rimoldi et al. [108]
found that the removal efficiency was 89% after the secondary treatment and 100% after the
tertiary treatment. This suggests that each WWTP’s efficiency at removing the virus mainly
depends on the type of treatment process it applies. Thus, evaluating each treatment
process of WWTP would allow a better understanding of viral elimination in wastewater.

Studies on sludge and the wastewater that results from WWTPs (screening, primary
and secondary sedimentation) make it possible to evaluate the risks associated with the
handling of these media and the consequent health impacts due to the virus’s ability to
survive from hours to days in wastewater [66,149,188]. For example, Zaneti et al. [61,62]
used quantitative analyses with various scenarios to determine the likelihood of health
risks for WWTP workers and concluded that there is a need to create protection protocols
and develop training and preparation measures for municipal WWTP personnel. Bal-
boa et al. [187] observed that the secondary treatment sludge did not contain SARS-CoV
chains. However, they found high viral loads in the primary treatment sludge. The en-
veloped virus’s high affinity could explain this for biosolids which leads to viral retention
in sludge. Hence, the higher solid content in the primary sludge retains more viral particles
compared to the secondary sludge. Research on sludge allows for confirming or refuting
studies to be carried out on wastewater from WWTPs (as the influent). Finally, the poor or
lack of wastewater treatment facilities in underdeveloped or developing countries poses a
greater risk to public health.

Researchers studied the production of microbial aerosols and their health impacts on
plant operators during WWTP processes [38,189,190]. Recent publications have proved
that COVID-19 is highly stable in aerosols (viruses live for several hours) and on surfaces
(viruses live for several days) [1]. Hence, the microbial aerosol exposure of workers during
WWTP processes needs to be addressed to create safe work environments. Balboa et al.
(2020) and other studies did not find virus chains in the secondary effluents (<11%), reduc-
ing the risk of aerosol production during the aeration process. However, the preliminary
results indicate a need to expand these types of studies, both in treatment systems and in
different components of the UWC [46,190]. A survey developed by Dada and Gyawali [191]
where online data on WWTP characteristics in New Zealand were collected (without mea-
surements, therefore not included in Table 2) provides further evidence on aerosolized
viral exposure. The researchers in this study characterized exposure to SARS-CoV-2 via
inhalation and determined it to be low. However, Gholipor et al. [104], observed a high risk
in WWTP workers due to the exposure to bioaerosols. The measurement of RNA chains at
every possible step in WWTPs should be considered in order to control the dissemination
of viruses in the WWTP environment.
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4.2. Sewer Systems

Sewage that leaks into surface water might enable virus transmission through airborne
spray and enter drinking water systems. Therefore, sewage networks represent the second
most crucial component of the UWC and are featured in the greatest number of studies on
SARS-Cov-2 (24%). The most effective use of the results obtained from sewage network
samples is a potential epidemiological monitoring tool. This approach is called wastewater
epidemiology (WBE), which allows for the development of early warning monitoring
systems [183,192]. Gonzales et al. [152], Curtis at al. [156], Kuryntseva et al. [123], Fan-
garo et al. [59], Betancourt et al. [161] and Colosi et al. [155], among others, have proposed
epidemiological models and analyses of growth rates according to the study area and
temporalities. These proposed models and methodologies have made it possible to under-
stand the continuity, behaviour and growth of the virus in a given population [56,193,194].
Additionally, this kind of study provides reliable information on the behaviour of the virus
in asymptomatic patients and allows researchers to determine the number of undiagnosed
infections in a population [192]. These studies can also help evaluate the impacts of the
sanitation measures that are recommended by public health authorities [163]. It is impor-
tant to mention that WBE studies in developing countries have shown great potential for
epidemiological surveillance and control tools. For example, Iglesias et al. [50] determined,
with high reliability, the changes in the prevalence of COVID-19 in a marginal community
in Argentina, even with low coverage of sewage systems. This study illustrated that in
developing countries where COVID-19 tests are limited, this web/larger-scale approach is
a useful decision-making tool for public health authorities.

Other authors have proposed monitoring programs to understand and identify the
behaviour of the virus in sewage systems. For example, a study by Petala et al. [92]
proposed a mathematical model that looked for possible effects of SARS-CoV-2 RNA based
on commonly measured parameters, such as dissolved oxygen and total suspended solids,
to explain the behaviour of the virus in the pipes of a sewage system. It is important to
expand the studies by including parameters such as temperature and pH, among others,
which may impact the survival time of the virus in wastewater [195]. Previous studies
of other SARS-like viruses showed that at 4 ◦C, the virus has a longer survival time
compared to at 20 ◦C [196]. In the case of the SARS-CoV-2 viral genome, survival was
detected at higher ambient temperatures (above 40 ◦C) in wastewater. Further research
is needed to understand the effect of environmental parameters on the persistence of the
new SARS-CoV-2.

Furthermore, authors such as Scott et al. [173], Crowe et al. [172] and Gibas et al. [167]
conducted measurements on educational sectors (university and colleges) and Wong et al. [127]
evaluated the trend of RAN SARS-CoV-2 in wastewater from a residential building to eval-
uate the temporal epidemiological behavior and identify and prioritize control strategies.
This opens the door for the sectorized application and prioritization of different sectors,
since it allows to evaluate the feasibility of the epidemiological strategies elaborated by
local authorities or the sanitary measures adopted by the populations.

4.3. Surface Waters/Groundwater

Similar to WWTPs and sewage systems, SARS-CoV-2 monitoring in surface waters
also indicates that the virus is transmitted from WWTPs to natural water sources. Often, un-
treated wastewater is discharged into the surface water (river, lakes), affecting groundwater
sources. This is especially relevant in low-income countries and regions, including rural
and peri-urban communities where untreated surface and groundwater sources are often
directly used for drinking water. Surface water monitoring in low-income/developing
countries requires more attention to control the potential risk of community spread of
COVID-19. To date, surface waters have mainly been measured for viral loads, focusing on
the possible use of these measurements as an epidemiological tool. According to Guerrero-
Latorre et al. [82], the viral loads that were measured suggest that the number of people
infected in the city of Quito are likely higher than that reported in the official data. This
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indicates the need to expand epidemiological data. Additionally, the lack of wastewater
treatment in the city led to higher source water viral loads compared to other studies in
which WWTPs were utilized. Rimoldi et al. [108] observed the same situation in Italian
surface watersheds, where they found high viral loads in three rivers due to wastewater
that was not treated or inefficiently treated or from combined sewage overflows in those
rivers. The same types of evaluations were performed by Haramoto et al. [114] in rivers
in Japan and by Zhao et al. [75] in rivers and lakes in China and found no positive values
for viral load were observed in these water bodies, which can likely be explained by the
presence of WWTPs in these study areas.

4.4. Wastewater from Hospitals

Wastewater from hospitals presents serious environmental and public health risks due
to the presence of high concentrations of medical waste. In addition, the presence of SARS-
CoV-2 in hospital wastewater poses additional risks of COVID-19 transmission [75,106].
Studies have explored the efficiency of the different technologies to treat this wastewater.
Zhang et al. [76] found that viral RNA was removed after a preliminary disinfection treat-
ment with sodium hypochlorite. However, after disinfection, SARS-CoV-2 RNA was found
in the septic tank effluent, likely due to the release of viruses embedded in faecal particles.
The high organic content and solid compounds in faeces decrease the efficiency of the
treatment, which therefore requires an increase in hypochlorite doses in the septic tank
to achieve complete viral elimination. Similarly, Arora et al. [97] showed the efficiency of
sodium hypochlorite as a virus treatment solution in hospitals. These results demonstrate
the need for optimized disinfection treatment systems that are effective at disinfecting
wastewater from hospitals. Appropriate disinfection treatments and/or alternatives should
be considered in prevention protocols to control COVID-19 transmission. Additionally,
in developing countries where there are no WWTPs, it is necessary to implement treat-
ment measures that reduce viral loads in sewage systems or water sources that receive
sewage discharge.

Also, authors such as Hong et al. [125], Xu et al. [94] and Arora et al. [97] reported
the use hospital effluents as pilot studies for the quantification of viral loads; based on
the number of patients who have been admitted with CO-VID-19, models that reduce
the variability and uncertainty of the relationships between the loads and the number of
infected are elaborated. These models can then be applied to larger spatial scales.

4.5. Benefits and Outcomes of Monitoring the Different UWC Components

Based the literature review carried out, Table 3 presents benefits and outcomes associ-
ated with the monitoring of each UWC component.

4.6. Spatial Analysis

The country with the highest number of reported studies that examine SARS-CoV-2
in the UWC is the USA with a total of 39 (28%), followed by India with 10 (7.1%), Spain
with nine (6.4%), Canada with eight (5.7%) Italy and Brazil with six (4.2% individual and
8.4% by two countries), Australia, France and Germany with five (3.5% individually, and
10.5% by three countries), the Netherlands with four (2.8%). Countries such as China,
Japan and England with three studies each and other countries with one or two studies
represent a total of 24.8%. It is important to emphasize that some studies involved multi-
country measurements showing the potential of collaboration networks that facilitate the
monitoring of the pandemic worldwide. Figure 2 presents the global distribution of the
reported studies on SARS-CoV-2 measured in the UWC.
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Table 3. Benefits and Outcomes of Monitoring the Different UWC Compo.

Component of UWC Benefits Outcomes

Wastewater treatment
plant

High research opportunities, due to the
variability of existing treatments and

the combinations that can be generated.

Allows monitoring of solids generated
in primary and secondary treatments,

where highly reliable results are
obtained.

Relevant for epidemiological control
studies, since the wastewater
contributing areas are known

facilitating SARS-CoV-2 evaluations in
conditions where it is not possible to

monitor various locations of the sewer
network.

Allow to observe the dynamics of viral
loads (growth and decay), which is
useful for epidemiological analysis

purposes.

In combined sewer
networks the dilution rate
can be very high, which

could generate variability
in the measurements.

Hospital efluent

High research opportunities, due to the
variability of existing hospital water

treatments.
Optimal control location for

quantification and establishing
relationships between viral loads and

number of infected by COVID-19.

Does not allow a wide
spatial scale to be

considered for
epidemiological

surveillance strategies.
Does not allow to identify
areas with asymptomatic

infected persons

Sewer network

Opportunity to evaluate specific areas,
such as educational centers, residential,

commercial and industrial areas,
among others, which allows the

development of very specific
epidemiological surveillance strategies.
Allows to evaluate the behavior and the

spatio-temporal dynamics in large
wastewater drainage areas.

High opportunity to expand research to
improve knowledge about the behavior

of the pandemic, and on the
environmental alterations of

SARS-CoV-2 at different spatial and
temporal scales.

In combined sewer
systems, the dilution rate
can be very high, which

generates variability in the
measurements.

Surface Water

Allows identifying the dynamics of
viral loads, which could be used as an

epidemiological tool.
Many watersheds are bordering

between cities, provinces (states) and
countries, which increases the

opportunities to conduct
epidemiological evaluations at large

scales.

In waterbodies receiving
large number of

wastewater discharges, it
is very difficult to identify
the contributing areas of
the viral loads, since it’s
hard to disaggregate the
measured concentrations

of SARS -CoV-2-

According to Figure 2, high concentrations of studies were conducted mainly in North
America, Europe, Oceania, and Asia. In Latin America, studies have been carried out in
Brazil, Chile, Argentina, Ecuador and Mexico. In Africa only one study was reported in
South Africa. This distribution of studies indicates that most epidemiological monitoring
in wastewater or natural waters have been conducted in highly industrialized countries.
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Figure 2. Global map of SARS-CoV-2 measured in UWCs by countries.

It is important to mention that the absence of investigations and measurements in
wastewater, mainly in Africa, Central America and parts of Latin America, is due to
relatively low sanitation coverage and limited capacity to diagnose infection [120]. It
is also worth noting that according to the United Nations in 2017, 80% of the wastewa-
ter worldwide (>95% in some developing countries) is discharged into receiving water
bodies without prior treatment or with little preliminary treatment, which poses a signif-
icant challenge for these countries in terms of water pollution and monitoring of public
health [197,198].

The low coverage of sanitation and wastewater treatment, the shortage of certified
laboratories and the low financial investments in public health in developing countries [199]
indicate that monitoring SARS-CoV-2 for epidemiological purposes is a huge challenge.
It is thus urgent to provide these countries with the required infrastructure and human
resources as well as with the scientific capacities to implement monitoring of SARS-CoV-2
for epidemiological surveillance purposes.

5. Conclusions

The SARS-CoV-2 virus has generated huge numbers of infected people and unfortu-
nately, has resulted in more than 1.65 million deaths worldwide. Most measurements and
quantification efforts focus mainly on individuals who are currently infected. However,
new studies based on wastewater epidemiology are increasingly being reported. An ur-
ban water cycle is a useful tool that allows for the expansion of integral management of
urban water resources. Additionally, wastewater epidemiology can be used to identify
interconnections between water sources and discharged pollutants during the various
processes and at individual components of the system. These characteristics make this
monitoring approach for COVID-19 in UWCs a vital tool for epidemiological monitoring
and control studies and is quickly gaining popularity worldwide. This approach comes
with a high benefit-to-cost ratio and can provide temporal and spatial estimates of the
number of infected individuals in a given population [34,117,200].

Patients infected with COVID-19 can discharge SARS-CoV-2 in their faeces, which
allows us to use wastewater and surface waters to monitor viral loads. The impact of SARS-
CoV-2 in wastewater and surface water on the environment and on public health compels
thorough research to assess and manage the associated risks [201]. It is also necessary to
expand our understanding of the behaviour of the virus in wastewater. We need to be able
to estimate the impact that characteristics and conditions of the environment and water
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(e.g., pH, temperature, light exposure, the concentration of solids, dissolved oxygen and
organic matter) have on the survival of the virus [33,202]. These studies help to determine
the conditions that favor environmental transmission. They are also incredibly important
since large amounts of untreated wastewater are discharged into surface waters, which are
then used in agriculture, fishing and recreational activities [185,203].

The diverse techniques used for the detection and quantification of SARS-CoV-2 levels
have shown high efficiency when used as epidemiological monitoring tools. However, it is
important to mention that differences in measurements can be observed in their quantifica-
tion, due to the characteristics of each test. Public health authorities must take into account
these differences and their possible impact for epidemiological decision-making [204,205].
Therefore, it is essential to continue the improvement of methods and procedures for the
detection of SARS-CoV-2 in the different components of the UWC. In addition, it is essential
to develop new methodologies that extend the knowledge and facilitate the massification
of the application of epidemiological studies [188]. Developing conventional and robust
techniques allows for the extrapolation and large-scale application of epidemiological
studies using wastewater, facilitating their wide application and reducing technical and
conceptual errors, as well as economic costs.

The objective of the measurements is to quantify the concentrations of SARS-CoV-2
in UWC waters as a public health tool. New research opportunities must be generated
as a result of such monitoring. It is essential to identify the behavior of SARS-CoV-2
in the different types of wastewaters (residential, commercial, industrial, institutional,
etc.), and evaluate the relationships with the physico-chemical characteristics of these
waters, since factors such as pH and temperature may influence the results. Also, it is
necessary to compare the concentrations of SARS-CoV-2 at the different steps of WWTPs
treatment processes.

It is essential to identify adequate treatment systems that can be used to reduce virus
loads in community and hospital wastewater. Apart from secondary treatment (>90%
removal), studies show the need for tertiary systems or disinfection treatments to remove
viruses efficiently. Lesiemple et al. [193] and Bhatt et al. [206] are useful resources as they
reviewed different treatment processes and provide recommendations for wastewater
treatment. It is paramount that we study the presence of SARS-CoV-2 in surface water,
groundwater and drinking water, mainly in sectors where water treatment is unreliable
(including rural areas with inadequate sanitation and developing countries). These studies
should be mainly carried out in heavily urbanized watersheds where untreated wastew-
aters are discharged into surface waters (which also affects groundwater) and drinking
water treatment for human consumption is not available [207].

It is necessary to create collaborative networks between highly industrialized countries
and developing countries for the application of surveillance strategies of SARS-CoV-2 in
UWC waters for epidemiological purposes. The previous experiences and knowledge
acquired by the scientific community of the countries that have already used high benefit-
cost protocols for SARS-CoV-2 surveillance in waters must be transferred as soon as possible
to the authorities of developing countries.

The monitoring of SARS-CoV-2 in the various components of the UWC has been
growing rapidly. Countries such as the United States, Holland, Italy, Brazil, Spain, Australia
and India have already benefitted from the implementation of surveillance protocols
during this pandemic. Indeed, authors such as Kopperi et al. [208] have already proposed
a standard methodological approach for the study and epidemiological surveillance of
SARS-CoV-2 in wastewater, that could be applied worldwide.

At this time of global and local re-opening, where new strains are increasingly being
identified, the use of epidemiological control with wastewater becomes a powerful tool
for decision-making and public health planning. Additionally, since mass vaccination
processes are progressing in many countries, epidemiological monitoring in wastewater
will allow the identification of areas where vaccination must be intensified.
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