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Abstract: Regarding the purification of seawater, it is necessary to reduce both the total concentration
of salt and also the concentration of boron to meet purity requirements for safe drinking water.
For this purpose reverse osmosis membrane modules can be designed based on experimental data
supported by computer models to determine energy efficient configurations and operating conditions.
In previous studies numerical models have been suggested to predict the performance of the removal
with respect to difference pressures, pH values, and temperatures. Here, an analytical model is
suggested which allows for both the simplified fitting of the parameters required for predicting boron
transport coefficients and also the simple equations that can be used for the design of combined
seawater and boron removal systems. This modelling methodology is demonstrated through two
case studies including FilmTec and Saehan membrane modules. For both cases the model is shown
to be able to predict the performance with similar accuracy compared with existing finite-difference
type numerical models from the literature.

Keywords: desalination; reverse osmosis; modelling; simulation; parameter estimation; seawa-
ter; boron

1. Introduction

Due to global population growth and the spread of pollution it is becoming more
challenging to provide clean drinking. A sustainable method for obtaining clean water is
through seawater desalination by reverse osmosis. A reverse osmosis membrane system is
composed of high-pressure pumps, one or more reverse osmosis membranes, and energy
recovery devices which are designed to meet purity requirements while also minimizing
energy consumption. The pressure of the seawater supplied by the high-pressure pump
varies depending on the salt concentration of the seawater. The standard criteria in the
seawater desalination process is the concentration of TDS (total dissolved solids) and boron
in fresh water. The WHO (World Health Organization) states that the palatability of water
with TDS lower than 600 mg/L is considered good and they specify guidelines for 2.4 mg/L
of boron [1], although lower values are generally preferred. These WHO criteria have an
impact on the design of the seawater reverse osmosis (SWRO) processes such that both salt
rejection and boron rejection must be considered.

The removal of boron through reverse osmosis is complicated by the fact that boron
exists in seawater mainly as boric acid and borate ions (with negligible concentrations
of other boron compounds) [2]. This is a problem because reverse osmosis membranes
are known to easily permeate only the negatively charged borate ions while having more
difficulty removing the neutrally charged boric acid [3]. For this reason the pH should
typically be increased to give higher fractions of borate ions [2]. This has been demonstrated
using FilmTec membranes which are shown to give very high boron rejection at high pH
values [4]. Additionally, Koseoglu et al. tested FilmTec and Toray membranes and found
that around 85–90% rejection is possible at pH 8.2 while pH 11 allows for 98% or higher
rejection using both membranes [5]. More recently Ali et al. have developed a membrane
material which is able to achieve 99% boron rejection at pH 10 [6]. At a lower pH of 8 Li et al.
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have developed a membrane modification process which embeds 4-nitrobenzenesulfonyl
chloride into an existing membrane and is able to increase the boron rejection from 82.12%
up to 93.1% [7]. In addition to the development of new materials, the design of feed
spacers inside the membrane modules is also important. A review of the impact of feed
spacer design by Haidari et al. discusses their effects on pressure drop, flux through the
membrane, and fouling [8]. Additionally, it is suggested by Ruiz-Garcia and Nuez based
on experimental and modelling results that feed spacers should be chosen based on the
designed operating conditions to reduce energy consumption and enhance the quality of
the permeate [9].

In order to meet boron drinking water criteria, a multistage design of reverse osmosis
modules is typically required [2]. For example, Tu et al. state that in practice a first stage
with natural pH might be used to reduce TDS and a second stage with elevated pH might be
used to remove boron [10]. In addition to reverse osmosis, Najid et al. consider and discuss
alternative technologies for boron removal including electrocoagulation, adsorption, ion
exchange, and various other membrane processes such as forward osmosis and membrane
distillation [2]. Their comparison showed that reverse osmosis has the potential to remove
boron but can be uneconomical due to high energy requirements and the requirement to
alter pH, and hence they suggest that a hybrid process combining different technologies
could be the best solution [2]. To reduce the costs of two-stage processes Ban et al. also
consider a hybrid process with one stage of forward osmosis followed by a second stage
with reverse osmosis [11]. They compare this against a two-stage reverse osmosis design
and show that the costs associated with chemically altering the pH can be eliminated by
using the hybrid forward osmosis plus reverse osmosis process, but this comes at the
expense of higher capital costs [11]. Instead of chemical modification Jung et al. have
suggested electrochemical modification using a layer of carbon nanotubes on the membrane
surface as a cathode to increase the pH. While this does increase boron rejection over 90%
it also causes some scaling [12]. In another recent study a hybrid system is suggested
combining electro dialysis as a pretreatment with a nanofiltration reverse osmosis to
enhance the overall boron removal [13].

Despite this progress in membrane materials and potential hybrid systems there is still
the need for modelling and optimization of such systems. This would allow, for example,
the prediction of salt and boron rejection for wide ranges of possible conditions to identify
low energy and low cost designs. For example, Ruiz-Garcia et al. use modelling to compare
the performance of two different Toray membranes (TM820L-440 and TM820S-400) for
the purpose of boron removal over a range of conditions and show that the TM820L-440
generally gives lower boron concentrations of under 1ppm [14].

Modelling can also be used to simulate and compare different configurations of
separators to further enhance energy efficiency. For example, Al-Obaidi et al. evaluated the
performance of a multistage reverse osmosis system with varying operating parameters
through a modelling approach [15]. In other work Al-Obaidi et al. also utilized modelling to
compare a number of different recycling options in a multistage reverse osmosis membrane
process [16]. More recently Alsarayreh et al. also used a modelling approach to investigate
different retentate recycle ratios [17].

The review of Alsarayreh et al. shows that a larger number of models have been
developed for the prediction of performance for spiral wound reverse osmosis membrane
modules [18]. These models can be divided into two categories: numerical models which
discretize the length of the module and formulate model equations using finite difference
type methods, and analytical models which use integration of model equations to obtain
expressions for directly calculating the outlet conditions. While the majority of models
developed have been for steady state solutions, model equations can also be solved dy-
namically as shown by Joseph and Damodaran [19]. Regarding steady state modelling,
Ben Boudinar et al. have developed a numerical model solved through finite differences
and they show that their model fits well for desalination of brackish water but is less
accurate for seawater desalination [20]. They suggest that this is due to an inaccuracy in
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the mass transfer coefficient [20]. This has been addressed by Senthilmurugan et al. who
also fitted parameters for mass transfer correlations as well as solving the model equations
using finite differences [21]. In other studies, such as the work of Geraldes et al., mass
transfer correlations for “typical spiral wound modules” are assumed to be valid [22].
While Geraldes et al. do not provide validation for their model they have fitted water and
salt transport coefficients which are then used to optimize the configuration and operating
conditions of a two-stage desalination system [22].

Following these works numerical models have also been developed to predict the
removal of boron. For example, the study of Mane et al. developed a finite elements
model to predict the removal of boron [23]. In that study the parameters and correlations
for boron transport coefficients developed by Hyung and Kim based on experimental
results are used to account for the effects of pH and temperature [24]. Another study of
Ruiz-Garcia et al. proposed a function for boron permeability in terms of feed pressure,
temperature, and operating time based on plant data which might also be used in modelling
studies [25]. Alternatively the model developed by Sassi et al. [26] used a finite-difference
type numerical model which accounts for boron permeation using data and correlations
from the experimental study of Taniguchi et al. [27]. More recently the study of Du et al. [28]
also considered boron removal through numerical models based on a combination of the
equations from the studies of Geraldes et al. [22] and Hyung and Kim [24] which they use
to optimize a superstructure of different configurations.

A number of studies have also developed analytical models where the model equations
are integrated to give analytical expressions. For example, Avlonitis et al. developed
equations for calculating the variation of concentration, pressure, and flow rates along the
length of the module, although they assume that the mass transfer coefficient is constant
along the length [29]. More recently Sundaramoorthy et al. suggested an analytical model
which includes the variation of the mass transfer coefficient across the length [30]. They
have demonstrated the validity of their approach through the removal of chlorophenol [31]
and dimethylphenol [32] from waste water where they show how model parameters
and parameters for mass transfer coefficients can be estimated through linear fitting of
experimentally measured values. Following these earlier studies an analytical model
was developed by Fraidenraich et al. for the desalination of brackish water which they
showed to be accurate for the conditions tested [33]. Additionally, Al-Obaidi et al. have
published numerous models including the development of analytical expressions from
integration [34] and using average pressure and salt concentrations to simplify calculations
which can be used to evaluate and test different configurations of modules [35].

While great progress has been made simulating desalination membrane modules us-
ing finite-difference type numerical models, these models generally involve large numbers
of equations (due to the discretization) which can be solved simultaneously or possibly se-
quentially using numerical algorithms. Meanwhile, analytical models will have a relatively
small number of equations which can be solved using less computational time and simpler
algorithms; for example, in a spreadsheet program. Hence, analytical models should be
more suitable for the design and optimization of multistage configurations which require
the simulation of individual module performance a large number of times, provided they
are shown to give reasonable accuracy.

However, to the best of our knowledge, there has not been any analytical model (based
on integration of model equations) which has been developed to predict the removal of
both salt and boron simultaneously. Therefore, for this reason, a combined salt and boron
removal analytical model is developed here. Additionally, in many cases the fitting of
parameters for spiral wound reverse osmosis models are often proposed based on nonlinear
optimization using least-squares methods. In this study the methods of Sundaramoorthy
et al. [30] and Avlonitis et al. [29] are extended such that all the model parameters can
be estimated though simpler linear optimization in a new sequential parameter estima-
tion procedure.
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2. Development of a New Analytical Model for Predicting Salt and Boron Removal

The modelling equations given here are based on the method suggested by Sun-
daramoorthy et al. [30,31], who developed a model for the removal of organic solutes
using spiral wound reverse osmosis membranes. Here, this model is modified in the
following ways:

• Modified to use for seawater purification;
• Estimation of pressure drop coefficients for cases where outlet pressure is not measured;
• Including temperature dependence of water and salt transport coefficients;
• Including equations for boron transport.

2.1. Modelling Equations

The transport of water and salts through a membrane are typically described according
to the solution–diffusion model which can be used to calculate the flux of water (JW) and
salt (JS):

JW = Aw(∆P− ∆π) (1)

JS = BS
(
Cb − Cp

)
(2)

where ∆P and ∆π are the transmembrane pressure and osmotic pressure, and Cb and Cp
are the brine-side and permeate-side concentrations of salt. Aw and BS are the water and
salt transport coefficients.

Accounting for the effect of concentration polarization which causes the concentration
of salt to increase at the membrane surface, these equations should be modified to use the
concentration of salt at the membrane wall (Cw). The concentration at the membrane wall
can be calculated based on the following relation [30]:

Cw − Cp

Cb − Cp
= exp

(
JW

k

)
(3)

where k is the mass transfer coefficient and so that Equation (2) is modified:

JS = BS
(
Cw − Cp

)
(4)

The pressure drop can be estimated based on Darcy’s law which might be written
as [30]:

dP
dx

= bF(x) (5)

which gives the pressure drop as a function of volume flow rate multiplied by a fixed
parameter b. Alternatively, if knowledge about feed spacer geometry is available, pressure
drop can also be estimated using more complex equations suggested by Koutsou et al. [36].

The osmotic pressure is a function of salt concentration and temperature. For low
concentrations, such as those used in seawater, it may be approximated by the van’t Hoff
relation in Equation (6). Thus the transmembrane osmotic pressure can be calculated using
Equation (7):

π = iγTC (6)

∆π = iγT
(
Cw − Cp

)
(7)

where γ is the gas law constant, T is temperature, and i is the number of ionic species
formed. For the organic solutes considered by Sundaramoorthy, i is equal to 1 [31,32] but
for NaCl the value of i is 2.

Combining and rearranging the above equations, the flux of water and the permeate
salt concentration can be calculated as follows:

JW =
Aw∆P

1 +
(

Awiγ
BS

)
TCp

(8)
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Cp =
Cb[

1 + (JW/Bs)
exp(JW/k)

] (9)

The above equations can also be modified using a reflection coefficient, but for sim-
plicity this will be assumed to be equal to 1.

To estimate the transport flux of boron an expression similar to Equation (4) can be used:

JB = BB
(
CBw − CBp

)
(10)

where BB is the boron transport coefficient and CBw − CBp is the difference in boron
concentrations. The wall concentration of boron can also be estimated with an equation
similar to Equation (3) which also requires a mass transfer coefficient kB:

CBw − CBp

CBb − CBp
= exp

(
JW

kB

)
(11)

CBp =
CBb[

1 + (JW/BB)
exp(JW/kB)

] (12)

BB =
{H+}

{H+}+ Ka1
B(H3BO3)0e(0.067(T−T0)) +

Ka1

{H+}+ Ka1
B(H2BO3

−)0e(0.049(T−T0)) (13)

To estimate the boron transport coefficients Hyung and Kim [24] proposed Equation (13)
where they found the temperature dependence follows the same trend for all the membranes
they tested. The effect of pH is included through the calculation of the fraction of boric acid
(H3BO3) and borate ion (H2BO3

−) which have different transport coefficients: B(H3BO3)0
and B(H2BO3

−)0 (the values at T = T0).
Various correlations have been proposed in the literature for estimating the mass

transfer coefficient, although in most cases these correlations predict the Sherwood number
(sh) as a function of the feed-side Reynolds number (Ref) and Schmidt number (Sc) and
also sometimes consider the permeate-side Reynolds number

(
Rep

)
[31]. In this study the

following general expression is considered:

sh = eA
(

Ref
B
) (

Rep
C
) (

ScD
)

(14)
To model the performance of a spiral wound reverse osmosis membrane for purifica-

tion of seawater and boron, we made the following assumptions:

• Pressure drop is neglected in the permeate side;
• Darcy’s law applies for pressure drop in the feed side;
• Validity of the solution–diffusion equations;
• Feed-side: velocity in the y and z directions is neglected;
• Permeate-side: velocity in the x and z directions is neglected;
• The unwound spiral can be represented by the diagram in Figure 1;
• The boron mass transfer coefficient is the same as that used for salt.

Based on these assumptions, Sundarmoorthy et al. showed that analytical solutions
can be obtained for the pressure P, volume flow rate F, and water flux JW [30,31]. The
permeate-side fluid velocities are much lower than those on the retentate side and thus
the permeate-side pressure drop should be significantly lower, which is why it is often
neglected, allowing for the development of Equations (15)–(19) [30]. Additionally, it has
been shown by Taniguchi et al. that the mass transfer coefficient for salt is very close to that
of boron and so for simplicity they are considered equal in this study [27]. The equations
for pressure and volume flow can be used to calculate the outlet pressure and outlet volume
flow rate as given below:

Fo = Fi cosh φ− φsinhφ

bL
∆Pi (15)
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Po = Pi −
bL

φsinhφ
[(Fi + Fo)(cosh(φ)− 1)] (16)

Co = Cp +
Fi
(
Ci − Cp

)
Fo

cosh φ− φsinhφ

bL
∆Pi (17)

where ∆Pi = Pi − Pp is the transmembrane pressure at the inlet and the φ is given by the
following equation:

φ = L

√√√√ WbAw(
1 + Aw

(
iγ
BS

)
TCp

) (18)

This parameter φ is a dimensionless number which is defined by Sundaramoorthy
et al. in the following equation relating the second order derivative of the feed channel
volume flow rate with respect to distance along the module [30]:

d2F(x)
dx

=
φ2

L2 F(x) (19)

Figure 1. Spiral wound membrane geometry (unwound diagram).

2.2. Parameter Estimation

Based on the above equations a number of parameters need to be fit in order to model
the performance of the spiral wound reverse osmosis membrane for the prediction of salt
and boron removal. Hence, in this study we suggest the sequential procedure of parameter
fitting steps as given in Figure 2. Sundaramoorthy et al. [30,31] suggested procedures for
steps 1, 2, and 4 where they suggest linear fitting for steps 1 and 2 and a least-squares
(presumably nonlinear) fitting for step 4. Additionally, in step 2 they assumed that Aw and
BS are fixed and do not change with temperature.

In the procedure shown in Figure 2, the first step should be to estimate pressure drop.
Subsequently the water and salt transport coefficients Aw and BS should be estimated for
each inlet temperature such that the temperature dependence can be predicted. Steps 3
and 4 are independent of each other but both rely on parameters fitted in steps 1 and 2. All
of these steps can be realized through linear fitting using experimentally measured values.
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Figure 2. Parameter estimation steps for a spiral wound reverse osmosis desalination membrane.

2.2.1. Step 1. Pressure Drop Parameter Estimation

As mentioned above the pressure drop on the feed/brine side can be estimated
through Darcy’s law as given by Equation (5) which is written in terms of the volume flow.
However, this can also be written as [21]:

dP
dx

= kfb µ vf
nf (20)

where vf is the feed-side fluid velocity, µ is the fluid viscosity, kfb is a friction parameter,
and nf is a constant which is commonly assumed to be 1, although some studies have
considered other values. For example, Sentilmurugan at al. also considered nf = 1.5 and
found that changing this value only had a small effect on results [21]. In this study it is
assumed nf = 1 and hence Equation (20) is equivalent to Equation (5).

The estimation of b is possible through plotting Po− Pi against L
φsinhφ [(Fi + Fo)(cosh(φ)− 1)]

(from Equation (16)) and fitting a linear expression should give b as the gradient, as suggested by
Sundaramoorthy et al. [30,31].

However, this requires knowledge of the feed/brine side outlet pressure which may
not be provided or possibly not measured as part of experimental studies looking at
reverse osmosis desalination. In these cases the pressure drop might be estimated based on the
maximum pressure drop specified by the manufacturer. For example, we might estimate that the
highest flow rate tested experimentally gives a pressure drop which is 100% of the maximum:

b =
Pdropmax

L Fi,max
(21)

Alternatively, if a friction factor is available the value of b can be readily found:

b =
kfb µ

Af
(22)
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where Af is the cross sectional area of the feed channel and the viscosity is calculated for a
single typical experimental inlet value.

2.2.2. Step 2. Water and Salt Transport Parameter Estimation

The values of coefficients Aw and BS can be estimated based on the equations given
by Sundaramoorthy et al. which are as follows [30,31]:

φ = cosh−1
[
(Fi + Fo)− β Fo

(Fi + Fo)− βFi

]
(23)

β =
Pi − Po

Pi − Pp
(24)

The value of φ can be calculated directly from inlet and outlet volumetric flow rates
and pressures. Hence, a plot of 1/φ2 against TCp should give a linear fitting which can be
used to calculate the values of Aw and BS:

1
φ2 =

(
iγ

L2WbBS

)
TCp +

(
1

L2WbAw

)
(25)

This is the same as the equation given by Sundaramoorthy et al. [30,31] except with
the addition of i to account for the presence of NaCl.

If the outlet pressures Po are not measured then this can be estimated using the fitted
b value and the following approximate expression:

Pi − Po = L b
(Fi + Fo)

2
(26)

It is also worth noting that the above fitting should utilize the inlet and outlet con-
ditions for a single feed channel, accounting for the number of leaves and the number of
feed channels per leaf. Additionally, while Sundaramoorthy et al. [30,31] assume the fitted
constants are independent of temperature, this fitting can also be performed separately for
each set of data at each temperature which can then be used to fit a temperature dependent
term. For example, Arrhenius-type equations can be used [23,37]:

Aw = Aw0 exp
[
−EA

R

(
1
T
− 1

T0

)]
(27)

BS = BS0 exp
[
−EB

R

(
1
T
− 1

T0

)]
(28)

where EA and EB are apparent activation energies, R is the gas constant, and Aw0 and
BS0 are the values of water and salt transport coefficients at temperature T0. The above
equations can be used to evaluate the values at other temperatures. Although Arrhenius
equations are more commonly associated with chemical reactions, Mehdizadeh et al. have
shown that this type of relation also works well for predicting fluxes through membranes
at different temperatures as they argue it is a similar phenomenological process [37].

2.2.3. Step 3. Boron Transport Parameter Estimation

The transport coefficients of boron can be estimated based on the following equation
suggested by Hyung and Kim which accounts for the transport of boric acid (H3BO3) and
borate ion (H2BO3

−) [24]:

BB = α0B(H3BO3)
+ α1B(H2BO3

−) (29)
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In this equation, α0 and α1 represent the fractions of boric acid and borate ion which
can be estimated using the apparent dissociation constant Ka1 and the H+ ion concentra-
tion [24]:

α0 =
{H+}

{H+}+ Ka1
(30)

α1 =
Ka1

{H+}+ Ka1
(31)

The value of Ka1 can be determined by a correlation in terms of salt concentration and
temperature as given by the correlation of Edmond and Gieskes as presented by Nir and
Lahav [38]:

log10 Ka1 =
2291.90

T
+ 0.01756 T − 3.3850− 0.32051

(
S

1.80655

)1/3

(32)

where T is the temperature in kelvin, and S is the concentration of salt in g/L. It was
also noted by Nir and Lahav [38] that a number of authors have missed the temperature
dependence from the 0.01756 T term when writing this correlation.

Although in principle the temperature dependent factors can also be estimated here
through fitting expressions similar to Equation (27), the temperature-dependent expressions
determined by Hyung and Kim can also be used since they show that their fitted parameters
fit well for a number of different membranes tested [24]. The work of Hyung and Kim
also gives values for the boric acid and borate ion transport coefficients for those types of
membranes, and these values are used by Mane et al. as part of their numerical simulation
model [23]. However, the simulation results of Mane et al. underpredict the rejection of
boron for higher pH values (8.5 and 9.5) compared with their experimental results [23].
This difference could be due to the fact that the transport coefficient values determined
by Hyung and Kim were based on a flat sheet membrane [24] while Mane et al. utilized a
spiral wound module with the same material [23]. To account for this, it is suggested here
that the values of B(H3BO3)0 and B(H2BO3

−)0 should be fitted for each membrane material
and for each design of membrane module.

The values of BB can be determined from experimental measurements and calculation
with Equation (12) rearranged as (assuming that kB = k):

BB =
CBp JW(

CBb − CBp
)

e(JW/k)
(33)

Since α0 + α1 = 1 then for each temperature measured the values of BB can be plotted
against α0 which should give a linear fit with intercept B(H2BO3

−) and gradient equal to(
B(H3BO3)

− B(H2BO3
−)

)
so that the transport coefficients of boric acid and borate ion can

be determined. If values are fitted at each temperature the temperature dependence can
also be included.

2.2.4. Step 4. Mass Transfer Parameter Estimation

If the mass transfer correlation is given by Equation (14), the fitting of parameters
A, B, C, and D can be realized through writing this as a linear equation in terms of
these parameters:

ln(sh) = A + B ln(Ref) + C ln
(

Rep
)
+ D ln(Sc) (34)

This is similar to the approach taken by Avlonitis et al. who sequentially determined
the parameters by plotting ln(sh) against the log of different dimensionless numbers [29].
However, depending on the membrane being used, some of these values could be sta-
tistically insignificant in which case some terms may be eliminated to give a simpler
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expression. In principle all the parameters can be fitted simultaneously using multivariable
linear fitting.

2.3. Model Prediction Algorithm

The analytical equations from Sections 2.1 and 2.2 can be solved to predict the perfor-
mance of a desalination membrane given the input conditions and fitted parameters. This
is the same procedure suggested by Sundaramoorthy et al. [31] but with some changes
including the addition of boron transport equations, accounting for a different module
design (two feed channels and a single permeate channel) and including the effect of
temperature on water and salt transport coefficients.

2.3.1. Input Membrane Geometry

• Width W;
• Length L;
• Feed channel height tf;
• Number of membrane leaves n;
• Input conditions;
• Inlet salt concentration Ci;
• Total feed flow rate Qf;
• Inlet flow rate (calculated for a single feed channel) Fi =

Qf
2n ;

• Inlet pressure Pi;
• Permeate pressure Pp;
• Temperature T;
• Potential hydrogen pH;
• Fitted parameters;
• Pressure drop coefficient b;
• Water and salt transport coefficients Aw0 and BS0 at temperature T0;
• Apparent activation energies EA and EB;
• Boric acid and borate ion transport coefficients B(H3BO3)0 and B(H2BO3

−)0 at temperature T0;
• Boron apparent activation energies EB3 and EB2;
• Mass transfer coefficients A, B, C, and D.

In cases where temperature dependent parameters (apparent activation energies) are
unavailable, fixed values for Aw, BS, B(H3BO3)

, and B(H2BO3
−) might be used.

2.3.2. Solution Procedure Using Model Equations

Step 1: Assume Cp = CpA (initial guess CpA = 0)
Step 2: Calculate {H+} = 10−pH

Step 3: Calculate ∆Pi = Pi − Pp
Step 4: Calculate Aw and BS (Equations (27) and (28))
Step 5: Calculate φ (Equation (18))
Step 6: Calculate Fo (Equation (15))
Step 7: Calculate Po (Equation (16))
Step 8: Calculate ∆Po = Po − Pp

Step 9: Calculate Jwi =
2·Aw∆Pi

1+
(

Aw iγ
BS

)
TCp

and Jwo = 2·Aw∆Po

1+
(

Aw iγ
BS

)
TCp

Step 10: Calculate vi =
Fi
Af

and vo = Fo
Af

Step 11: Calculate Co = Cp +
Fi(Ci−Cp)

Fo
Step 12: Calculate Ref,i, Rep,i, Sci and Ref,o, Rep,o, Sco
Step 13: Calculate Shi and Sho (Equation (14))
Step 14: Calculate ki =

Shi·Di
de

and ko = Sho·Do
de

Step 15: Calculate Cpi =
Ci[

1+ (JWi/Bs)
exp(JWi/ki)

] and Cpo = Co[
1+ (JWo/Bs)

exp(JWo/ko)

]
Step 16: Calculate CpA =

Cpi+Cpo
2
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Step 17: Calculate Ciw = CpA +
Jwi·CpA

BS
Step 18: Calculate Ka1 (Equation (32), where S = Ciw·MWNaCl)
Step 19: Calculate BB (Equations (29)–(31))
Step 20: Calculate CBp = CBi[

1+ (JWi/BB)
exp(JWi/ki)

]
Step 21: If

∣∣Cp − CpA
∣∣ > tolerance→ Go to step 5, otherwise stop

In step 21 a tolerance of 1× 10−6 was implemented to give a reasonable convergence
of the calculated concentration. Additionally, the dimensionless numbers were calculated
using the following correlations [22,31]:

Ref =
ρ de v

µ
(35)

Rep =
ρ de Jw

µ
(36)

Sc =
µ

ρ D
(37)

where de = tf/2 is the equivalent diameter [31]. In addition, the density and viscosity can
be estimated through the following correlations of Koroneos et al. [39]:

ρ = 498.4m +
√

248400m2 + 752.4 m S (38)

m = 1.0069− 2.757× 10−4·(T − 273.15) (39)

µ = 1.234× 10−6·exp
[

0.0212·S +
1965

T

]
(40)

D = 6.725× 10−6 × exp
[

0.1546× 10−3S− 2513
T

]
(41)

3. Case Studies

To demonstrate the parameter fitting methods and to evaluate the accuracy of the
model predictions the methodology from Section 2 is applied to two case studies including
FilmTec 2.5 inch FT30 and Saehan Industries RE4040-SR spiral wound membrane modules.

For the purpose of fitting parameters, experimental data values from the literature
have been used. This includes 32 data points using the FilmTec module with varying salt
concentrations (25–40 g/L), feed pressures (50–80 bar), and temperatures (20–35 ◦C) and
associated varying feed and permeate volume flow rates as given in Table 1 of the study of
Avlonitis et al. [29]. Unfortunately this data set does not include brine outlet pressure or
boron concentrations so steps 1 and 3 from Figure 1 are not possible based on this data.

Table 1. Spiral wound membrane module details using literature values for FilmTec [29] and Saehan
[23] modules.

Spiral Wound Module FilmTec FT30 Saehan RE4040-SR

Length (m) 0.8665 0.88

Width (m) 1.17 0.8

Number of leaves 1 5

Feed channel height (m) 7.7× 10−4 9.4× 10−4

Permeate channel height (m) 4.3× 10−4 4.0× 10−4

For the Saehan module a set of 15 data points can be found in the study of Mane
et al. [23] with varying pressures (600–800 psi or approximately 4,137,000–5,516,000 Pa)
and pH (7.5, 8.5 and 9.5) and with varying permeate flow rates (maintaining feed to
permeate flow ratio at a constant). In this study, 10 of these data points were used for fitting
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parameters (pH at 7.5 and 9.5) and the remaining 5 data points were used for validation.
These data are measured only at 25 ◦C and, as with the other case study, pressure drop
data are also not given in the literature. Hence, in this case, steps 2, 3, and 4 are possible in
the fitting procedure from Figure 1.

3.1. Determination of Pressure Coefficient b

Since the brine outlet pressures are not provided the above references, alternative
methods must be used to estimate b.

Although the study of Avlonitis et al. [29] does not give a value of the friction co-
efficient k f b, the value for this coefficient is given by the study of Senthilmurugan et al.
as 2.5008 × 108 m−2 [21]. This value is used together with the temperature and feed
concentration from a selected feed condition from the 32 data points of Avlonitis et al., in
this case 20 ◦C and 35 g/L are used together with Equations (35) and (19) to give the value
of coefficient b.

For the Saehan module, the study of Mane et al. provides a value of the friction
coefficient k f b = 5.18× 1010 m−2 [23]. However, using this value leads to a calculated
pressure drop which is much greater than the maximum pressure drop specified by the
manufacturer for similar modules [40]. For this reason, the b value is estimated for this
case using the maximum pressure drop and the highest tested flow rate in Equation (20).

The estimated values of b are in this way given in Table 2.

3.2. Determination of Water and Salt Transport Coefficients

As mentioned in Section 2.2 the values of water and salt transport coefficients can be
determined by plotting 1/φ2 against TCp. In the study of Sundaramoorthy et al. a single
value of these parameters (Aw and BS) is found to be sufficient for all the temperatures
used when considering the removal of chlorophenol [30,31]. However, for the desalination
of seawater, it is shown in Figure 3 that a separate linear fitting is required for each
temperature, each giving different values of Aw and BS.

Figure 3. Plot of the 1/φ2 against TCp with linear fitting against the data of Avlonitis et al. [29] using
the calculated value of b from Table 2.
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The data of Mane et al. is used for the fitting of Aw and BS for the Saehan module (see
Figure 4) although this is only a relatively small sample size using 10 out of the 15 data
points available. Furthermore, this data set is also measured in a relatively narrow range
of conditions including feed flow rates of 2.27 to 4 m3 day−1 and salt rejection in the very
narrow range of 99.6 to 99.7 % [23]. This is perhaps due to the study of Mane et al. focusing
on boron recovery at different conditions [23]. Despite these limited data, it is still possible
to estimate the values of water and salt coefficients with fitted values given in Table 2.

Figure 4. Plot of the 1/φ2 against TCp with linear fitting against the data of Mane et al. [23] using the
calculated value of b from Table 2.

3.3. Determination of Boron Transport Coefficients

Since the data regarding boron are not available in the data of Avlonitis et al. [29] for
the FilmTec module, parameters are fitted here only for the Saehan module based on the
data of Mane et al. [23].

This is possible through plotting BB (calculated using Equation (33)) against α0 (calcu-
lated using Equation (30)) giving the plot and linear fit shown in Figure 5. The gradient
and intercept of this linear fit are used to calculate B(H3BO3)0 and B(H2BO3

−)0 as given in
Table 2.

3.4. Determination of Mass Transfer Correlation Coefficients

The value of the Sherwood number can be calculated for each experimental point.
If both brine inlet and outlet data are available then the mass transfer coefficient and
Sherwood number can be calculated for both points. However, in this case since the outlet
pressures are not given in the case study references, only the inlet conditions are used to
estimate mass transfer correlations:

ki =
JWi

ln
[(

JWi
BS

)(
Cp

Ci−Cp

)] (42)
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shi =
kiDi

de
(43)

Table 2. Estimated and fitted parameters for case study of spiral wound membrane modules.

Spiral Wound Module FilmTec FT30 Saehan RE4040-SR

b
(
atm m−4 s−1) 2.9760× 103 1.0126× 103

T0 (K) 293.15 298.15

Aw0
(
m atm−1s−1) 2.5258× 10−7 2.7550× 10−7

BS0
(
m s−1) 4.0699× 10−8 1.7062× 10−8

EA

(
J mol−1

)
1.4192× 104

EB

(
J mol−1

)
4.2116× 104

B(H3BO3)0
(
m s−1) 5.4306× 10−7

B(H2BO3
−)0
(
m s−1) 5.3760× 10−8

A −1.2604 5.619

B 0.35923

C 0.65885 0.5641

D 0.86483

Figure 5. Plot of BB (calculated using experimental data [23] and fitted parameters b, Aw, and Bs)
against α0 together with linear fit.

These values can be calculated for the two case studies considered here which can
be used to fit values of A, B, C, and D in Equation (34). In principle, all four of these
parameters can be fitted simultaneously using linear fitting, but some of these may be
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statistically insignificant, in particular for the Saehan membrane data which are based on
10 data points [23] all with very similar salt rejection and with the same value of Sc at the
inlet. For this reason initially A, B, and C were fitted simultaneously. However, when used
in the prediction code, this sometimes led to erroneous calculations of Cp = Ci; perhaps
because the correlation is overfitted to a narrow range of conditions. Hence, a simpler
expression is tested using either A and B or A and C. In other words, trying to fit a linear
relation between either ln(sh) and ln(Ref) or ln(sh) and ln

(
Rep

)
and in this case ln

(
Rep

)
was found to more statistically significant; the values of A and C are given in Table 2.

For the FilmTec membrane module a larger set of data with 32 data points [29] was
used to fit all four parameters as given in Table 2.

4. Model Validation

To show the prediction accuracy of the analytical model proposed here the model
was tested both with the training set data and also data and conditions other than the
training data.

For the FilmTec module the data from Table 2 is used in the model to predict the per-
formance for the 32 data points used for training. The model is shown to predict reasonably
well the permeate flow rate (Figure 6) and permeate salt concentration (Figure 7).

Figure 6. Permeate flow rate of FilmTec module comparison of experimental values [29] against
model predictions for the 32 data points used to train the model.

Furthermore this model is then validated against two sets of experimental data and
associated models from the literature (11 data points and analytical model results from
Table 2 in the study of Avlonitis et al. [29] and 13 data points and numerical model results
from Table 9 in the study of Senthilmurugan et al. [21]) which are labelled as run numbers
1–11 and run numbers 12–24 in Figures 8 and 9. This validation shows that the proposed
model is reasonably accurate for all of the data points. The only exception is the permeate
concentrations for run numbers 1–11 which are overpredicted by the model. The model
of Avlonitis et al. is shown to predict these values slightly more accurately [29]. This is
presumably because the model of Avlonitis et al. has been trained/fitted using a wider
range of data which are not covered inside the training set of 32 data points [29]. The
proposed model is shown to give similar accuracy compared to the numerical model of
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Senthilmurugan et al. [21] in most of the run numbers 12–24. The overall accuracy of
the proposed model is 6.3% for water permeation and 24.7% for permeate concentration.
However, the accuracy of the model for runs 12–24 is 7.2% for water permeation and 8.9%
for permeate concentration. If the model was retrained using data from run numbers 1–11
these errors in the permeate concentration could potentially be reduced. The more complex
numerical model of Senthilmurugan et al. gives an accuracy for runs 12–24 of 8.8% for
water permeation and 4.5% for permeate concentration.

Run numbers 1–11 show the experimental and model results from Avlonitis et al. [29]
and run numbers 12–24 show the experimental and model results from Senthilmurugan
et al. [21].

Figure 7. Permeate salt concentration of FilmTec module comparison of experimental values [29]
against model predictions for the 32 data points used to train the model.

For the Saehan module the data from Table 2 is used in the model to predict the
performance for the 5 data points used for testing/validation. The model is shown to
predict reasonably well the permeate flow rate (Figure 10).

Furthermore, the boron rejection predicted by this model is compared against the
experimental and model predictions of Mane et al. [23], as shown in Figure 11. In this
Figure, the 10 data points denoted by empty circles/rings are those which were used for
training and the squares are the data points which were used for testing. In this Figure, the
literature model results are those given in the study of Mane et al. which were generated
using a complex finite elements numerical model [23]. That model uses the boric acid
(H3BO3) and borate ion (H2BO3

−) transport coefficients given by Hyung and Kim [24],
while the proposed model uses coefficients which are fitted to the experimental data of
Mane et al. [23]. It can be seen that the model of Mane et al. fits well to the values at lower
rejection data points (these values are for pH 7.5) but underpredicts the values at higher
rejection (with pH at 8.5 and 9.5). Meanwhile, the proposed model gives a reasonably
accurate prediction for all data points, except for some slight over- and underprediction
at the lower pH values. For the testing data in Figure 11, the proposed model gives an
absolute average error of 0.82% while the model of Mane et al. gives an absolute average
error of 1.44%.
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Figure 8. Permeate flow rate of FilmTec module comparison of experimental values [4,11] against
model predictions for 24 different data points for testing/validation.

Figure 9. Permeate salt concentration of FilmTec module comparison of experimental values [4,11]
against model predictions for 24 different data points for testing/validation. Run numbers 1–11
show the experimental and model results from Avlonitis et al. [29] and run numbers 12–24 show the
experimental and model results from Senthilmurugan et al. [21].



Sustainability 2021, 13, 8999 18 of 21

Figure 10. Permeate volume flow rate. A comparison of experimental data [23] and model predictions.

Figure 11. Boron rejection for the Saehan module. A comparison of experimental data [23] and
model predictions.

5. Conclusions

An analytical model is proposed in this study for simultaneously predicting the
removal of both salt and boron from seawater through reverse osmosis using spiral wound
desalination membrane modules. This model and the fitting procedure is an extension of
the methods proposed by Sundaramoorthy et al. for the removal of organic solutes [30,31]
which is modified and extended to predict the removal of both salt and boron from seawater.

The fitting procedure proposed here is sequential, starting with the prediction of a
pressure drop coefficient, followed by the fitting of water and salt transport coefficients.
Subsequently the boron transport coefficients and the mass transfer correlation coefficients
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can be fitted independently of each other. In all of these steps it is shown that the parameters
can be obtained through linear fitting using experimental values and calculated parameters
from previous steps. Hence, this approach offers a very simple method for obtaining all
the parameters needed to build the predictive model.

The analytical model equations can be solved by following the steps given in Section 2.3
which offers a much simpler method for simulation of separation performance compared with the
more complex numerical finite-difference type models which require solving much larger numbers
of equations and more computational effort. A basic comparison of the CPU time required
to simulate three modules 1000 times (optimization will typically require simulation of
configurations at least 1000 times, in some cases much more) shows that the proposed
analytical model required 7.3 s while a numerical model with 100 discrete points required
4 min 21.2 s using an i7 3.30 GHz intel computer.

Although the proposed model is simpler than numerical finite-difference type mod-
els it is shown to give similar accuracy when comparing the predicted outlet permeate
flow rate, salt, and boron rejection. This type of model should be appropriate for the
design and optimization of multistage desalination systems due to its simplicity and low
computational requirements.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13168999/s1.
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Nomenclature

A dimensionless parameter used in Equation (14)
Af cross sectional area of feed channel (m2)
AW water transport coefficient (m atm−1 s−1)
B dimensionless parameter used in Equation (14)
BS salt transport coefficient (m s−1)
b pressure drop parameter defined by Equation (5) (atm s m−4)
C concentration (kmole m−3) or dimensionless parameter used in Equation (14)
D dimensionless parameter used in Equation (14)
D diffusivity (m2 s−1)
F volume flow rate (m3 s−1)
i number of ionic species generated when molecule is dissolved in water
JW water flux (m s−1)
JS salt flux (kmol m−2 s−1)
JB boron flux (kmol m−2 s−1)
k mass transfer coefficient (m s−1)
kfB friction parameter used in Equations (20) and (22) (m−2)
L membrane effective length (as in Figure 1) (m)
P pressure (atm)
Re Reynolds number

https://www.mdpi.com/article/10.3390/su13168999/s1
https://www.mdpi.com/article/10.3390/su13168999/s1
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Sc Schmidt number
Sh Sherwood number
T temperature (K)
W membrane effective width (un-wound as in Figure 1) (m)
x distance in x direction (see Figure 1) (m)
Greek letters
β Ratio of pressures defined by Equation (24)
π osmotic pressure (atm)
µ fluid viscosity (kg m−1 s−1)
ρ fluid density (kg m−3)
γ gas law constant (atm m3 K−1 kmole−1)
φ dimensionless parameter defined by Equation (18)
Subscripts
b or f brine side/feed side
B boron
p permeate side
S Salt
W “Water” when referring to water flux or “Wall” when referring to wall concentration
0 at a reference temperature
i feed side inlet
o feed side outlet
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