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Abstract: Renewable energy is produced using renewable natural resources, including wind power.
The Taiwan government aims to have renewable energy account for 20% of its total power supply by
2025, in which offshore wind power plays an important role. This paper explores the application of
index insurance to renewable energy for offshore wind power in Taiwan. We employ autoregressive
integrated moving average models to forecast power generation on a monthly and annual basis for
the Changhua Demonstration Offshore Wind Farm. These predictions are based on an analysis of
39 years of hourly wind speed data (1980–2018) from the Modern-Era Retrospective analysis for
Research and Applications, Version 2, of the National Aeronautics and Space Administration. The
data analysis and forecasting models describe the methodology used to design the insurance contract
and its index for predicting offshore wind power generation. We apply our forecasting results to
insurance contract pricing.

Keywords: renewable energy; index insurance; offshore wind farm; time series modeling; ARIMA

1. Introduction

The rise in CO2 emissions over the past 30 years and the growing global demand for
stable electricity present a global challenge. Growth in renewable energy generation is
crucial to meeting the 2050 targets for greenhouse gas reduction under the Paris Agree-
ment [1]. Within the United Nations Framework Convention on Climate Change, the
Paris Agreement, also called the Paris Climate Agreement, was adopted in December
2015. The aim of this international treaty is to curb greenhouse gas emissions and global
warming—specifically, to limit the global temperature increase in the 21st century to 2 ◦C
above preindustrial levels, and even further, to 1.5 ◦C above preindustrial levels. To achieve
this goal, the parties aim to reach the global peak of greenhouse gas emissions as soon
as possible and achieve a climate-neutral world by 2050. In June 2015, in response to the
global consensus on mitigating the greenhouse effect, Taiwan passed the Greenhouse Gas
Reduction and Management Act, which sets targets for reducing Taiwan’s greenhouse gas
emissions to below 50% of 2005 levels by 2050. Because energy-related challenges differ by
country, each country must develop its own energy model for facilitating a transition to a
low-carbon economy.

In recent years, many countries and territories, including Taiwan, have begun in-
stalling offshore wind farms. Of the considerable number of offshore wind farms under
planning in Taiwan, some are under active development to meet the island’s ambitious
target of generating 20% of its electricity from renewable power by 2025. According to
the Bureau of Energy of Taiwan’s Ministry of Economic Affairs, the total power supply
was 55.79 GW in November 2019. Government policy plans to phase out nuclear power
plants and have natural gas, coal, and renewable energy (such as solar PV, offshore wind
power, etc.) account for 50%, 30%, and 20%, respectively, of the total power supply by
2025. A target of an installed capacity of 5.7 GW for offshore wind power has been set
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for 2020 to 2025, and for 2026 to 2035, an additional generation capacity of approximately
10 GW has been planned. Thus, offshore wind power is expected to play a critical role in
the coming decades.

Taiwan’s western sea areas have been rated as the world’s best offshore wind farm
sites by 4C Offshore [2], an international consulting firm focused on offshore energy, with
regard to wind power potential. Notably, 7 of the world’s 20 best sites in terms of wind
power potential were located in the Taiwan Strait. To promote offshore wind power and
attract experienced international developers to this region, a stable regulatory framework
has been established, and 20-year power purchase agreements have been offered under the
feed-in tariff (FIT) system. The FIT system entails fixed electricity prices paid to renewable
energy producers for each unit of energy produced. Payment of the FIT is guaranteed
for a certain period, which is often dependent on the economic lifetime of the renewable
energy projects. These agreements provide a stable single-revenue stream to underlying
energy prices.

Index insurance is an insurance design that does not indemnify pure losses but instead
issues a claim payment in case of an objective triggering event. Payouts are made on the
basis of an index or a set of indexes that are correlated to the risks associated with the
insured. Specifically, data from specific weather stations or satellites are examined in such
considerations. Interest in the use of index insurance has grown in recent decades [3,4].
Various projects are being piloted in low-income countries by the World Bank to mitigate
losses attributable to natural disasters. The World Bank and its implementing partners have
developed weather, area yield, and livestock index products for insuring crops and dairy
cattle. Countries such as Ethiopia, Kenya, Malawi, and Mozambique have experimented
with index-based insurance. The aim is to better manage weather risk, thereby enabling
investment and growth in the agricultural sector for smallholder farmers. Index insurance
is also a key component for many governments committed to realizing the Sustainable
Development Goals (SDGs) [5] of the United Nations that center on addressing climate
change and achieving food security to reduce poverty and vulnerability. This innovative
approach has gradually become a tool for risk management, opening up a new range of
possibilities and business opportunities for insurers closely attuned to new trends.

Weather risks can lead to poor yields and crop damage, resulting in lower or even no
revenue for farmers. As its name suggests, weather index insurance covers weather-related
risks. Based on meteorological conditions and indicators such as rainfall and temperature,
it can prevent adverse selection and moral hazard problems as well as reduce transaction
costs [6]. Weather index insurance constitutes an effective approach to managing natural
disasters and climate change. Moreover, it is essential to agricultural development in
emerging countries [7–13]. Unlike conventional insurance, index insurance does not
necessarily require the services of claim assessors. Thus, the loss verification process
can be bypassed, expediting the claim procedure in addition to reinforcing its objectivity.
In protecting data from manipulation, index insurance can reduce the risk of adverse
selection and prevent moral hazards, thereby minimizing risks incurred by the insurer and
increasing confidence among market participants and policyholders alike [14,15].

Index insurance has been criticized because it is not based on the actual losses experi-
enced by policyholders [10]. In index insurance, the principal challenge is basis risk, the risk
under which the trigger index is imperfectly correlated with the underlying risk exposure.
Index insurance is expected to insure against the loss of revenue or assets. Developing
adequate index insurance entails minimizing the associated basis risk between the index-
triggered payouts and the insured’s actual loss. Therefore, whether single or multiple,
index values should be carefully identified and closely correlated with the insured’s losses
in income or assets.

Although the principles of index insurance appear to reduce the costs associated
with the risks of being uninsured by traditional insurance, in most index-based projects,
including crop yield insurance, stochastic income streams are insured [7]. Many index
insurance projects are based on weather indexes, depending on the data availability and
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its correlations with losses [16]. Applications of index insurance in the renewable energy
sector are rare. By contrast, several studies have addressed such applications in the
agricultural sector. The indexes used can measure weather risks, such as drought or
extreme temperature highs, to protect production outcomes. In this regard, the payouts are
based on triggers correlated with yield losses [17–21].

Although wind is a source of clean energy, wind power generation is characterized by
fluctuations because of the changeable nature of wind speed [22]. Given that the outputs
of offshore wind farms are considerably influenced by wind speed, identifying locations
where wind speeds are high and steady is crucial. Managing volatility risk in offshore
wind power is critical because forecasting power generation in offshore wind projects is
challenging. Investors and lenders must understand the impacts of wind conditions on
project value in examining an asset for bankability, defined as their willingness to finance
an offshore wind project at a reasonable return or interest rate. The decision to invest
is typically taken once a certain level of confidence is reached, and suitable contractual
risk coverage is in place. A bankable offshore wind project must have accurate power
generation forecasts that directly address the financial aspects of predictable cash flows
and reliable revenue streams to reassure investors and lenders.

In Taiwan, most lenders have limited experience and capacity to underwrite offshore
wind projects. Therefore, project developers must demonstrate the availability and com-
mitment of permanent financing in order for lenders to consider financing at an early stage.
In order to encourage lenders to take on more offshore wind deals, the purpose of this
study for index insurance applications focuses on helping lenders remove as much risk on
the production volatility as possible. It is not practical to expect that lenders will suddenly
start providing more financing for offshore wind projects with this insurance product but
go back to the basic underwriting standards. Instead, we hope this insurance design can
reduce the concerns of the volatility of renewable energy production from lenders’ point
of view.

Because weather conditions can be quantified and indexed, the same concepts are
applied in this study to create an index-based solution for mitigating risks involved in
offshore wind power. We use the dependence structure between offshore wind power
generation and weather indexes.

The exceedance probability is introduced to analyze the renewable energy industry.
For example, wind speed at a particular wind farm is examined to characterize the uncer-
tainty in wind power generation [23]. In the context of energy generation, developers and
investors can apply exceedance probability to forecasting and business plan assumptions.
Furthermore, lenders and insurers can use it to quantify the risk profile of individual off-
shore wind farms. In this regard, estimating the annual energy production (AEP) is pivotal.
The AEP of an offshore wind farm is the total amount of electrical energy it produces over
a year, measured in megawatt hours (MWh).

Wind power forecast corresponds with an estimate of the expected production of an
offshore wind farm in the near future. Depending on the intended application, forecasting
of wind power generation can be considered by different time scales. Long-term forecasting
measured in years focuses on project feasibility analysis and planning for a specific site.
Short-term forecasting concentrates on benefits during a wind farm’s operational period,
measured in hours or days ahead for grid operators to schedule the economically efficient
generation to meet the electrical demand. There are generally three forecasting approaches
for wind power: the physical approach, the statistical approach, and the hybrid approach.
More comprehensive literature reviews can be found in [24–28].

The physical approach based on weather data has been developed, downscaling the
numerical weather prediction (NWP) data to describe the farm site, such as temperature
and atmospheric conditions. However, these variables require large computational systems
to achieve accurate wind speed forecasting and wind power predictions. On the other
hand, the statistical approach needs vast data such as wind speed, wind direction, and
temperature to analyze wind power and extract the statistical inference inside the time



Sustainability 2021, 13, 8985 4 of 27

series of the previous power data itself. Thus, the link between historical power production
and weather is determined and used to forecast the future power output. The hybrid
approach is a combination of the physical and statistical approaches. Developing an index
that should be easily measurable, objective, transparent, and independently verifiable [15]
requires a time series dataset [29]. Compared with the physical forecast methods that
depend on the input used in complex mathematical models, this study uses flexible time
series forecasting, and the technique is easier to implement. By employing 39 years of
hourly wind speed data (1980–2018) obtained from the Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2) of the National Aeronautics and Space
Administration (NASA), we built autoregressive integrated moving average (ARIMA)
models to forecast power generation at an offshore wind farm in Changhua, Taiwan,
on a monthly and yearly basis. The results extend the understanding of the impacts of
wind speed on the energy production of the offshore wind farm. We apply them in the
formulation of the index insurance product, including the pricing model’s design. This
insurance product is able to transfer wind volume risks to insurance markets through
the provision of agreed-upon guaranteed revenue to offshore wind projects, enabling
renewable energy projects to be financed on the basis of revenue.

The remainder of this paper is organized as follows. Section 2 presents the study site
and the data used. Wind speed and estimated AEP in the study site over 39 years are also
discussed. Section 3 presents the forecasting model approach. Section 4 proposes a wind
power-focused approach to index insurance design; in Section 5, this design is applied to
insurance pricing by examining the Changhua Demonstration Offshore Wind Farm case.
Section 6 discusses Taiwan offshore wind energy assessment and a similar index insurance
project for wind energy. Section 7 is the conclusion.

2. Study Site, Data, and Preprocessing

This section presents the background and highlights of the Changhua Demonstra-
tion Offshore Wind Farm, as well as the datasets and preprocessing procedure for the
AEP analyses.

2.1. Changhua Demonstration Offshore Wind Farm

The Renewable Energy Development Act was introduced and passed in 2009, es-
tablishing several government subsidy schemes to incentivize an increase in installed
renewable energy capacity. In order to promote offshore wind power, the Thousand Wind
Turbines Project was formed to increase the number of onshore and offshore wind turbines
and was approved by the Executive Yuan in 2012. Since regulations governing rewards
for offshore wind farms came into force in 2012, Taiwan’s government has vigorously
promoted the development of offshore wind farms. To kick-start offshore wind power
development, Taiwan’s Ministry of Economic Affairs has provided subsidies to industry
pioneers for both equipment and development processes. The Taiwan Power Company
(Taipower) is a state-owned electric power enterprise that handles all matters concerning
power generation in Taiwan and its offshore islands. A total of NT 19.5 billion (approxi-
mately USD 696 million) has been invested in the Changhua Demonstration Offshore Wind
Farm, which is one of the rewarded offshore wind projects by the government. This project
is developed by Taipower and mainly contracted by a consortium consisting of Jan De
Nul Group and Hitachi. Jan De Nul Group is responsible for the design and installation
of the turbines and the onshore and offshore cables, whereas Hitachi is in charge of the
manufacturing, assembly, operation, and maintenance of the turbines. The project was
initially scheduled for completion by the end of 2020. However, owing to delays caused by
the ongoing COVID-19 pandemic, the new expected completion date is August 2021.

The Changhua Demonstration Offshore Wind Farm is located in the Taiwan Strait—
specifically, in Changhua County in central Taiwan, off the coast of Fangyuan Township.
The latitude is 23◦59′23.9”, and the longitude is 120◦14′23.9”. In this area, water depth
ranges from approximately 15 to 26 m. The shortest and longest distances to shore are 7.2
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and 8.7 km, respectively. In total, 21 Hitachi HTW 5.2–127 offshore wind turbines (rotor
diameter 136 m) with a total capacity of 109.2 MW are installed.

Wind speed measures how fast air moves in a particular area and is usually expressed
in meters per second. The manufacturer determines the cut-in and cut-off wind speeds of
a turbine. The cut-in speed is the point at which the turbine starts to generate electricity
from turning. The cut-off point indicates how fast the turbine can go before the wind speed
reaches the point at which further operation can lead to damage. The power curve of the
selected offshore wind turbine, constructed and provided by the turbine manufacturer
based on industry standards, dictates the amount of energy generated as a function of
wind speed.

As shown in the power curve in Figure 1, the cut-in wind speed of the present turbines
is 3.5 m/s, with energy generated almost linearly from 3.5 to 13 m/s. The rated power
of the wind turbine of 13 m/s is the maximum power that its generator can produce.
The actual measurement is 5.2 MW. As the wind speed increases, the amount of energy
generated remains constant until the cut-off wind speed of 25 m/s is reached. If the cut-off
speed is exceeded, the turbine switches off automatically for safety reasons. Therefore,
the wind speed for generating wind power at speeds between 3.5 and 25 m/s over the
rotor disc is the effective wind speed. The total installed capacity of the offshore wind
farm of 109.2 MW is calculated by summing the capacities of all 21 turbines, each of which
has a capacity of 5.2 MW. The wind farm aims to provide enough electricity to power
94,000 households once completed.
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2.2. Wind Speed Data and Analysis

In the resource assessment of an offshore wind power project, basic measures include
the speed and direction of prevailing winds at different timescales at the potential site. In
this regard, wind data from nearby weather stations can be helpful. In addition, after the
resource assessment, information on a selected offshore wind turbine model, including the
nominal capacities, can be integrated into the study. The aim is to confirm the applicability
of AEP as a basis from which to analyze project viability.

Environmental conditions at an offshore wind farm can be determined with reference
to meteorological–oceanographic data recorded over several years. A relevant feasibility
study can then be conducted, followed by planning, design, construction, operation, main-
tenance, and decommissioning. Thus, an economic development and risk management
program encompassing the wind farm’s lifetime can be established. Actuarial calculations
require long series of historical data. Unfortunately, few long-term series of meteorological–
oceanographic data, including data on the speed of winds near turbine hub height, are
available for relevant offshore sites in the Taiwan Strait. Moreover, private companies’



Sustainability 2021, 13, 8985 6 of 27

data are not shared with the public, given the competitive value of detailed knowledge on
offshore wind conditions for further wind farm development.

Depending on the instrument, satellites can provide researchers with abundant, high-
frequency weather data (both historical and near real time) recorded over multiple years.
Satellite weather data have been proposed as an alternative when weather station data are
unavailable [30]. In addition, weather data from satellites have been used for crop yield
simulations (e.g., [31]). Therefore, we use data provided by satellite platforms rather than
by weather stations in this study.

Regarding the assessment of offshore wind resources, we employ hourly average
wind speed data from the MERRA-2, a NASA dataset. The measurement period is from
1 January 1980 to 31 December 2018, and the sample comprises more than 320,000 hourly
wind speed readings. The geostrophic wind approximations are divided into two horizontal
components: u and v, representing the east-west and north-south wind components,
respectively. We obtain u and v values for each hour and, using the Pythagorean theorem,
convert them into hourly wind speed measurements as follows:

V =
√

u2 + v2 (1)

NASA wind resources are measured for an elevation of 50 m above sea level. Because
the hub height of the turbines is 90 m, these data on wind speed at 50 m are vertically
extrapolated to wind speed at 90 m as follows:

H
H0

=

(
V
V0

)α

(2)

where H and H0 represent the hub height and above-sea-level elevation of measurement,
respectively; V and V0 are the wind speeds at heights H and H0, respectively; and α, the
aerodynamic roughness of the upstream terrain, follows the 1/7 power law. Therefore, the
recommended α value for offshore water is 0.11 [32].

Simulations are continually performed at 1-hour intervals at the wind farm on the basis
of on-site wind speeds, with long-term records obtained for the period from 1 January 1980
to 31 December 2018 by extrapolating the vertical wind speed profile to the 90 m hub
height. As a result, we obtain an average wind speed of 5.794858 m/s. Regarding the
evaluation of data recorded at the wind farm over the study period, Table 1 presents the
percentiles of hourly wind speed. On average, wind speeds below 3.5 m/s (measured at
the 90 m hub height) are recorded only 30% of the time, as shown in Figure 2. Without
considering turbine availability, this means that sufficient power cannot be generated for
nearly one-third of the study period and that the likelihood of wind speeds exceeding
25 m/s (Figure 3) is very low.

Moreover, as displayed in Figure 4, 90% of the time, wind speeds are below 13 m/s. In
other words, the full generation capacity for each turbine of 5.2 MW is realized only 10% of
the time. These extreme wind volumes reflect the passage of typhoons over the wind farm.

As indicated by the monthly means in Figure 5, wind speeds are substantially higher
in winter than in summer because the monthly mean speeds of the northeasterly along the
Taiwan Strait increase rapidly with the onset of the winter monsoon. Figure 5 explains the
significant impacts of the season on wind speed. In Taiwan, energy consumption peaks in
summer as temperatures increase at the maximum. Because the wind speed is low during
this season, Taiwan’s power needs cannot be met solely through offshore wind power.
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Table 1. Percentile hourly wind speed (m/s).

Year 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

1980 0.0503 1.3724 1.9042 2.4577 2.8807 3.3150 3.7355 4.1745 4.5574 4.9724 5.3243 5.7352 6.1506 6.6386 7.1556 7.7442 8.4877 9.4698 10.5860 12.4280 21.5351
1981 0.0579 1.2338 1.7637 2.2513 2.6455 3.0173 3.3792 3.7275 4.0651 4.4234 4.7928 5.1642 5.6101 6.0918 6.6186 7.2349 7.8642 8.6743 9.8768 11.6119 23.4719
1982 0.1332 1.2592 1.8395 2.2853 2.7210 3.1171 3.5318 3.8868 4.2561 4.6043 4.9447 5.3515 5.8105 6.2837 6.8651 7.5691 8.2010 9.0148 10.1519 11.9561 33.7941
1983 0.0125 1.2104 1.7929 2.2622 2.7270 3.1043 3.5444 3.8977 4.2742 4.6739 5.1206 5.4944 5.9499 6.4536 7.0046 7.6465 8.2994 9.1699 10.2856 11.8122 26.6570
1984 0.0754 1.4329 2.0348 2.5273 2.9772 3.3816 3.7936 4.1606 4.5454 4.9368 5.3762 5.8576 6.3771 6.9812 7.5742 8.2127 8.9572 9.8008 10.9145 12.4850 19.4006
1985 0.0692 1.3306 1.9542 2.4576 2.9477 3.3403 3.7344 4.1076 4.4511 4.8355 5.2154 5.6890 6.1663 6.6874 7.2451 7.8582 8.5723 9.5477 10.5621 12.1850 21.0713
1986 0.0664 1.3007 1.8987 2.3774 2.8289 3.1597 3.5410 3.8573 4.2079 4.5753 4.9525 5.3592 5.7899 6.2658 6.7415 7.3539 8.0594 8.9087 10.0980 12.2737 33.3867
1987 0.0592 1.3677 1.9259 2.4228 2.8568 3.2569 3.6398 3.9892 4.3148 4.6567 5.0059 5.3618 5.7493 6.1394 6.6320 7.1907 7.9202 8.7811 9.9124 11.7299 21.4781
1988 0.1426 1.5839 2.2572 2.7235 3.1180 3.4806 3.8244 4.1377 4.4496 4.7944 5.1402 5.5431 5.9553 6.3695 6.9492 7.5549 8.2097 9.0881 10.1349 11.6885 19.2414
1989 0.0251 1.3591 1.8880 2.2942 2.6790 3.0369 3.4062 3.7591 4.0900 4.4184 4.7389 5.0840 5.4959 6.0166 6.5879 7.1654 7.8480 8.5728 9.5533 11.5037 26.7686
1990 0.0388 1.2444 1.8392 2.2803 2.6636 3.0468 3.4088 3.7578 4.1006 4.4491 4.8143 5.2512 5.6529 6.1458 6.7244 7.3501 7.9885 9.0850 10.5796 12.9458 23.3977
1991 0.0491 1.4084 2.0708 2.5482 2.9690 3.3733 3.7617 4.1538 4.5179 4.8961 5.2660 5.6686 6.1210 6.5795 7.1089 7.7222 8.4257 9.1903 10.2077 11.8150 28.8567
1992 0.0128 1.2482 1.8076 2.2344 2.6061 2.9757 3.3210 3.6580 4.0263 4.3932 4.7728 5.1891 5.6429 6.1994 6.7680 7.3696 8.0652 8.9104 10.2589 12.0192 25.4050
1993 0.0690 1.4486 2.0237 2.4793 2.8925 3.2529 3.6128 3.9632 4.3155 4.6343 4.9649 5.3002 5.6568 6.0480 6.4951 7.0431 7.7430 8.5182 9.6097 11.3121 22.6019
1994 0.0226 1.2685 1.8863 2.3552 2.8134 3.2031 3.5570 3.9034 4.2696 4.6362 5.0328 5.4587 5.8444 6.3248 6.8325 7.4097 8.1280 8.9421 10.1356 12.2076 24.4933
1995 0.0302 1.2699 1.8525 2.3619 2.8440 3.2760 3.7069 4.1184 4.4889 4.8991 5.3028 5.6983 6.0962 6.5892 7.0974 7.5931 8.2255 8.9662 10.0266 11.7544 26.1340
1996 0.1416 1.4046 1.9577 2.4209 2.8432 3.2063 3.5908 3.9735 4.3407 4.7140 5.0955 5.4839 5.8848 6.3328 6.8732 7.4677 8.1865 9.0522 10.1256 12.2049 29.3348
1997 0.0112 1.2642 1.8023 2.2898 2.7157 3.1303 3.5357 3.9175 4.3071 4.6944 5.0749 5.4490 5.8168 6.2149 6.6547 7.1698 7.8613 8.6507 9.6150 11.1737 22.9913
1998 0.0946 1.4154 2.0003 2.4516 2.8940 3.2721 3.6512 4.0034 4.3509 4.7018 5.0454 5.4044 5.7629 6.1907 6.6778 7.2019 7.8600 8.6627 9.6149 10.9027 33.1080
1999 0.0783 1.4830 2.1409 2.7014 3.1590 3.5870 4.0146 4.3933 4.7519 5.0920 5.4633 5.8267 6.2420 6.7108 7.1756 7.6586 8.2587 9.0479 10.3062 12.2714 34.6528
2000 0.0866 1.3144 1.9536 2.5141 2.9840 3.3914 3.7488 4.1205 4.5920 4.9939 5.3993 5.8186 6.2653 6.7775 7.2971 7.9001 8.6109 9.5344 10.8102 12.2366 33.6447
2001 0.0684 1.4358 2.0557 2.5092 2.8958 3.2889 3.6392 4.0116 4.3866 4.7608 5.1522 5.5571 6.0718 6.6131 7.1345 7.7442 8.4871 9.3631 10.5551 12.4332 26.3303
2002 0.0461 1.2125 1.8084 2.2653 2.7068 3.1510 3.5019 3.8500 4.2059 4.5609 4.9133 5.3139 5.7777 6.2842 6.8209 7.3776 8.0773 8.8560 9.9170 11.7033 20.7899
2003 0.1081 1.5743 2.1361 2.5905 2.9934 3.3935 3.7815 4.1405 4.5057 4.8737 5.2336 5.6770 6.0925 6.5791 7.0968 7.7061 8.3318 9.1881 10.2666 11.9733 24.2686
2004 0.0586 1.4512 2.1208 2.6407 3.0983 3.5411 3.9849 4.3918 4.8348 5.2820 5.7515 6.2803 6.7931 7.3136 7.8864 8.4601 9.1183 10.0049 11.0612 12.8697 23.7927
2005 0.0638 1.4308 2.0558 2.5852 3.0990 3.5227 3.9467 4.3582 4.7727 5.1762 5.6116 6.0699 6.5475 7.0728 7.5886 8.1982 8.8821 9.8128 11.0583 12.7569 31.1070
2006 0.0408 1.4349 2.0673 2.5915 3.0581 3.4571 3.8476 4.2263 4.5913 4.9445 5.2931 5.7102 6.1425 6.6001 7.1104 7.6898 8.3815 9.2229 10.3408 12.0964 21.9929
2007 0.0392 1.4056 2.0259 2.5255 2.9791 3.4003 3.7963 4.1873 4.6078 5.0008 5.4480 5.9410 6.4173 6.9362 7.5413 8.1726 8.8509 9.6604 10.7631 12.5878 25.9414
2008 0.0561 1.4600 2.0317 2.5505 2.9753 3.3879 3.7887 4.2183 4.6003 5.0088 5.4288 5.8937 6.4234 6.9646 7.5294 8.2301 9.0957 9.9552 11.0269 13.0182 29.1246
2009 0.0833 1.2534 1.8197 2.3125 2.7677 3.2024 3.6025 3.9965 4.3974 4.7986 5.2506 5.6738 6.1183 6.6152 7.1448 7.8222 8.5878 9.4768 10.6218 12.6610 29.7837
2010 0.0269 1.3930 2.0479 2.5644 3.0228 3.4288 3.8022 4.1767 4.5261 4.8916 5.2587 5.6495 6.0418 6.4809 6.9600 7.4945 8.0885 8.9287 10.0395 12.0532 28.7035
2011 0.0663 1.3661 1.9346 2.4324 2.8603 3.2726 3.6753 4.0712 4.4734 4.8914 5.2976 5.7554 6.2129 6.6560 7.1684 7.7292 8.3877 9.0759 10.2634 12.1654 21.4232
2012 0.0914 1.3594 1.9604 2.4668 2.9120 3.3629 3.8007 4.2465 4.6511 5.0495 5.4563 5.8855 6.3858 6.8754 7.4802 8.0537 8.8051 9.7048 10.6797 12.3484 29.1775
2013 0.0933 1.3536 1.9164 2.4166 2.8913 3.2986 3.6959 4.0555 4.5102 4.9927 5.4715 5.9791 6.4762 6.9922 7.5958 8.3265 9.0491 9.9063 10.8860 12.9309 24.9071
2014 0.0434 1.2765 1.8765 2.3751 2.8086 3.2143 3.6126 4.0152 4.3872 4.7849 5.2170 5.6248 5.9882 6.4235 6.9310 7.5069 8.1529 8.9868 10.0759 11.9846 26.3558
2015 0.0298 1.3640 2.0754 2.6628 3.1394 3.6196 3.9950 4.3804 4.7984 5.2057 5.5878 5.9938 6.4261 6.8645 7.3160 7.8365 8.3673 9.1867 10.2007 11.9236 32.4300
2016 0.0824 1.4793 2.1201 2.6113 3.1112 3.5555 3.9630 4.3398 4.6641 5.0280 5.4552 5.8769 6.3297 6.8076 7.3463 7.9603 8.7183 9.6476 10.7892 12.6043 35.7480
2017 0.0353 1.4469 2.0772 2.5980 3.0396 3.4451 3.8113 4.1474 4.4910 4.8835 5.2983 5.7492 6.2072 6.6815 7.1226 7.6477 8.2300 8.8996 10.0119 11.5401 18.7900
2018 0.0747 1.4133 2.0012 2.5133 2.9882 3.4500 3.8965 4.2913 4.6514 5.0369 5.4126 5.8302 6.2775 6.7189 7.1649 7.6473 8.2841 9.2811 10.5076 12.2778 19.6328
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Figure 2. Offshore wind speeds lower than 3.5 m/s.
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Figure 3. Offshore wind speeds higher than 25 m/s.
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2.3. Offshore Wind Power Analysis

We calculate the rated power of 5.2 MW and examine the manufacturer-generated
power curve to capture its relationship during the effective wind speeds from 3.5 to 25 m/s
and thus forecast wind power output. These power outputs are gross estimates of AEP;
because the turbine’s downtime and availability are not considered, the turbines can
operate at their rated power year-round, maximizing the amount of power generated.
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On the basis of the power curve, annual wind speed data (corresponding to the hub
height) and time series AEP data at the wind farm are compiled (Figure 6). Details on the
energy outputs are provided in Table 2.
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Figure 6. Annual energy produced during the study period.

The wind data analysis indicates that wind speeds at the study site follow highly
seasonal patterns and vary throughout the year. This explains why power outputs tend
to be higher during the winter and lower during the summer. The estimated AEP can be
expressed within a given confidence interval. The p values (e.g., P50 and P90) describe the
probability that energy generation exceeds a certain percentage. Specifically, P50 denotes
the annual average of power generation where the AEP is forecasted to be exceeded with a
50% probability over a year. P90 means that the AEP is forecasted to be exceeded with a
90% probability over a year.

Regarding the AEP calculations and considering the significant seasonal fluctuations
in wind speeds, we further calculate the exceedance probabilities for estimated monthly
energy production. Herein, the concept is the same as AEP, except that the p values
represent monthly power output predictions. For example, P50 refers to the possibility
that monthly power outputs are exceeded in 50% of the months. Accordingly, the P75
(P90) values represent the possibility that these outputs are exceeded in 75% (90%) of the
months. Therefore, the quotient obtained from dividing P75 by P90, which is lower than
P50, represents the simulation results of the long-term average. Figure 7 presents the P50,
P75, and P90 records in the monthly power output simulations, determined according to
the effective wind speeds.
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Table 2. Annual energy production (MWh).

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

1980 16.0135 18.3204 8.0328 5.9104 6.7387 6.5750 11.3654 6.7132 10.0579 6.4109 11.5115 14.5862 122.2358
1981 13.4383 10.7895 8.6876 2.9837 4.9249 7.9570 7.3410 4.1850 7.9674 9.4028 10.3817 13.5470 101.6056
1982 11.6472 14.1431 10.2641 7.3584 5.1126 3.6894 10.3520 8.0517 6.9031 4.1891 8.5163 19.8324 110.0593
1983 18.3221 14.4490 13.2699 6.6440 6.0395 6.4374 6.6983 4.9861 4.4768 5.7085 11.2620 15.5770 113.8707
1984 22.7560 18.2135 10.2256 7.4901 5.6077 8.5310 1.9266 10.3254 3.9791 9.1977 16.1918 17.4180 131.8625
1985 18.9973 10.7636 18.8946 7.3276 4.8796 10.6395 7.4931 5.7731 4.6749 7.5102 7.7269 17.9112 122.5916
1986 15.8566 16.1907 8.3295 4.4435 6.2278 4.8334 6.3357 7.0587 8.7906 4.5678 13.3322 12.4329 108.3992
1987 12.5772 10.2660 4.5334 7.5561 4.0354 3.8742 12.9335 3.2794 7.8082 6.3668 13.1186 18.2582 104.6068
1988 17.1284 16.3862 16.5922 7.1784 3.9178 7.9241 4.8654 3.2967 5.6837 8.0204 11.6652 10.0453 112.7036
1989 13.4469 13.6223 11.6755 5.5847 4.2500 1.7300 6.3885 3.2598 7.8340 7.2978 12.3412 10.9115 98.3424
1990 15.5967 10.3111 8.7886 7.0202 5.9884 8.9745 3.8594 14.8472 8.5931 7.9644 9.4775 8.1624 109.5835
1991 14.5279 10.8576 10.4666 5.4351 6.5058 11.2376 9.7833 1.9580 14.0646 14.7073 8.0329 9.8015 117.3782
1992 18.3109 12.5189 6.9719 2.9590 5.0479 2.2462 9.0728 8.3020 8.4902 11.8352 12.2012 9.3743 107.3305
1993 18.0793 7.2064 10.2456 6.3299 4.5697 7.3289 2.8554 5.7649 4.8158 10.0502 7.4530 14.2840 98.9831
1994 14.1137 13.4384 13.8691 3.3571 4.6682 5.2256 5.4760 14.9523 5.5281 13.2571 5.0970 11.5623 110.5447
1995 17.0235 14.6052 10.1306 5.8653 3.8018 6.8919 8.9443 6.2767 5.2391 7.8724 12.8011 15.1890 114.6409
1996 15.2327 16.7299 9.4501 8.0407 5.5628 5.6175 6.9805 6.3923 6.6495 6.3190 12.3505 12.7824 112.1080
1997 15.0476 11.4113 6.3013 5.4027 4.9345 5.6780 5.9217 14.7850 6.5574 5.8184 6.9962 13.4064 102.2604
1998 13.1906 11.2298 8.1639 6.7134 3.4709 10.1776 4.0058 4.5803 5.3755 10.0760 10.0748 14.0398 101.0985
1999 14.3673 10.0960 10.5824 5.9562 5.0791 8.7784 7.1641 8.8370 7.8896 9.4072 11.4737 20.8795 120.5105
2000 15.7845 17.7330 10.6132 5.7712 5.1424 4.6095 8.7513 9.8331 8.0985 9.5859 13.2820 16.9336 126.1381
2001 11.4353 11.5955 9.2981 8.3575 6.9537 7.6321 9.6360 1.8322 19.4233 7.8643 13.2092 12.2457 119.4830
2002 11.7791 8.6444 7.1011 7.9998 5.4623 1.7550 11.4603 8.2163 8.6788 7.9503 12.5578 15.0084 106.6134
2003 14.8424 8.3973 9.8975 5.3865 6.6632 12.1884 7.8290 6.2016 6.1371 7.1839 16.7083 15.9091 117.3443
2004 17.4223 12.4600 14.9717 6.5113 7.9398 7.8567 12.1810 10.7621 11.7961 17.5422 6.4485 16.9575 142.8493
2005 18.3405 11.7854 12.3282 6.5889 4.8563 14.1425 11.4677 13.5073 4.7954 13.5444 7.5313 17.0018 135.8897
2006 16.8560 13.4686 8.7898 7.9325 6.5442 10.2525 14.6258 3.3999 6.5152 6.5103 8.5773 15.2165 118.6887
2007 20.3596 9.7886 10.4628 9.1506 3.0486 9.6143 4.9074 14.5998 6.3311 12.7857 16.3521 13.3874 130.7881
2008 16.1058 21.3236 9.2900 6.1167 6.7681 11.3939 11.6754 5.7600 10.9307 3.5711 16.6806 14.8035 134.4195
2009 18.7596 8.3204 11.8923 8.5055 2.0785 12.6225 7.7222 8.8643 2.1709 13.6092 14.1155 13.2773 121.9383
2010 9.8297 11.5377 9.5021 8.4130 6.3019 6.5152 8.5213 2.5480 11.3007 13.8942 10.8612 13.9443 113.1692
2011 22.5364 10.6982 12.9306 5.7991 5.7315 12.9334 5.9730 9.0493 1.9678 6.9768 5.1179 19.2872 119.0011
2012 18.1349 13.6851 9.8158 5.6288 3.5684 17.2660 7.1434 13.5699 8.0286 11.5501 8.3362 12.8574 129.5845
2013 19.6781 12.0143 10.0285 5.8661 4.2003 5.7329 11.6274 11.8493 6.0053 16.0132 11.2480 20.0655 134.3289
2014 12.8731 11.8546 9.4691 4.8750 4.6086 11.3132 8.8237 8.3577 3.6047 9.9009 9.3080 17.6100 112.5987
2015 13.1475 10.0529 10.4762 11.0570 7.0977 8.7878 12.3709 13.6937 6.0721 5.1430 9.0456 16.9906 123.9350
2016 18.4409 19.3359 9.8825 4.4508 6.3902 11.4050 10.7724 7.2384 13.3546 6.6310 7.8990 12.8217 128.6222
2017 12.3919 11.1093 10.5067 6.7525 2.4460 8.9005 10.0254 5.3410 2.6099 13.7680 14.2818 17.0044 115.1374
2018 15.5649 15.5508 8.6444 6.3076 3.8946 8.4004 5.7321 10.5475 10.8669 11.9789 8.3706 15.9612 121.8199

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 30 
 

 
Figure 7. P50, P75, and P90 records of monthly offshore wind power produced. 

3. Modeling and Forecasting Energy Production for Offshore Wind Farms 
This section concerns the modeling and forecasting of wind power production for 

offshore wind farms. An accurate assessment of the long-term wind speed at hub height 
is necessary for predicting the power output of an offshore wind farm, which in turn en-
ables developers, investors, and lenders to make relevant evaluations and allows insurers 
to estimate risks under an index insurance scheme. 

Because fluctuations in energy output are mainly attributed to variations in wind 
speed, this variability must be predicted and managed to prevent balancing problems re-
lated to energy production. Taiwan’s offshore wind speeds are influenced by seasonal 
factors such as typhoons, which impede wind speed forecasts. However, as mentioned, 
energy production can be predicted through statistical analysis, as well as by examining 
the seasonal impacts on monthly power outputs. 

Let {𝑦 ; t = 1, 2, ···, T} denote the monthly series of wind power outputs. We first 
consider the following linear regression models: 𝑦 =  𝛽𝑇𝑖𝑚𝑒 + 𝑟 𝑀 + 𝑟 𝑀 + ∙ ∙ ∙  +𝑟 𝑀 + 𝜖 , 𝜖  ~ 𝑁 (0, 𝜎 ) (3)

where Timet denotes a time trend or time dummy; Mit denotes the month dummy, with i = 
1, 2, ···, 12; and 𝜖  denotes random fluctuation. We use data for the period from January 
1980 to December 2017 (38 years or T = 456 months) for model identification and construc-
tion. Data for the 12 months of 2018 are applied for model validation. The left panel of 
Table 3 shows the results of ordinary least squares estimation for Model (3). All data anal-
yses are conducted using R [33]. Because the estimate for the coefficient of Timet is positive 
and significant, we conclude that wind speeds slightly increase over the study period. The 
reason for this remains unclear; the world has become increasingly stormy over the past 
two decades. A report by National Geographic [34] indicates that wind speeds have in-
creased by an average of approximately 5% over the preceding 20 years. Furthermore, 
according to new data from global satellites, the frequency of extreme strong winds 
caused by storms has increased by 10% over the same period. 

Figure 7. P50, P75, and P90 records of monthly offshore wind power produced.



Sustainability 2021, 13, 8985 12 of 27

3. Modeling and Forecasting Energy Production for Offshore Wind Farms

This section concerns the modeling and forecasting of wind power production for
offshore wind farms. An accurate assessment of the long-term wind speed at hub height is
necessary for predicting the power output of an offshore wind farm, which in turn enables
developers, investors, and lenders to make relevant evaluations and allows insurers to
estimate risks under an index insurance scheme.

Because fluctuations in energy output are mainly attributed to variations in wind
speed, this variability must be predicted and managed to prevent balancing problems
related to energy production. Taiwan’s offshore wind speeds are influenced by seasonal
factors such as typhoons, which impede wind speed forecasts. However, as mentioned,
energy production can be predicted through statistical analysis, as well as by examining
the seasonal impacts on monthly power outputs.

Let {yt; t = 1, 2, · · · , T} denote the monthly series of wind power outputs. We first
consider the following linear regression models:

yt = βTimet + r1M1t + r2M2t + · · · + r12M12t + εt, εt ∼ N
(

0, σ2
)

(3)

where Timet denotes a time trend or time dummy; Mit denotes the month dummy, with i = 1,
2, · · · , 12; and εt denotes random fluctuation. We use data for the period from January 1980
to December 2017 (38 years or T = 456 months) for model identification and construction.
Data for the 12 months of 2018 are applied for model validation. The left panel of Table
3 shows the results of ordinary least squares estimation for Model (3). All data analyses
are conducted using R [33]. Because the estimate for the coefficient of Timet is positive
and significant, we conclude that wind speeds slightly increase over the study period.
The reason for this remains unclear; the world has become increasingly stormy over the
past two decades. A report by National Geographic [34] indicates that wind speeds have
increased by an average of approximately 5% over the preceding 20 years. Furthermore,
according to new data from global satellites, the frequency of extreme strong winds caused
by storms has increased by 10% over the same period.

Table 3. Estimation results for Model (3) and Models (4) and (5).

Model (3) Models (4) and (5)

Estimate Std Err t p Value Estimate Std Err t p Value

Time 0.0031 0.0011 2.8633 0.0044 0.0031 0.0010 3.2372 0.0012
Ndays 5.5425 1.0606 5.2257 <0.0001

January 15.2152 0.5481 27.7614 <0.0001 −156.6148 32.8855 −4.7624 <0.0001
February 12.0798 0.5485 22.0215 <0.0001 −144.5740 29.9830 −4.8219 <0.0001

March 9.6393 0.5490 17.5571 <0.0001 −162.1880 32.8855 −4.9319 <0.0001
April 5.7411 0.5495 10.4478 <0.0001 −160.5408 31.8250 −5.0445 <0.0001
May 4.4866 0.5500 8.1577 <0.0001 −167.3395 32.8854 −5.0886 <0.0001
June 7.4339 0.5505 13.5042 <0.0001 −158.8492 31.8251 −4.9913 <0.0001
July 7.5886 0.5509 13.7737 <0.0001 −164.2373 32.8854 −4.9942 <0.0001

August 7.1374 0.5514 12.9434 <0.0001 −164.6880 32.8857 −5.0079 <0.0001
September 6.6336 0.5519 12.0180 <0.0001 −159.6506 31.8248 −5.0165 <0.0001

October 8.4932 0.5524 15.3748 <0.0001 −163.3319 32.8860 −4.9666 <0.0001
November 10.1628 0.5529 18.3808 <0.0001 −156.1214 31.8244 −4.9057 <0.0001
December 14.0481 0.5534 25.3853 <0.0001 −157.7765 32.8867 −4.7976 <0.0001

φ(AR1) −0.6300 0.1648 −3.8236 0.0001
θ(MA1) 0.5304 0.1771 2.9892 0.0028

σ 3.0350 2.9422
R2 0.5319 0.5630

AIC 2296.04
BIC 2366.12

Note: “Std Err” denotes the standard error of the estimate.

On a monthly basis, this effect is clear and significant. The windiest period is between
November and February because of the wintertime northeast monsoon. Despite the
occasional occurrence of typhoons in summer and autumn, the winds remain fairly smooth
from June to October. However, electricity shortages occasionally occur in Taiwan in
the summer.
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We employ the modeling strategies for time series analysis proposed by [35] and
further discussed by [36] to model and decompose the various stochastic components
underlying the data series on monthly wind power outputs. The following model serves
as one of our optimal models:

yt = β1Timet + β2NDayst + r1M1t + r2M2t + · · · + r12M12t + εt, (4)

where Ndayst indicates the number of days for month t. Here, the error term εt follows a
first-order ARIMA model for each part of the autoregression and the moving average. This
can be expressed as follows:

εt = φεt−1 + ηt − θηt−1, ηt ∼ N
(

0, σ2
)

(5)

The right panel of Table 3 displays the estimation results for Models (4) and (5). The
inclusion of Ndays yields negative estimates of yi. This is a reason for including the model
results for comparison. Moreover, R2 increases slightly from 53.19% to 56.30%.

In Model (3) as well as in Models (4) and (5), a deterministic trend and deterministic
seasonality are used, respectively, to model the presence of a linear trend and the effect of
months on the data. To adjust for complex fluctuations, we consider the stochastic trend and
stochastic seasonality by employing the multiplicative seasonal ARIMA model, denoted as
ARIMA(p, d, q) × (P, D, Q)s. This model is detailed in chapter 9 of [35]. One of our optimal
models for the monthly wind power output series is ARIMA(1, 1, 2) × (0, 1, 1)12, which
can be expressed as follows:

(1− φB)(1− B)
(

1− B12
)

yt = β0 + β1NDayst +
(

1− θ1B− θ2B2
)
+
(

1− φB12
)
+ εt

(6)
where εt ∼ N

(
0, σ2) and B denote the backshift or lag operator, defined as Bkyt = yt−k.

Table 4 presents the estimation results of Model (4). Although these estimations are
lower than those of Models (4) and (5), Model (6) is more parsimonious because the Akaike
information criterion and Bayesian information criterion are smaller than their counterparts
for the other models.

Table 4. Estimation results for Model (6).

Estimates Std Err t p Value

Ndays 5.5020 1.0522 5.2291 <0.0001
φ(AR1) −0.5953 0.1752 −3.3972 0.0007

θ1(MA1) −0.4916 0.1883 −2.6111 0.0090
θ2(MA2) −0.4726 0.1849 −2.5553 0.0106

θ12
1 (SMA1) −0.9339 0.0292 −31.9730 <0.0001

σ 3.0131
R2 0.5486

AIC 2271.57
BIC 2296.14

Note: “Std Err” denotes the standard error of the estimate.

Figures 8 and 9 present the residual plots of Models (4) and (5) and of Model (6),
respectively, along with their actual and fitted values. Because the trend and seasonality of
the original data series are considered in the models, neither residual plot reveals a pattern.
The residual diagnostics for both models follow the error assumptions of the models.
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Next, we apply the model estimates to produce a forecast for comparison with the
model fit performance. To aid visual interpretation, Figures 10 and 11 show part of
the historical data (2014–2017) of wind power production and a 12-month extrapolation
forecast for 2018 obtained by applying estimates from Models (4) and (5) and Model (6),
respectively. The solid line with “◦” indicates the actual observation, whereas the dashed
line with “•” denotes the fitted data from before December 2017 and the out-of-sample
predicted data for 2018. The shaded area represents 95% interval extrapolation forecasts.
For both models, all realizations are within the 95% forecast interval. Thus, the results
appear reasonable overall.
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4. AEP Index Insurance

Wind speed risk differs from many types of risk covered under conventional property
and liability insurance schemes for offshore wind farms. Index insurance has the potential
to manage the production volatility risks incurred by offshore wind farms. Once wind
speeds at a particular site are estimated, the value of generated energy can be assessed
as the AEP index. This index insurance product can manage the impacts of risks from
excessively high or low wind speeds on energy production and support project investments
and financing decisions.



Sustainability 2021, 13, 8985 16 of 27
Sustainability 2021, 13, x FOR PEER REVIEW 18 of 30 
 

 
Figure 10. Time plot of the fitted and predicted values of Models (4) and (5). 

 
Figure 11. Time plot of the fitted and predicted values of Model (6). 

4. AEP Index Insurance 
Wind speed risk differs from many types of risk covered under conventional prop-

erty and liability insurance schemes for offshore wind farms. Index insurance has the po-
tential to manage the production volatility risks incurred by offshore wind farms. Once 
wind speeds at a particular site are estimated, the value of generated energy can be as-
sessed as the AEP index. This index insurance product can manage the impacts of risks 

Figure 10. Time plot of the fitted and predicted values of Models (4) and (5).

Sustainability 2021, 13, x FOR PEER REVIEW 18 of 30 
 

 
Figure 10. Time plot of the fitted and predicted values of Models (4) and (5). 

 
Figure 11. Time plot of the fitted and predicted values of Model (6). 

4. AEP Index Insurance 
Wind speed risk differs from many types of risk covered under conventional prop-

erty and liability insurance schemes for offshore wind farms. Index insurance has the po-
tential to manage the production volatility risks incurred by offshore wind farms. Once 
wind speeds at a particular site are estimated, the value of generated energy can be as-
sessed as the AEP index. This index insurance product can manage the impacts of risks 

Figure 11. Time plot of the fitted and predicted values of Model (6).

In general, index insurance involves some level of basis risk. The insurance contract
must minimize such risk by using independently verifiable indexes as direct indexes that
cannot be easily manipulated by either the insurer or the insured. As an independent
index, wind speed data are objective and transparent; furthermore, they correlate strongly
with wind power generation. Regarding the payout trigger, the AEP index is defined by
the wind speed index and is used to calculate the payouts upon the completion of the
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insurance period. Thus, the insurance contract can be easily implemented using wind
speed data. In turn, wind speed data can be used to estimate AEP and thereby determine a
baseline against which the insured’s needs to establish the trigger index are considered.
From the perspective of developers, investors, and lenders, such an insurance product
might be attractive because it can stabilize the revenue gained from power generation.

Regarding AEP predictions, p values denote the long-term probability that the AEP is
exceeded, as computed on the basis of historical wind speed data recorded at hub height at
a given offshore wind farm. The power curve, which presents the electricity output of a
turbine as a function of the wind speed and hub height, is generated and provided by the
turbine manufacturer as per industry standards. Because the measured data are average
hourly wind speeds, gross energy production per day is calculated by applying the power
curve to the hourly average wind speed at hub height. The results are then integrated over
one day, after which the net energy production per day is determined by adjusting for all
system losses. The AEP index is derived by integrating the net daily energy production for
all installed turbines at the wind farm over a 1-year insurance period.

System losses are loss factors applied to power generation at offshore wind farms.
Most loss factor values are derived from industry standards. They are recorded either
according to manufacturer-provided technical specifications or as indicated in the feasibility
report of a given wind farm [37]. System losses, assumed to be constant throughout the
1-year insurance period, are estimates of a reduction in energy production. Thus, because
of system losses, the net AEP of an offshore wind farm is less than the gross AEP. In the
present insurance scheme, we define system efficiency as calculated from the aggregated
influence of all system losses, including those from the wake effect, turbine availability,
and electrical transmission efficiency. For example, suppose 6% of energy loss is ascribed
to the wake effect (one component of the estimated power loss), and other sources account
for 10–12% of energy loss. In that case, total system losses can approach 18%. Thus, the
system efficiency ratio (SER) for the wind farm is 82%. Average power losses reported for
the offshore wind farms Horns Rev, Lillgrund, and Nysted range from 10% to 25% of total
power outputs [38,39]. Offshore wind projects have benefitted from the regulatory support
of Taiwan’s government in providing higher purchase prices for power generation. The
price of electricity generated by offshore wind farms is specified for a set period of 20 years
under a FIT program as the applicable tariff for this index insurance product.

According to the AEP index, the insured will be compensated for any shortfall in en-
ergy production attributed to overly high or low wind speeds, irrespective of the occurrence
of real loss and the extent of said loss. With reference to area yield crop insurance [40,41], the
predefined AEP is referred to as the index trigger. Payouts are structured in a proportional
schedule as follows:

Payouts = Max
(

0,
Index Trigger− Realized Index

Index Trigger

)
× SER%× Applicable Tari f f − Deductible (7)

Financial modeling requires a comprehensive understanding of all project assump-
tions. Furthermore, a sensitivity analysis must be conducted to define a financial base case.
Therefore, in the planning and financing stages of a wind farm project, wind resources
must be evaluated to quantify all financing-related risks [42].

Through the aforementioned methods, developers and lenders can transfer the finan-
cial risk of wind volatility to insurers to minimize the effect of revenue losses. Using AEP
estimates to decide a trigger level and p values for an insurance contract are considered
reliable. Moreover, it can demonstrate that the uncertainty is at a level acceptable to most
stakeholders. On the basis of the theoretical framework of AEP analysis, P90 is widely
adopted by lenders and investors as a foundation for financial decision-making [43]. Thus,
as shown in Figure 12, we respectively apply P90 and P99 to the Changhua Demonstration
Offshore Wind Farm as the index trigger and the deductible. Over the analytical period,
the realized index does not reach P90 on five occasions: in 1981, 1989, 1993, 1997, and 1998.
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In index insurance, reducing basis risk is critical because the index is a predictor of
energy production losses associated with payouts. Furthermore, the independence of the
data provider is essential, and the data provided must be mutually agreed upon by the
insurer and the insured. After the 1-year insurance period, the wind farm can use actual
system loss data to benchmark the actual SER and thereby reduce the basis risk ascribable
to system losses.

In the future, once actual AEP data become available, the present index insurance
scheme can employ the actual AEP of the insured as another trigger from which to adjust
scheme design in order to further reduce basis risks.

5. Pure Premium AEP Index Insurance Rates

To reduce the basis risk, seasonal impacts to power generation are taken into account
at monthly time scales as inputs in the insurance pricing strategies. A historical wind
speed database is required for pricing the index insurance scheme to estimate energy
production and apply statistical methods for fitting distribution functions to the collected
data. Exceedance probability constitutes a statistical measure of whether the probability for
a particular value will be reached or exceeded. For example, a 50% exceedance probability
(P50) is equal to the mean value of a population’s probability density function, where 50%
of the probability density is above and below the mean, respectively. P75 indicates that the
probability that the P75 value will not be attained is 25%.

With reference to Section 3, Figures 13 and 14 display the autocorrelation function
(ACF) and partial autocorrelation function plots of the residuals based on Model (6).
Neither indicates serial correlation.
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Figure 13. The autocorrelation function plots of the residuals based on Model (6).

Figures 15 and 16 present the histogram and normal probability plot of the residuals
based on Model (6), respectively. Again, the residuals appear relatively symmetrical and,
except for a few points with large positive deviations, follow a normal distribution.

Therefore, we can conclude that Model (6) residuals are independent and identically
distributed with a normal distribution. Assuming a normal distribution for those uncer-
tainties in monthly energy production facilitates the determination of the pure premium
through the computation of the exceedance probabilities for the corresponding p values
within the mean and standard deviation. P50 is the mean value of the distribution; the
standard deviation herein is a measure of the spread of p values around P50. Thus, we can
estimate the uncertainty to be defined as the standard deviation about the mean for the
remaining p values.
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Across all timescales, wind speeds exert impacts on the technical performance of
offshore wind farms. Specifically, significantly more power is generated, and wind speeds
are substantially stronger during the winter months than during the summer months.
AEP is the main consideration for developers, investors, and lenders in offshore wind
projects. The financing community views offshore wind power as stable on an annual
basis. However, this is only true if they assess AEPs for complete calendar years. In
insurance pricing models, the volatility of wind power must be acknowledged through
the assessment and consideration of seasonal fluctuations in power outputs. Our pricing
approach is to divide the AEP time series into monthly sequences, where we examine
disjointed sequences for each year from 1980 to 2018 rather than a single time series. Instead
of using the AEP time series, monthly wind speed variability is considered for estimating
energy outputs. Each year’s monthly energy production time series are concatenated, as
shown in Figure 17.
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Through the further application of the p values of monthly energy production (MEP),
we propose a conventional approach for calculating the exceedance probabilities for a
given MEP of the Changhua Demonstration Offshore Wind Farm as follows:

E
[
(a− x)+|x ≥ b

]
, b = 1 (8)

Considering the expected value as well as the P50 and corresponding standard devia-
tion of MEP, the exceedance probabilities for certain energy production levels associated
with monthly forecasts can be derived from the MEP distribution curve. In Equation (8),
a is the p value of MEP, x is the corresponding forecast value of MEP, b is the retention
(i.e., b = P99), and the difference of a and b is the limit of liability. Once each monthly
premium is derived, all monthly premiums can be aggregated to obtain the annual pure
premium. The MEP estimates with 90% and 75% exceedance are used as defined inputs in
our pricing analysis under 90% and 75% confidence levels, respectively. Table 5 presents the
approximate pure premium of the index insurance scheme. The estimated pure premium
rate for the wind farm is 5.96% for P90 and 11.55% for P75.
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Table 5. Estimated pure premium rates of index insurance for the selected offshore wind farm.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Forecast 15.2152 12.0798 9.6393 5.7411 4.4866 7.4336 7.5886 7.1374 6.633 8.4932 10.1628 14.0481 108.6587
P75 13.4426 10.7309 8.7892 5.6067 4.2252 5.7054 6.1544 5.1635 5.3073 6.5706 8.3534 12.8396 92.8888
P90 12.2614 9.5598 7.8464 4.493 3.5489 3.8372 4.6935 3.2755 3.9042 5.5954 7.3616 10.7383 77.0715
P99 10.4398 7.6297 5.2052 2.9684 2.2182 1.7395 2.2795 1.8800 2.0450 3.8059 5.1049 8.6229 53.9391

E[(P75− x)+| x ≥ b] 0.2916 0.3612 0.5134 0.4551 0.2972 0.3897 0.4359 0.2927 0.3855 0.2485 0.3132 0.5162
E[(P90− x)+|x ≥ b] 0.0899 0.1198 0.2490 0.1326 0.1259 0.0772 0.1334 0.0380 0.1031 0.0901 0.1288 0.0913

P75—P99 3.0028 3.1012 3.5840 2.6383 2.0070 3.9659 3.8749 3.2835 3.2623 2.7647 3.2485 4.2167 38.9497
P90—P99 1.8216 1.9301 2.6412 1.4809 1.3307 2.0977 2.4140 1.3955 1.8592 1.7895 2.2567 2.1154 23.1324

Pure premium rate at P75 11.55%
Pure premium rate at P90 5.96%

6. Discussions

Research on wind power application worldwide has been developed to estimate off-
shore wind source potential as the critical step for project feasibility analysis [44–47]. Most
research focuses on analyzing offshore wind data probability distribution and evaluating
offshore wind energy resources over a large area in Taiwan. For example, Lee [48] studied
the Fuzzy Analytic Hierarchy Process (Fuzzy AHP) application combined with criteria
analysis for selecting appropriate sites for developing offshore wind energy in Taiwan.
Chang et al. [49] used wind speed data observed by buoys and tidal stations at various
locations for months to forecast wind speeds at different heights on the west coast of
Taiwan for offshore areas in Hsinchu, Miaoli, Taichung, Changhua, Yunlin, Chiayi, and
Tainan. Fang [50] used the most common software suite, the Wind Analysis and Applica-
tion Program (WAsP) [51] for wind resource assessment for the offshore areas of Taiwan’s
west coast for the relative financial planning of offshore wind projects. The average wind
speeds of the areas along the west coast of Taiwan are about 9.5 m/s, and the power density
is about 1000 w/m2. All studies indicate that the offshore area of Taiwan’s west coast has
excellent wind energy potential and is worth developing offshore wind farms. Wind speeds
vary based on location; wind energy assessment over large areas can reference offshore
wind energy potential. The AEP evaluation of an offshore wind farm needs a site-specific
analysis. However, very little research has been conducted for a site-specific offshore wind
farm in Taiwan.

A recent project was conducted by Cheng et al. [52] for the first offshore wind farm in
Taiwan; the Formosa 1 offshore wind farm was completed in October 2019, which has a
total capacity of 128 MW and is located about 6 km off the coast of Miaoli in northwestern
Taiwan. This study used the met mast wind speed data for one year of the farm, from
May 2017 to April 2018, to investigate the wind speed characteristics of the offshore wind
farm, modeling the probability distribution and characterizing the seasonal variation of the
at-site wind speed. The met mast is installed within the farm site, which carries measuring
instruments to measure wind speed and can provide data at frequent intervals, such as
every ten minutes. Those data can provide the project developer to determine whether
the site is economically viable for an offshore wind farm and select offshore wind turbines
optimized for local wind speed distribution. This study used statistical approaches and
the one-year wind speed data to analyze the annual mean and standard deviation and
probability density function of wind speed. However, the power curve of the selected
wind turbine was difficult to obtain, so the study used a reference wind turbine to calculate
annual energy output instead. Without yearly time series data of wind speed, the AEP is
calculated for one year only.

Our article also uses statistical approaches to analyze offshore wind energy for a
specific offshore wind farm compared to the above study. The exceedance probabilities
of the AEP are critical for lenders’ underwriting for renewable energy projects. The
AEPs are calculated by 39 years of hourly wind speed data at hub height based on the
selected wind turbine. The local wind speed profile between the Formosa 1 and the
Changhua demonstration offshore wind farm is similar from the study results. The two
farm sites are located off the coast of western Taiwan, about 6–7 km to shore, and the
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seasonal effect and the monsoon cause the principal fluctuation of monthly mean wind
speed. Therefore, to assess potential offshore wind energy in Taiwan, the AEPs should be
calculated with the MEPs at offshore wind farm locations to reflect the monthly variation
on wind energy generation.

As we mentioned in the introduction to this article, many studies focus on applying
index insurance for agriculture; however, there are comparatively very few in the renewable
energy sector, especially for wind energy. Han et al. [53] proposed a similar weather
index insurance design for wind energy to avoid economic losses caused by weather
risks. According to the findings of the study, the wind-speed power generation index is
generated by the theoretical on-grid power based on the actual wind speed of the farm
site and specified the accounting rules and impact factors. The theoretical on-grid power
has a conversion rate to the actual grid power determined by consultation between the
insurer and the insured. The trigger point is assumed that 90% of the theoretical on-grid
power of the insured wind farm. The weather index insurance pricing used the classical
combustion analysis method; it assumes that the probability distribution of future loss is
consistent with that of historical experience and takes the expected value of historical data
compensation value for pure premium calculation. This study took 2017 data provided by
an onshore wind farm in Xinjiang, China, to illustrate the index insurance application and
found seven months were triggered due to low-wind resources in the same year.

In our paper, the AEP index is developed along with a large set of available weather
and satellite data provided by an independent third party that accounts for the exceedance
probabilities in wind energy output for the insured wind farm to be more scientific, with
less human influence. The reliance on manual data collection is easy to associate with a
higher error risk. Data used from an independent third party for index insurance can reduce
administration/data collection costs and opportunities for manipulation and minimize
moral hazards and adverse selection problems. Our pricing model uses the monthly
forecasts generated by our forecasting models in Section 3. By applying the p values of
MEP, we propose a conventional approach for calculating the exceedance probabilities
for the given MEP. Considering the expected value and the P50, and the corresponding
standard deviation of MEP, the exceedance probabilities for certain energy production
levels associated with monthly forecasts can be derived from the MEP distribution curve.
Once each monthly premium is derived, all monthly premiums can be aggregated to obtain
the annual pure premium.

Insurance is one of the methods for mitigating risks. Our study has policy implications
for promoting risk management of renewable energy due to production volatilities for
offshore wind development in Taiwan. The study provides evidence that index insurance
can cover offshore wind farms for the loss of energy production due to lack of wind to
encourage investments in renewable energy. Although the results of our study indicate that
the index insurance can reduce energy production volatilities for offshore wind projects,
it remains to be seen whether this product could be commercially feasible or just an
innovative design. Most lenders have limited experience and capacity to underwrite
offshore wind projects in Taiwan. However, higher energy production certainty for an
offshore wind project means a lower risk exposure to the lender. Future research will
analyze whether positive experiences with this insurance product can stimulate future
demand by cost-benefit calculations for offshore wind project stakeholders; to see the
reduction in the cost of financing is sufficient to make the product commercially viable. If
not, subsidizing the insurance or reinsurance premium may be a consideration for Taiwan
government interventions; the long-term benefits of renewable energy to the public and
the environment protection may exceed the costs.

7. Conclusions

In this study, we designed an insurance policy on the basis of wind speed indexes
over a specified period by using wind data collected from the Changhua Demonstration
Offshore Wind Farm.
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A key challenge in the preconstruction phase of offshore wind projects is providing
sufficient evidence to support the proposed benefits such that lenders and investors con-
sider them in project financing. Our index insurance product provides a useful framework
for addressing financial risk in power generation. Developers and investors can evaluate
their project plans so that lenders can minimize risks by returning loans and interest at
appropriate scales. The present findings can provide a solution for mitigating the volume
volatility associated with wind resources and improve the financial conditions under which
offshore wind projects are developed. In contrast to conventional insurance products,
our insurance scheme can serve as a financial package for evaluating new offshore wind
projects through the consideration of actual investments. Because claims in index insurance
policies are settled based on a measurable objective index instead of the insured’s actual
losses, both the insurer and the insured must be confident that AEP calculations in trigger
payouts are accurate and transparent.

Although index insurance products have several advantages over conventional in-
surance products in terms of reducing the risk of adverse selection and preventing moral
hazards, they also have a serious limitation: introducing basis risk. As offshore wind
turbines grow taller, building representative datasets means having to extrapolate original
data to hub height, increasing the uncertainty in the measured power.

Notably, our index insurance scheme can be used as a foundation for developing
broader risk management strategies because it removes one of the major constraints in
the renewable energy industry. Regarding commercial applications, the development of
our index insurance product requires an economical premium of reasonable size. Once
the insurance contract is established, necessary support can be obtained from reinsurance
markets to make the scheme commercially viable. Given the considerable capacity of the
future offshore wind projects in Taiwan, this index insurance product development is
promising. In the future, it can be applied in other countries. To mitigate various poten-
tial weather-related risks, we intend to apply this similar approach for other renewable
resources. We hope that projects in the renewable energy industry gradually see more
financial support based on well-designed index insurance schemes.
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