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Abstract: Air-polluted cities, mostly dominated by heavy industries, are facing the dilemma of eco-
nomic growth and environment deterioration. Tangshan is the largest iron and steel manufacturing
city in China, and its air quality rankings belong to the worst 10 among 168 monitored cities of
China in a decade. It is extremely important to adopt cleaner production strategies to facilitate high
quality development. This study originally created an integrated plan (DOMCLP) to propose feasible
pathways to underpin policy making by local authorities and managers from multiple perspectives.
These include “Top-Down” measures—financial subsides and environmental efficiency improvement
from a macro vision and industrial restructuring from a mezzo vision—and a “Bottom-Up” strategy
of optimal technology selection from a micro vision. The DOMCLP simulated the environmental
and economic impacts of different cleaner production strategy mixes from 2020 to 2030. Under
the cleaner production scenario, which integrates all three measures, the targeted annual economic
growth rate can reach 6.56% over the study period without deterioration of the air environment, and
air pollutant emissions can be reduced by more than 74%. Meanwhile, the production of the iron
and steel industry can achieve a 43% capacity growth, in which the intensity of SO2 and NOx can
be reduced by 97 and 87%, respectively. Furthermore, upgrading the optimal air pollutant control
technology is proven to be more effective than other incentive measures and calls for systematic
optimization and technology choice shift from end treatment to source and process treatment in the
long run. This study proves that the integrated cleaner production strategies can realize a strong
decoupling effect on the scale of −5.89 to −0.58 to accomplish balanced economic development and
environmental improvement in heavily air-polluted cities, which is significant as other industrial
cities begin to move toward a high quality development.

Keywords: decoupling analysis; environmental efficiency; industrial structure adjustment; Input–
Output model; system dynamics; optimal technology selection

1. Introduction

With accelerating urbanization in China, heavy industry is developing rapidly to
support infrastructure construction and economy growth. However, because of its high
energy consumption and heavy pollution features [1], industrial production accounted for
approximately 65.9% of China’s total energy consumption and emitted large quantities
of SO2, NOx, and other pollutants, accounting for 86.5% (SO2) and 44.5% (NOx) of the
national total emissions in 2019. Air pollution problems are occurring mainly in industrial
cities of China.

Industrial cities face the dilemma of economic slowdown and environmental pres-
sure in China. The iron and steel manufacturing industry is one of the major industries,
consuming 27.9% of the industry energy demand and generating 29.2 and 27.4% of SO2
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and NOx, respectively [2]. Therefore, the steel industry has a serious negative impact on
the environment [3].

According to the World Steel Association, 996.3 million tons of crude steel were pro-
duced in China in 2019, accounting for 53.3% of the world’s total production. Tangshan
City is the largest iron and steel manufacturing-intensive city; its production of crude steel
in 2019 was 136.9 million tons, accounting for 13.7% of the national steel production. More-
over, the output of crude steel in Tangshan City is 37.6 million tons, 491 million tons more
than that of Japan and the United States [4,5]. As a result of the large production, Tangshan
City’s air quality rankings belong to the worst 10 among 168 monitored cities of China in
a decade. The average annual concentrations of SO2 and NOx reached 18 and 46 µg/m3,
respectively, in 2020 [6]. Moreover, the intensity of air pollutants emitted by Tangshan
City’s steel industry is much higher than that of other developed steel producers [7]. Under
significant environment pollution pressure, its economic growth has slowed down since
2010. In 2017, the economic growth rate was only 2.7%, which was much lower than the
national average of 6.5%. In the same year, Tangshan City was designated as an industrial
transformation demonstration zone in China, which is a national strategy involving the
transformation and development of industrial cities [8].

To solve the problems of slow economic development and serious environmental pol-
lution in China’s heavily air-polluted industrial cities, it is necessary to implement cleaner
production to accomplish high quality transformation and development. Cleaner produc-
tion can not only effectively improve the utilization rate of resources but also reduce energy
consumption and pollutant discharge [9]. The United Nations Environment Programme
defined cleaner production as a key method in achieving green development because
it continuously applies comprehensive environmental strategies to processes, products,
and services to improve efficiency and reduce risks to humans and the environment [10].
Technological innovation’s impacts on cleaner production should also be emphasized in
the reduction of environmental pollution and energy consumption [11].

Regarding research perspectives on the high quality development of industrial cities,
previous studies have analyzed separate macro, mezzo, and micro visions to address the
severe environmental and economic problems existing in industrial cities. A macro vision
mainly considers the environmental policies of national and local governments [12–14],
energy consumption [15–17], economic development [18,19], tax policy [20,21], and trade
policy [22,23]. A mezzo vision includes industrial optimization and adjustment and cleaner
industrial production capacity [24,25], which mainly combines the macro and mezzo
dimensions but does not consider technology from a micro perspective. Most previous
studies on the micro vision focus on the impacts on the environment or economy of specific
steelmaking processes [26] or energy saving and emission reduction technologies [27,28]. In
addition, this research perspective mostly considers heavy industry rather than industrial
cities. Xu et al. [29] proposed an optimal path for steel cities to achieve green economic
transformations through industrial restructuring and environmental treatment efficiency
improvements, but they did not analyze specific technical selection schemes. Regional
environmental and economic improvement cannot be achieved by considering only one
angle, it must involve a combination of macro, mezzo, and micro approaches.

Regarding the research time scale, current research is abundant in historical pattern
discovery but limited in scientific predictions and policies regarding the future develop-
ment of industrial cities. Several studies have expounded or compared the economic and
environmental situations of industrial cities [30,31] and thus proposed suggestions for
promoting their green development from the perspective of government governance and
planning. In previous atmospheric-related studies, the decoupling theory, a useful tool to
evaluate the trade-offs between the environment and economy, was mainly used to analyze
historical data rather than predicted results [32–34], which limited its policy guidance.

In general, previous scholars have adopted various research methods in exploring
pathways for industrial cities, such as regression analysis [35], the CGE model [36], Input–
Output method [37,38], and life cycle assessment [39,40]. In their previous study, Xu
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et al. [29] divided the current methods into two categories: summaries of historical pat-
terns or current situations and future development forecasting and planning. Overall, this
study found that current methods lack future orientation and innovation, and the authors
provided a new method combining system dynamics with the Input–Output method and
technical factors of the Energy–Economy–Environment (3E) system to provide feasible
suggestions for the green transformation of steel cities. However, this study did not provide
specific technical solutions and optimal technology selection schemes. As technology plays
an essential role in the technological progress and sustainable development of industrial
cities [41–43], herein we concretize the technical factors into clean production technical solu-
tions in order to further examine the influence of technology. Several technological studies
have considered technology as an influencing factor in their calculation models [44,45]
or evaluated their performance [29,46,47] and cost-effectiveness [27,28,48] in air pollution
treatment, thereby compiling, essentially, a summary of historical and current situations.
From the perspective of simulation and prediction, the current studies do not provide
adequate guidance for policy formulation.

Based on the limitations of the above studies, this study aims to examine the signifi-
cance and propose a strategy of integrated cleaner production for environmental improve-
ment and economic development in air-polluted cities. First, we define cleaner production
by combining “Top-Down” and “Bottom-Up” schemes in three capacities: environmental
efficiency improvement from a macro perspective, industrial structure adjustment from
a mezzo perspective, and cleaner production technology introduction from a micro per-
spective. The dynamic optimization modeling and simulation approach is adopted to
comprehensively and systematically evaluate the influence of incentive strategies on the
regional atmospheric environment and economic development.

Using Tangshan City as an example, this study comprehensively identifies the optimal
roadmap of cleaner production in industrial cities from multiple perspectives and scales.
Second, this study combines the Input–Output model, the system dynamics method, and
multi-objective optimization to develop a comprehensive dynamic optimization model
of cleaner production (DOMCLP) in a typical industrial city. This DOMCLP can be easily
extended or adapted to other regions with air pollution. Moreover, dynamic simulations
are used to predict the economic and environmental development from 2020 to 2030 in
a case study; then, forecast data are used to analyze the decoupling effect of economic
and environmental factors from a long-term perspective. This study aims to provide a
scientific method and effective strategies for the high quality development of heavily
air-polluted cities.

2. Methodology
2.1. Modeling Framework

This study applied a dynamic optimization model that comprises economic and
environmental systems. The model we constructed is a novel model with integration of
the optimal technology selection model and the Environment–Economy–Energy model,
and essentially a multi-objective linear programming problem based on the Input–Output
model and system dynamics.

As shown in Figure 1, the DOMCLP model calculates the economic and atmospheric
environmental development with three incentive cleaner production strategies (POL1,
POL2, and POL3). A to F are six advanced cleaner production technologies, their relevant
parameters appear in the Appendix. The environmental incentive policies stimulus control
effects were systematically evaluated by analyzing the balance of value and material
flows. The Input–Output model provides a basic economic model for the DOMCLP,
while environmental pollutant emissions and energy demands are connected to industrial
production and residential life.
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Figure 1. DOMCLP model framework. HAP: Household Air Pollution, IAP: Industrial Air Pollution, CLP: Cleaner
Production, ED: Energy Demand, ES: Energy Supply, TP: Total Pollution, GDP: Gross Domestic Product, PLO1: Cleaner
Production Strategy 1, POL2: Cleaner Production Strategy 2, PLO3: Cleaner Production Strategy 3.

2.2. Economic and Social Model

Using the Input–Output method as the DOMCLP model basis, a 2016 Tangshan Input–
Output table (Supplementary Sheet 1) was compiled based on the input coefficients of the
Hebei Province in 2012 and the data of each industry in Tangshan City in 2016 [49], assum-
ing the direct input coefficients remained unchanged. There are two kinds of variables in
the model: endogenous (en), which is determined by the model operation, and exogenous
(ex), which is derived from actual data. The simulation period was 15 years, from 2016 to
2030, and based on the initial data in 2016.

Objective function:
The objective of the DOMCLP model is to maximize the economy under a constraint

of the atmospheric environment; it is defined as maximizing the GDP, which is determined
by the production and value-added ratios of each industry as follows:

MAX ∑
t

1

(1 + ρ)t−1 GDP(t), (1)

GDP(t) =
11

∑
i=1

IVAi × Yi(t) (2)

where t is the simulation period, with values from 1 (2016) to 15 (2030); GDP(t) is the
gross regional production of Tangshan City in year t (en), ρ is the social discount rate
(0.05; ex), Yi(t) is the output of the industry i in Tangshan City in year t (en), IVAi is the
value-added rate of the industry i (ex), and i represents the 11 major industries in Tangshan
City (i = 1: agriculture, forestry, husbandry, fishery, and their service industries; i = 2:
metal smelting and rolling industry; i = 3: mining; i = 4: equipment manufacturing; i = 5:
chemical industry; i = 6: non-metallic mineral products; i = 7: production and supply of
electricity, heat, gas, and water; i = 8: other manufacturing; i = 9: construction; i = 10:
transportation, warehousing, and postal services; and i = 11: services).
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2.3. Cleaner Production Incentive Approaches

Industrial restructuring. Industrial restructuring is the first incentive method to
improve the trade-offs between economic development and environmental protection.
According to the Input–Output theory and the law of economic operation, production and
consumption in a social economy must meet an Input–Output balance of:

Y1(t)
Y2(t)

...
Y10(t)
Y11(t)

 ≥

 a1, 1 · · · a1, 11
...

. . .
...

a11, 1 · · · a11, 11

·


Y1(t)
Y2(t)

...
Y10(t)
Y11(t)

+


TC1(t)
TC2(t)

...
TC10(t)
TC11(t)

+


NEX1(t)
NEX2(t)

...
NEX10(t)
NEX11(t)

+


INV1(t)
INV2(t)

...
INV10(t)
INV11(t)

 (3)

where


Y1(t)
Y2(t)

...
Y10(t)
Y11(t)

 is the output value of the 11 industries in year t (en), and

 a1, 1 · · · a1, 11
...

. . .
...

a11, 1 · · · a11, 11

 is the input coefficient matrix (ex),


TC1(t)
TC2(t)

...
TC10(t)
TC11(t)

 is the total con-

sumption in year t (en),


NEX1(t)
NEX2(t)

...
NEX10(t)
NEX11(t)

 is the net exports in year t (en),


INV1(t)
INV2(t)

...
INV10(t)
INV11(t)

 is

the total investment in year t (en).
Environmental efficiency improvement. Air pollutants are mainly caused by indus-

trial production and residential living. Air pollutant emission is determined by each
sector’s production value and its distinct emission intensity of pollutants. Industrial pol-
lutant emission initial data (Supplementary Sheet 2) mainly come from research statistics
and the Tangshan Statistical Yearbook [49]. The improvement of environmental efficiency is
the reduction of pollutants emitted by a unit of production in each industry. In this study,
the environmental efficiency improvement rate was set to 10% [50]. As pollutant emissions
are associated with the residential living population, they are calculated by each unit of
population. The average population growth rate was determined based on the number of
permanent residents in 2016 and the natural population growth rate of Tangshan City over
the past 10 years.

TPP(t) = IAPp(t) + HAPp(t)− CLPP(t), (4)

IAPp(t) =
11

∑
i=1

β·epp
i ·Yi(t) (5)

HAPp(t) = epp
h ·Z(t) (6)

where TPP(t) is the total air pollutant emissions in Tangshan City in year t (en). Note
that when p = 1, it refers to SO2 emissions, and when p = 2, it refers to the NOx emissions.
IAPp(t) denotes the emissions caused by industrial production in year t (en), HAPp(t)
represents the emissions caused by residential living in year t (en), CLPP(t) denotes the air
pollutants reduced by the whole-process control technology in year t (en), epp

i represents
the emission intensity of air pollutants in the industry i (ex) (Supplementary Sheet 3), and
β represents the industry environmental efficiency, which is 1 before improvement and
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0.9 after improvement (ex). Further, Z(t) is the permanent resident population of Tangshan
City in year t (en), and epp

h denotes the residential living atmospheric pollutant emission
intensity (ex).

Optimal technology selection. Currently, the most used desulfurization and denitri-
fication processes are the limestone–gypsum method and selective non-catalytic reduction
(SNCR) denitrification technology [51,52], which account for more than 95% of the pollu-
tant removal technologies employed in Tangshan City. However, owing to the problems of
single processes and secondary pollution, advanced technologies should be adopted and
selected to improve pollutant removal efficiency. Tangshan City mainly uses long-process
steel production at present; in view of the current situation, this study selected six represen-
tative advanced desulfurization and denitrification technologies from the “Environmental
Protection Technologies and Product Catalog Encouraged by Hebei Province” [53,54] and
the “National Key Energy-saving Low-carbon Technology Promotion Catalog” [55]. Sup-
plementary Sheet 4 lists the technology-related parameters. These six technologies can be
divided into three categories to support whole cleaner process production: SC—Source
Control, PC—Process Control, EC—End Control. According to the Accounting Standards
for Business Enterprises, the annual depreciation rate of the equipment was set to 10%. In
addition, the government investment limit for technology introduction was set to CNY
500 million [56].

CLPP(t) =
t

∑
t=1

6

∑
m=1

epp
m × Km(t), (7)

Km(t) = Km(t − 1) + (1 − θm)Im(t) (8)

where CLPP(t) denotes the air pollutants reduced by the whole-process control technology
in year t (en), epp

m is the technical pollutant removal coefficient (ex), where in m values
of 1 to 6 represent the six selected technologies. Km(t) denotes the capital stock of m
technology in year t (en) and is 0 when t is from 1 to 5. Im(t) is the investment of m
technology in year t (en), and θm is the depreciation rate of m technology (ex), set to 10% in
this study.

Budgetary constraint. The cost of technology cannot exceed the total investment
upper limit for air pollution control in Tangshan City in a certain year.

∑ Im(t) ≤ IG(t), (9)

IG(t) = γ ∑ INVi(t) (10)

where γ is the ratio of total investment used for technology introduction (ex), and IG(t) is
the total investment upper limit for air pollution control in year t (ex).

2.4. Assumptions and Scenarios

According to the first level of China’s Ambient Air Quality Standards, this study set
the environmental target of reducing air pollutants to 50% by 2030 [57]. On this basis, we
designed four scenarios to simulate the economic and environmental trends of Tangshan
City under different paths (Table 1). The first scenario is the business as usual (BAU)
scenario, which only optimizes the industrial structure from the mezzo level and conducts
the dynamic simulation with the goal of maximizing the GDP. The other three scenarios
were based on the BAU scenario and combine different cleaner production measures,
including improving environmental efficiency by 10% (EFF), technology upgrades in the
steel industry (TEC), and an integrated case (CLP). These simulations were performed to
determine the optimal development path for Tangshan City by comparing the effects of
each scenario.
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Table 1. Scenario setting.

Scenario Industrial
Restructuring

Environmental
Efficiency Increase

Advanced
Technology

Business as Usual Scenario (BAU)
√ × ×

Environmental Efficiency
Improvement Scenario (EFF)

√ √ ×
Technology Scenario (TEC)

√ × √

Cleaner Production Scenario (CLP)
√ √ √

2.5. Sensitivity Analysis

The rationality of the model was verified by comparing the BAU scenario prediction
results in the model with actual data.

As summarized in Table 2, the simulation results were highly consistent with the
actual data. Therefore, the model was deemed credible and the prediction results had
practical significance. Cleaner production strategies were incorporated into the model
starting in 2020.

Table 2. Error rate between simulated result and real value.

Year Simulated
(Billion CNY)

Observed
(Billion CNY) Error (%)

GDP
2017 665.2 653.0 1.87
2018 695.3 695.5 0.02
2019 673.2 689.0 2.29

Output of steel industry 2017 519.22 526.97 1.22
2018 549.29 577.38 3.85

The value-added of tertiary industry
2017 236.38 228.3 3.54
2018 252.45 248.7 1.52
2019 269.62 274.55 1.8

Output value proportion of primary industry,
secondary industry, and

tertiary industry

2017 0.09:0.55:0.36 0.08:0.53:0.39 1.86
2018 0.09:0.54:0.37 0.08:0.53:0.39 1.93
2019 0.09:0.51:0.40 0.08:0.52:0.40 1.5

Note: The output value data of the steel industry in 2019 were not used as the inspection basis because of the change of statistical caliber.
CNY: Chinese Yuan.

3. Simulation Results Analysis

Based on the comprehensive evaluation model of air pollution prevention and control
policies in industrial cities, this study predicted and compared the social and economic
development and atmospheric environmental impact in Tangshan City from 2020 to 2030
according to initial data of the region in 2016, as well as the optimization path and im-
plementation scheme designed with the introduction of three incentive measures for
cleaner production.

3.1. Economic Development Recovery

Figure 2 shows the economic development of Tangshan City under each scenario from
2020 to 2030 (Supplementary Sheet 5). The BAU scenario resulted in CNY 716 billion of the
GDP in 2030, with an average annual growth rate of 1.1% over 10 years, which will make it
difficult to achieve rapid economic growth. Under the EFF and TEC scenarios, the GDP
will realize CNY 774.5 billion and CNY 1050.4 billion in 2030, with average annual growth
rates of 1.5 and 4.3% from 2020 to 2030, respectively, verifying that both environment
efficiency and technology improvements have a positive effect on economic development
under the constraint of pollutants. The CLP scenario had the strongest increase in economic
development. In this scenario, in 2030 the GDP will be CNY 1,263.4 billion, with an average
annual growth rate of 6.56%, thus reaching the national average. Therefore, the combination
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of efficiency improvements and technology introduction plays a more significant role in
high quality development.
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3.2. Environmental Emissions Control

The intensity of the pollutants decreased for all four scenarios (Supplementary Sheet 6).
As shown in Figure 3, in 2030 the NOx and SO2 intensities of the BAU scenario, which opti-
mized only the industrial structure, fell by 68 and 56%, respectively, compared with 2016.
After improving industry efficiency based on industrial optimization, the effect of emission
reduction also improved. Meanwhile, under the EFF scenario, the emission intensities of
NOx and SO2 decreased by 70 and 59%, respectively, compared with 2016. Furthermore,
when industrial structuring was combined with technology, the results showed further
improvement. In particular, the TEC scenario was more effective in controlling SO2. Under
this scenario, the intensities of NOx and SO2 were reduced by 70% compared to 2016.

Finally, the cleaner production scenario, which considered all three measures, obtained
the best results, wherein the NOx and SO2 emission intensities decreased by 87 and
97%, respectively. The NOx and SO2 emission reduction rates can reach 74 and 94%,
respectively. Compared with previous studies, the emissions of SO2 and NOx of the
Beijing–Tianjin–Hebei (BTH) region were reduced by 40 and 44% in 2020, compared with
those of 2012 [58–60]; SO2 and NOx in 2030 can be reduced by 85 and 74%, respectively,
compared to 2013 values after optimizing the industrial structure and improving the
pollutant treatment efficiency in the BTH region [59]; and SO2 and NOx reduction can
reach 60–79% as compared with the benchmark scenario by 2030 [60]. The forecast data
are consistent with previous results and will improve further. In addition, the intensity
of NOx will decrease less than SO2, indicating that NOx is more difficult to control and
manage. Compared with other high steel production countries, Tangshan City will reach
an emission intensity similar to the United States and Japan (demonstrated in Figure 3) in
2026 and 2028 [7], respectively, under the CLP scenario.
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3.3. Improving Heavy Industry Capacity without Environmental Deterioration

As shown in Figure 4, the CLP scenario has a promoting effect on the development of
most industries. In particular, the service industry increased the most, with its production
in 2030 reaching 183.44% of its 2016 value. Thus, promoting the development of the service
industry is essential for the balanced development of the environment and economy.
Among the 11 industries, only mining industry production fell (13.13%), indicating that
the mining industry, as a typical resource-based industry, has insufficient potential in
the future.
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As a pillar industry, the steel industry has a crucial impact on the economy of Tang-
shan City. Under the BAU scenario, the steel industry in Tangshan City experienced a
severe decline. In 2030, it was approximately 25% of the base year value, and its pro-
duction capacity was lowered by 75%, which does not meet the proposed development
requirements. However, the steel industry developed rapidly under the CLP scenario,
and was 43% higher than the initial production and four times that of the BAU scenario.
Further, since 2016, production decreased by 73 and 52%, respectively, in the EFF and TEC
scenarios, revealing that technology introduction has an inhibitory effect on the production
capacity of the steel industry, and more significant effects can be achieved by improving
the industry’s environmental efficiency.

In addition, as the energy sources of Tangshan City, the electric heating, gas, and
water supply industries assume critical tasks, such as power and water supply. However,
this industry also produces severe pollution. As shown in Figure 5, there was no distinct
change in this industry’s production in the BAU scenario, but it reached 2.1 times the initial
value in the CLP scenario, thus ensuring the normal progress of industrial activities and
residential living in Tangshan City.
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Under the baseline scenario with industrial restructuring only, the emission intensities
of NOx and SO2 decreased by 68 and 56%, respectively, during the study period; however,
the GDP was CNY 716 billion, and the average annual growth rate was only 1.1% in 2030.
In addition, because of the priority given by the simulation to developing industries with
low atmospheric pollutant emissions, such as the service and equipment manufacturing
industries, steel industry production decreased by 75%, which is unreasonable for the
steel-intensive city. Therefore, it was necessary to consider additional measures. When
environmental efficiency improvements were added, the GDP rose by CNY 58 billion, and
the emission intensities of NOx and SO2 were 2 and 3% lower, respectively. When cleaner
production technologies were added, the GDP rose by CNY 334 billion, the emission
intensities of NOx and SO2 were 2 and 14% lower, respectively, and the production of the
steel industry increased by CNY 112.77 billion, compared with data of the BAU scenario
in 2030. Thus, under the current budget conditions, continuous technological updates
can effectively reduce pollution emissions. If the budget can be expanded, the cleaner
production capacity may be further enlarged.

3.4. Optimal Technologies Selection

Figure 6 shows the investment in various technologies under the CLP scenario. A
to F represent the six technologies, respectively, and their specific parameters are shown
in Supplementary Sheet 4. In the initial period, investments are mainly focused on end
treatment technology, then on source and process control technologies after 2027. Among
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the six demonstrative technologies adopted in this study, most funds are invested in GFX
integrated flue gas purification systems and circuit waste heat recovery, indicating that these
technologies are more efficient than others in the research area. Furthermore, in the CLP
scenario simulation the reduction effect of SO2 was more obvious than that of NOx. One
reason is that the GFX integrated flue gas purification system has a significant SO2 removal
effect. Among the two integrated desulfurization and denitrification technologies, the
simulation always selected the integrated activated coke desulfurization and denitrification
technology, indicating that this technology has better removal efficiency.
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The technology selection of the most effective pathway for pollution control in the steel
city was determined to be the CLP scenario. We found that the end treatment technologies
were more efficient at the former stage, while the source and process were chosen at
the latter stage. This study demonstrated only the mechanism of technology selection
in industrial cities; considering that there may be hundreds of technologies, they can be
further extended to the DOMCLP model in practice.

3.5. Intensified Decoupling Effect

Through a decoupling analysis of the simulated prediction data, this research further
investigated the trade-off relationship patterns between the economy and environment
after introducing the cleaner production approach. The Organization for Economic Co-
operation and Development defined decoupling as simultaneous economic growth and
industrial pollution emissions change and divided the ratio of pollutant emissions to
the GDP in the final period by the base period to determine the decoupling index [61].
With further development of the decoupling theory, some scholars have found that the
decoupling index will vary with the choice of base period, making it difficult to accurately
judge the decoupling state of economic growth and environment. To remove the error in
the base period selection, Tapio [62,63] improved a decoupling elastic coefficient. In this
study, the function is:

ε =
[TPp(t + 1)− TPp(t)]/TPp(t)

[GDP(t + 1)− GDP(t)]/GDP(t)
=

∆TPp/TPp(t)
∆GDP/GDP(t)

(11)

where ε is the coefficient of decoupling elasticity, and ∆TP and ∆GDP are air pollution
emissions and GDP changes in two adjacent periods, respectively. When the elasticity is less
than 0, the economy and environment are in a state of strong decoupling, achieving both
economic growth and environmental improvement. The greater the absolute value, the
more coordination there is between the environment and the economy. When the elasticity
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is between 0 and 1, the economy and environment are weakly decoupled. This means
that although the economy is growing, environmental pressure has also increased [64]. By
classifying the 2016–2030 simulation results of Tangshan City, we obtained the decoupling
relationship (as shown in Figure 7).
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At the beginning of the period, both air pollutants were weakly decoupled with eco-
nomic development, which means that economic development and pollutant emission
reductions cannot be achieved together. However, a strong decoupling of economic devel-
opment and the environment can be achieved after introducing advanced technology and
implementing cleaner production. Compared with the TEC scenario, the CLP scenario had
a greater impact on decoupling, and this effect will increase after 2027. At the end of the
prediction period, this decoupling effect will be greatly enhanced, thereby ameliorating
the weak decoupling relationship in the base period. In particular, when technology intro-
duction was combined with environmental efficiency improvement, a stronger decoupling
relationship was achieved. Moreover, the decoupling of economic development and SO2 is
stronger than that of NOx, revealing that SO2 is easier to control and thereby to enhance
decoupling with the economy.

4. Discussion

Based on the demand for environmental improvement and the urgent need for
transformation in industrial cities with heavy air pollution, this study explored the opti-
mal cleaner production pathway using integrated stimulus policies from comprehensive
perspectives by overcoming problems in the existing research, which were mainly ana-
lyzed from a single perspective [12,24,26]. Herein, macro-industrial restructuring, mezzo-
industry environmental efficiency improvement, and micro-technology optimal selection,
the “Top-Down” and “Bottom-Up” schemes were combined to examine the best roadmap
for promoting transformation and development in a typical industrial city to determine if
cleaner production can solve the problems of economic downward pressure and serious
environmental air pollution. This study improved the methodology with integration of
system dynamics and Input–Output modeling focused on optimal selection of pollution
treatment technologies [29] to further concretize technical factors into cleaner production
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schemes. Moreover, a decoupling analysis of the economy and environment was per-
formed using dynamic simulation prediction results to overcome the limitation where
the decoupling coefficient is primarily used to analyze historical and current data [32,33].
This cleaner production decision optimization model (DOMCLP) can become a necessary
measure to promote the high quality development of regions dominated by industry and
cities with pollution problems.

Through model simulation of a typical air-polluted city, Tangshan City, from 2016 to
2030, we found the following. Firstly, the proposed comprehensive cleaner production
incentive approaches were proved to be efficient to promote the balanced development of
the economy and environment. Under the cleaner production scenario, which combines
all three measures, the GDP of Tangshan City can reach an average annual growth rate of
6.56%, which meets the requirement of China’s growth plan, reversing the current slow
economic development trend. Furthermore, steel and electric heating industry production
can achieve capacity growth over the study period without deteriorating air environment,
in which the intensity of SO2 and NOx can be reduced by 97 and 87%, and the total
reduction rates can reach 94 and 74%, respectively. Under the optimal scenario, which
effectively combined three intensive strategies, air pollutant emission control has a further
better effect than those found in previous studies in the Beijing–Tianjin–Hebei region (BTH)
and China [29,58–60]. In addition, the optimal air pollutant control technology upgrading
was proved to be more effective than the other two incentive measures in achieving
balanced economic and environmental development in industrial cities. In the optimal
scenario, an input of 3707 million to technology can achieve a marginal CNY 213 billion
GDP growth. Furthermore, the treatment of pollutants should not only consider the end
result but also include the production process. Only by combining the whole process
of cleaner production technology can the maximum effect be achieved [65]. Upgrading
technology can also realize a strong decoupling effect between economic development and
environmental improvement.

5. Conclusions

This study explored the optimal cleaner production pathway using a comprehensive
stimulus policy evaluation and dynamic simulation approach, from “Bottom-Up” to “Top-
Down”, by overcoming problems in the existing research that were analyzed mainly
from a single perspective. The DOMCLP simulated the environmental and economic
impacts of different cleaner production strategy mixes from 2020 to 2030. Simulation
results proved that: Heavily air-polluted cities can achieve economic growth without
deteriorating air environment; the decoupling degree intensifies steadily, which can support
a high quality development target. Meanwhile, even though the industry structure is
optimized gradually, heavy industries can maintain a steady development and occupy
leading positions. Furthermore, the optimal air pollutant control technology upgrading is
proved to be more effective than other incentive measures, and technology choice shifts
from end treatment to source and process treatment in the long run.

Therefore, it can be inferred that policy measures, including increasing the number
of fiscal subsidies, and an optimal technologies selection plan in both location and time
scales can effectively improve the scenario results. Further, the decoupling effect of SO2
is more obvious than that of NOx, indicating that it is easier to achieve the decoupling
of SO2 emission reduction and economic development and suggesting it is easier to re-
move. Further technology and financial investment in NOx reduction can benefit trade-off
improvement. For local authorities, heavy industries should not be simply cut down to
improve air quality when they format an industry development plan.

Asian countries and emerging economies are the main producers and consumers of
industry products, and they are all confronted with the same difficulties of environment
protection and economic development; this study can benefit heavy pollution industries’
cleaner production for these regions in practice. This study presented insights that will be
useful for both regional planners and future studies. However, challenges still exist; this
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study only considered atmospheric environment in industrial cities, while water pollution
was not considered. Also, Tangshan City was selected as a typical research area to conduct
an empirical study; the general patterns of transformation and development in China’s
industrial cities can be further analyzed. Further research will be conducted to address
these limitations in future.

All abbreviations used in the text: DOMCLP-dynamic optimization model of cleaner
production, 3E; Energy–Economy–Environment, HAP: Household Air Pollution, IAP:
Industrial Air Pollution, ED: Energy Demand, ES: Energy Supply, TP: Total Pollution, GDP:
Gross Domestic Product, PLO1: Cleaner Production Strategy 1, POL2: Cleaner Production
Strategy 2, PLO3: Cleaner Production Strategy 3, en: endogenous, ex: exogenous, SNCR:
Selective Non-Catalytic Reduction denitrification technology, CNY: China Yuan, BAU:
Business as Usual Scenario, EFF: Environmental Efficiency Improvement Scenario, TEC:
Technology Scenario, CLP: Cleaner Production Scenario, USA 2009 (NOx): NOx emissions
intensity of the United States in 2009, USA 2009 (SO2): SO2 emissions intensity of the
United States in 2009, JPN 2009 (NOx): NOx emissions intensity of Japan in 2009. JPN 2009
(SO2): SO2 emissions intensity of Japan in 2009, BTH: Beijing–Tianjin–Hebei region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/su13168951/s1, Supplementary Sheet 1: Input-Output table, Supplementary Sheet 2: Emissions,
Supplementary Sheet 3: Emission coefficient of each industry sector and residents, Supplementary
Sheet 4: Technical Parameter, Supplementary Sheet 5: Simulation results of GDP in Tangshan city,
Supplementary Sheet 6: Simulation results of emissions in Tangshan city.
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