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Abstract: Coastal zones are bearing the brunt of an increase in the likelihood of extreme events,
coupled with sea-level rise (SLR). Conventionally, gray infrastructures, such as seawalls, have been
constructed to reduce risks in limited coastal zone spaces. Nature-based approaches, known as
green infrastructure, have been used in coastal defense, and their ecosystem-based disaster risk
reduction functions (Eco-DRR) have received growing attention. However, both gray and green
infrastructure alone have limitations in responding to an ongoing increase in the intensity and
frequency of natural hazards. To overcome these issues, hybrid infrastructure, which combine gray
and green components, is needed, and they have been receiving growing attention. Meanwhile, a
large-scale coastal development requires stakeholder agreement; thus, it is imperative to understand
people’s demands and build a consensus between municipalities and coastal citizens in coastal
development for long-term resilience. The author administered the online survey across Japan,
applying it to the choice experiment, and obtained 840 valid responses. Therefore, this paper clarified
the heterogeneities in coastal people’s preferences for coastal ecosystem services provided by gray,
green, and hybrid structures in intertidal zones in Japan, recognizing seawalls as gray and coastal
pine forests as green infrastructure. Consequently, while coastal citizens acknowledged gray’s coastal
defense function, the diverse perceptions toward seawalls for SLR preparation were notable as its
scenarios became severe. Another remarkable finding is that nearly 60% of respondents preferred
Eco-DRR functions provided by coastal forests with JPY 695 in willingness-to-pay for expanding
100 m in width, even though there are uncertainties in their performances.

Keywords: gray infrastructure; green infrastructure; hybrid infrastructure; seawalls; coastal forests;
sea-level rise; choice experiments; mixed logit model

1. Introduction

Coastal areas are often subject to extreme events such as storm surges and typhoons [1].
Sea-level rise (SLR) is likely to increase these risks [2,3], making coastal citizens in lowlands
vulnerable to coastal hazards [4]. A rising of 10 to 20 cm of the sea level is expected no
later than 2050, which will more than double the frequency of extreme water-level events,
especially in low-lying coastal cities and the habitable parts of Pacific Island nations [5].
Meanwhile, despite the growing concerns about climate change coupled with SLR, pop-
ulation growth in coastal zones is accelerating, and more than half of coastal countries
have 80–100% of their population within 100 km of their coastlines [6]. A global analysis
of human settlements in coastal areas revealed that they are concentrated within 5 km
of coasts and that the average population densities are higher at elevations below 20 m
and 100 km in width from the coastline [7]. This trend can be seen in studies on coastal
megacities that are severely exposed to ecological and anthropogenic drivers [8–10]. Their
spatial advantages have led to the development of human settlements and tourism, as
coastlines provide resources, trading, and job opportunities. Meanwhile, the vulnerability
of coastal zones requires them to be resilient [11].
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Given population growth and increasing threats of natural hazards in coastal zones,
the resilience of coastal communities—the ability of socio-ecological systems to absorb
disturbances and recognize, while undergoing change, so as to still retain essentially the
same functions and structures ([12–14])—is more critical than ever [15]. Conventionally,
artificial structures (termed gray infrastructure, built infrastructure, or hardened structures,
encompassing seawalls, levees, culverts, and bulkheads) have been constructed to reduce
risks in limited coastal zone spaces. In particular, seawalls are considered to be the last line
of defense as they are crucial in stabilizing the shoreline, and thus essential for ensuring
the safety of residential livelihood [16].

Nature-based approaches, known as green infrastructure, have been used in coastal
defense, and their ecosystem-based disaster risk reduction functions (Eco-DRR), which
ecosystems serve as disaster mitigation, have received growing attention. Green infras-
tructure, such as coral reefs, saltmarshes, sand dunes, mangroves, and coastal forests, not
only functions as Eco-DRR, but also play a significant role in offering multiple co-benefits
such as recreation, aesthetic values in landscape, food resources, and habitats for fauna and
flora [17]. In recent years, the concept of green infrastructure has been applied to coastal
infrastructural management, and research on coastal green infrastructure for adapting to
climate change has accelerated [18]. Potential types of coastal infrastructure for coastal
protection have been identified [19–21]. However, both gray and green infrastructure on
their own have limitations in responding to the ongoing increase in intensity and frequency
of natural hazards [22]. Generally, gray infrastructure is designed for natural hazards of
a certain magnitude, ensuring greater protection within a capacity [23]. In other words,
artificial defense structures could not function if the intensities of natural hazards were
beyond their thresholds.

Coastal engineering has often been criticized for focusing on disaster reduction func-
tions against unexpected events while paying little attention to coastal environments ([24]),
in addition to higher construction and maintenance costs in the long term and reduced
life expectancy of existing built structures [25,26]. Moreover, hard structures could worsen
the loss of sandy beaches due to sea-level rise, exacerbating the future impacts of coastal
hazards [27]. Meanwhile, green infrastructure is expected to keep pace with SLR and
adapt to unexpected events [25,28]. Due to the growing awareness of the co-benefits
and the cost-effectiveness in ecosystem services (ESSs) offered by green infrastructure,
an economic analysis of this evidence is available [29]. For example, the value of coastal
wetlands for ecosystem protection against hurricanes in the United States was estimated,
and the potential storm protection was calculated to be USD 23.2 billion annually using
a regression model [30]. However, uncertainties regarding their Eco-DRR function re-
mains and nature-based disaster reduction has been called into question considering the
future climate.

Some studies have mentioned that coastal vegetation is suitable for controlling sedi-
mentary dynamics in response to gradual phenomena such as SLR, but it does not directly
reduce erosion [31]. Other coastal green components, such as mangrove forests, can ac-
crete sediments, leading to wave attenuation; however, it is still challenging to determine
whether they can keep pace with the SLR [32,33]. In addition, vegetation in wetlands has an
influence on land formation, accumulation of organic matter, and soil volume, enhancing
the resistance to erosion, but it would be necessary to monitor vegetation changes and
climate warming [34]. Thus, both coastal gray and green infrastructure need to consider
several future scenarios and unforeseen events.

To tackle these issues, hybrid infrastructure, which combines gray with green com-
ponents, has been received growing attention [25]. Even though only a few studies have
focused on hybrid infrastructure, ecological engineering, which is a relatively new disci-
pline that combines engineering and ecology, has emerged, and various studies regarding
gray to green regime shifts have been conducted [19,35–39]. In addition, gray and green
integrated approaches, such as mangroves and dykes [40], and their effectiveness for peak
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water level attenuation under the circumstances of storm tides offered by marshes and
dykes have been analyzed [41].

Owing to the numerous options to combine gray–green infrastructure and the uncer-
tainties of its disaster risk reduction function against SLR, evaluating the economic values
of hybrid infrastructure is difficult. This financial challenge is an ongoing issue, which has
led to limited implementations and data regarding hybrid infrastructure. Furthermore,
large-scale concrete structures have been criticized for their harmful impacts on the coastal
environment [42]; thus, understanding people’s demands and building consensus between
municipalities and coastal citizens in coastal development for long-term resilience planning
is becoming increasingly imperative [43,44]. A study conducted in New Jersey found
that in coastal people’s perceptions of coastal infrastructure, nature-based approaches (i.e.,
wetlands and dunes) are preferable to gray infrastructure (revetments and groins) [45]. In
particular, people in Japan who frequently visit the sea prefer to conserve the shoreline,
which provides multiple ESSs [46].

Overall, coastal infrastructure projects that combines gray and green infrastructures is
always challenging not only due to a lack of scientific evidence regarding hybrid approaches
but also due to the scarcity of data on what coastal design and planning is preferable
for users.

Therefore, this study focuses on: (1) visualizing coastal people’s preferences for coastal
ESSs provided by gray, green, and hybrid infrastructures in the intertidal zones, and (2)
exploring their decision making under the uncertainties in future SLR scenarios using
choice experiments.

2. Materials and Methods
2.1. Study Site

The study site, Japan, has traditionally developed various ways for co-existing with
natural events such as typhoons, storm surge and tsunamis. For example, seawalls are
often used to maintain residential livelihoods, as they play important roles in stabilizing
the shoreline and protecting the coastal communities of Japan. Pinus thunbergii (black
pine trees) have been traditionally used as a nature-based disaster mitigation method to
collect blown sand, mitigate wind speeds, and protect agricultural products and residential
buildings [47]. Due to the economic advantages typically ascribed to coastal agglomeration,
Japan has the largest coastal urban megacities (i.e., Tokyo, Osaka–Kobe, and Nagoya) [6,10],
which often leads to a reliance on gray-based coastal defense that enables implementation
in limited spaces. However, coastal design for disaster management was urged following
the 2011 earthquakes and tsunamis that struck Japan’s coastal communities. Therefore,
while considering coastal disaster risk reduction management for resisting further increases
in extreme events, it is important to understand that SLR is inevitable. For clarity regarding
coastal environments in Japan, this study focused on intertidal zones, and seawalls and
coastal pine forests were defined as coastal gray and green infrastructures, respectively
(hybrid approach: seawalls and coastal forests). Figure 1 overviews gray (seawalls), green
(coastal pine forests), and hybrid infrastructures (gray and green), and Table 1 summarizes
their strengths and weaknesses.

2.2. Data Collections

In this project, an online survey intended for people in their 20s to 60s in Japan was
administered by Nikkei Research Inc. between 6 March and 10 March 2020. The subjects
were randomly selected and 959 responses were obtained (see the summary in Table 2).
Note that the distances and elevations listed in Table 2 were calculated with the open-source
Geographic Information System QGIS 3.10 using postal codes. Further, answering postal
codes was optional, and responders could type specific numbers in the questionnaires if
they did not wish to provide a response. There were 840 valid responses. The sample
distribution is shown in Figure 2.
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Table 1. Summary of strengths and weaknesses.

Infrastructure Strengths Weaknesses

Gray Greater level of protection: Coastal habitat loss:

(seawalls) - alleviates speed of waves, tsunamis
- has negative effects on other ecosystem services,
in which coasts and surrounding areas such as
beaches provide

- prevents erosion High installation and maintenance cost:
- withstands storm events soon after seawalls are
built and provides stable protection for two to
three decades

- requires significant studies and additional
elements to mitigate the effects of SLR

Greater understanding of techniques and effects: - weakens with time
- allows policy makers to perform cost-benefit
analysis Lack of community involvement:

Significant engineering expertise. - leads to safety misunderstandings and
disaster risks

Green
(coastal forests) Co-benefits of: Ambiguous effects:

- coastal protection - limited understanding regarding protection
levels because of

- aesthetic seascape topography, vegetation, seasons, and soils
- recreational use Time for mature forests:

- coastal habitats with many species - requires approximately 20 years to mature for
sufficient protection.

Lower cost Pine wilt disease:
Adaptation to unexpected events: - damaged by diseases and pests
- may keep pace with climate change, sea-level rise Other societal disadvantages (crime, dumping):

- requires appropriate maintenance
Hybrid Greater protection with other co-benefits: Little data and limited expertise:

(gray and green: seawalls and forests) - may require less space than natural
approaches alone - requires more research regarding potential effects

Innovative coastal design and planning: - may require more space to introduce
both systems

- compatible with resilience and authentic value
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Table 2. Data summary.

Gender N Proportion Distance (from the
Coastline: km) N Proportion Frequency of

Coastal Use N Proportion

Female 491 51.2% <5 253 26.4% Almost every day 11 1.1%
Male 467 48.7% 5–10 179 18.7% 3–5 times/week 11 1.1%
Others 1 0.1% 10–15 110 11.5% 1–2 times/week 18 1.9%

15–20 65 6.8% 1–2 times/month 59 6.2%
Age 20–30 94 9.8% 1–2 times/year 120 12.5%
20s 154 16.1% 30–40 50 5.2% Vacation use 107 11.2%
30s 193 20.1% 40–50 37 3.9% Seldom 358 37.3%
40s 204 21.3% >50 52 5.4% None 263 27.4%
50s 180 18.8% Missing data 119 12.4% Others 12 1.3%
60s 228 23.8% Minimum value 0.1

Maximum value 107.1
Income (million JPY) Elevation (m)

<2 102 10.6% <5 188 19.6%
2–4 207 21.6% 5–10 86 9.0%
4–6 224 23.4% 10–15 72 7.5%
6–8 156 16.3% 15–20 56 5.8%
8–10 124 12.9% 20–30 86 9.0%
10–12 52 5.4% 30–40 67 7.0%
12–14 25 2.6% 40–50 48 5.0%
14–16 26 2.7% 50–100 141 14.7%
16–18 6 0.6% >100 96 10.0%
18–20 11 1.1% Missing data 119 12.4%
20–22 8 0.8% Minimum value −1.8
>22 13 1.4% Maximum value 930.6
Missing data 5 0.5%
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2.3. Methods
2.3.1. Experimental Design

This study applied choice experiments, which is one of the evaluation tools for valu-
ing intangible goods and services such as ESSs. There are several methods to estimate
non-market values, including travel cost or hedonic pricing methods, which are known
as revealed preferences. However, these methods are not applicable to marine ESS eval-
uations because of their far-reaching direct and indirect effects [4,48]. Because of this,
stated preference methods, which ask people questions about hypothetical situations, were
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developed [49]. Choice experiments, which are one of the stated preference methods,
allow researchers to consider the tradeoffs among ESSs [50,51]. Thus, choice experiments
have been recently applied to coastal research [46,52], providing information regarding
some changes in coastal settings and asking their most preferred options. Following this
trend, this project applied choice experiments to clarify people’s preferences toward coastal
ESSs and their tradeoffs by jointly considering several important attributes for different
hypothetical coastal settings (Figure 3).
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The attributes and levels used in the choice experiments are listed in Table 3. To set
the levels, RCP 2.6 and RCP 8.5, as the expected SLR of 0.43 m (ranged 0.29 m–0.59 m) and
0.84 m (ranged 0.61 m–1.10 m) by 2100 were considered [53]. Then, this study assumed
that these scenarios were applied to all sea levels in Japan, and that seawalls with a height
of 2 m and 2000 m were already there. The detailed environmental settings were explained
before the choice experiment (Figures A1–A5), and it was iterated eight times for each
respondent, during which the levels of attributes changed. The contributions are that the
additional seawall height and coastal forest width are associated with gray and green
components, respectively, which can influence people’s perceptions of the disaster risk
reduction function offered by gray and green infrastructure under the uncertainties in
future scenarios and their effects. Furthermore, inserting gray and green attributes could
help provide a picture of hybrid approaches and the extent to which hardened and natural
components can be integrated.

Table 3. Attributes and levels of coastal settings.

Attributes Levels

Additional seawalls height (security) ±0/
+1 m–+2 m (SLR: 0.5 m~less than 1.0 m)/
+2 m–+5 m (SLR: 1.0 m~less than 3.0 m)/
+ over 5 m (SLR: 3.0 m~less than 5.0 m)

Forest width 0/100 m/200 m/300 m/500 m
Landscape Coastal forest only/Seawall only/Both

Coastal recreation Walking only/Camping and Walking/Fishing
only/Camping, Walking and Fishing/Nothing

Coastal biodiversity (bird species) 3/10/20 kinds of birds
Annual tax (JPY) 1000/3000/5000/10,000/30,000
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2.3.2. Econometric Models
Conditional Logit (CL) and Mixed Logit (ML) Models

Discrete choice models are derived based on utility maximization in which the decision
maker selects an alternative that offers the greatest utility. Let Uni denote the utility that
respondent n obtains from alternative i in choice set Cn as follows:

Uni = Vni + εni, (1)

where Vni is a deterministic component and εni is a random component, which are both
assumed to be known to the individual but unknown to the analyst. The probability that
respondent n will choose i from alternative j in choice set C is the probability that Uni is
larger than Unj, and is as follows:

Pr(i) = Pr
[
Ui > Uj

]
= Pr

[
Vi −Vj > ε j − εi

]
∀j 6= i, ∀j ∈ C, (2)

where the index n is omitted for simplification. Note that Uni depends on parameters
that are unknown to the researcher, and εni is the unobservable portion that respondent n
chooses over alternative i.

This probability is a cumulative distribution:

Pri = Pr
(
ε j − εi < Vi −Vj ∀j 6= i

)
=
∫

I
(
ε j − εi < Vi −Vj ∀j 6= i

)
f (ε)dε, (3)

where I(; ) is an indicator function. Random utility models are obtained from different
density specifications, which are described as follows:

Uni = β′xni + εni. (4)

When the utility is linear in β and xni is a vector of explanatory variables that are
observed by the analysts and encompass the alternative attributes in a choice task, then
Vni(β) = β′xni.

The distribution of the random component (εi) is assumed to be a type I extreme
value, and the probability that responder n chooses alternative i can be described in the
conditional logit (CL) model and is expressed as follows [54]:

Pni =
exp(β′xni)

∑J
j=1 exp

(
β′xnj

) , (5)

where the preference parameter is assumed to be constant for all respondents [55]. When
assuming the heterogeneity of preferences that vary across individuals, mixed logit (ML)
probabilities are the integrals of standard logit probabilities over density parameters in the
following equation:

Pni =
∫

Lni(β) f (β|θ)dβ, (6)

where Lni(β) is the logit probability evaluated at β, and f (β|θ) is a density function, in
which θ refers to the distribution. Thus, the ML probability takes the following form:

Pni =
∫ (

eβ′xni

∑j eβ′xnj

)
f (β)dβ. (7)

ML is a mixture of logit functions that evaluate different β′s with f (β) as the mixing
distribution, wherein the utility (Equation (4)) takes a coefficient form [55], in which each
of the coefficients is given an independent normal distribution with an estimated mean
and standard deviation.
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Estimation in ML Model

The log likelihood for the model is described as follows:

LL(θ) = ∑
n

lnPni(θ). (8)

Then, Equation (8) is approximated by simulating for any given θ, in which the
simulated log likelihood is determined by maximizing LL(θ). Thus, Equation (8) can be
rewritten as follows:

SLL(θ) =
N

∑
n=1

J

∑
j

dnjln
1
R

R

∑
r=1

Lni(βr), (9)

where R is the number of draws and dnj = 1 if responder n chooses j plan and dnj = 0 if
they do not. In the context of discrete choice models [55], the superior coverage of Halton
draws and its effectiveness compared with random draws has been explained, stating
that 100 Halton draws improve model accuracy. Thus, this study utilized the maximum
simulated likelihood with 100 Halton draws applied to the ML model.

Willingness to Pay (WTP)

For analysis, this article first elucidated the heterogeneities in preference using the
ML model. Comparing CL and ML models, the former premises the same parameters for
all respondents, while ML assumes that individuals have different preferences. Further,
willingness-to-pay (WTP) was estimated when examining the monetary values of ESSs.
WTP measures are useful for interpreting changes in a given attribute, and are calculated
as follows:

WTPk = −
βk

βtax
, (10)

where βk is the parameter of attribute k, and βtax is the parameter of the tax.

3. Results

Table 4 lists the variables and definitions used in the analysis. Table 5 summarizes the
estimation results of the CL and ML models. Attributes, except for “bird” and “recreations”,
were found to be statistically significant at the 1% level in the CL model, while the ML
model showed statistical significance at the 1% and 5% levels except for recreations. As
previously mentioned, the CL model assumes the same parameters for all respondents,
leading to the overestimation in WTP. Similarly, the results demonstrate higher monetary
values in CL compared to the ML model.

While exploring the heterogeneities in preference, remarkable findings can be observed
in the ML estimation results. The normally distributed coefficients, estimated means, and
standard deviations listed in Table 5 reflect the distribution of preferences. For example,
the distribution of the seawalls for a 0.5 m~less than 1.0 m SLR coefficient had an estimated
mean of 0.16, and an estimated standard deviation of 0.63, such that 62% of the distribution
was above zero and 38% was below. This indicates nearly two-thirds of the respondents
view a seawall for a moderate scenario as a positive and prefer it, whereas one-third do not
prefer it. Similarly, seawalls for 1.0 m~less than 3.0 m SLR gained 76% positive responses
with JPY 8846 in WTP, which was the highest percentage of all.

A remarkable finding regarding seawalls was that the standard deviations increased
for seawalls as the extremity of scenarios increased, indicating significant heterogeneities
in preferences. Regarding coastal forests, the results revealed that 58% of respondents
preferred Eco-DRR, whereas 42% did not, and the average WTP/100 m of coastal forests
was estimated to be JPY 695. Meanwhile, 58% of participants had negative preferences
regarding an increased number of birds. In landscape attributes, gray + green (seawalls
and coastal forests) obtained approximately 60% positive responses with JPY 3857 in WTP,
while gray landscape (seawalls only) had 60% negative perceptions with a negative value
of JPY−3852. However, in recreations, no significant results were obtained. To clarify those
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heterogeneities in preferences, Figure 4 depicts the WTP distributions of each attribute.
It is worth noting that the distribution of seawalls while preparing for extreme scenarios
reflected the heterogeneities in preferences in comparison to others (Figure 4d).
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Table 4. Variables and definitions.

Variables Definitions

asc a dummy variable representing respondents’ answers for alternative 4 (choose nothing)
sea1m whether alternatives including sea-level is likely to rise ranged 0.5 m~less than 1.0 m were chosen (0–1 dummy)
sea3m whether alternatives including sea-level is likely to rise ranged 1.0 m~less than 3.0 m were chosen (0–1 dummy)
sea5m whether alternatives including sea-level is likely to rise ranged 3.0 m~less than 5.0 m were chosen (0–1 dummy)
forest coastal forest width
bird species richness (the number of avian species)
landsc_sea whether alternatives including gray (seawalls) landscape were chosen (0–1 dummy)
landsc_both whether alternatives including hybrid (seawalls and coastal forests) landscape were chosen (0–1 dummy)
rec_walk whether alternatives including walking were chosen (0–1 dummy)
rec_fish whether alternatives including fishing were chosen (0–1 dummy)
rec_camp whether alternatives including camping were chosen (0–1 dummy)
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Table 5. Estimation Results of CL and ML models.

CL ML

Mean Standard Deviation
Coef. (s.e.) WTP (JPY) Coef. (s.e.) Coef. (s.e.) WTP (JPY)

sea1m 0.1669 (0.06) *** 3872 0.1555 (0.07) ** 0.6254 (0.11) *** 3186
sea3m 0.4008 (0.07) *** 9299 0.4317 (0.09) *** 0.8165 (0.11) *** 8846
sea5m 0.5498 (0.04) *** 12,756 0.5488 (0.08) *** 1.6381 (0.08) *** 11246
forest 0.0271 (0.01) *** 629 0.0339 (0.01) ** 0.2096 (0.02) *** 695
bird 0.0035 (0) 81 −0.0189 (0.01) *** 0.1223 (0.01) *** −387

landsc_sea −0.1625 (0.04) *** −3770 −0.1880 (0.06) *** 0.8348 (0.07) *** −3852
landsc_both 0.1273 (0.04) *** 2954 0.1882 (0.06) *** 0.8227 (0.07) *** 3857

rec_walk 0.1204 (0.05) *** 2794 0.1023 (0.07) 0.5468 (0.08) *** 2096
rec_fish 0.0235 (0.04) 545 −0.0102 (0.05) 0.3779 (0.1) *** −209

rec_camp −0.0207 (0.05) −480 −0.0434 (0.06) 0.4947 (0.1) *** −889
price −0.0431 (0) *** −0.0488 (0) ***
asc −0.2930 (0.07) *** −0.7353 (0.09) ***

Number of obs. 26,880 26,880
Log likelihood −8880 −7870

Pseudo R2 0.047 0.053

Note: ** significance at 5% level and *** significance at 1% level.

4. Discussion

This study explored coastal citizens’ preferences for coastal infrastructure against
future SLR, and other issues, such as how people value coastal ESSs, by considering the
tradeoff relationship between them, the monetary values of coastal functions, and the
perceptions of long-term settings using the stated preference method. For this discussion,
the restrictions of this study must be determined.

First, this research assumed that the effects of SLR were consistent in any coastal
region and incorporated it by increasing the initial water depth. Choice experiments seem
to be suitable for estimating the monetary value of coastal ESSs because of the direct
and indirect benefits for the people. Though choice experiments enable the exclusion
of unrealistic coastal settings, the hypothetical settings of the questions asked inevitably
leads to some kind of bias, or results in so much “noise” that the data are not useful for
drawing inferences [49]. Thus, the stated preference method can be criticized for its validity.
Additionally, how researchers provide the visual aids in choice experiments is likely to
affect respondents’ decision making.

The results in the ML model (Table 5) demonstrated that there was no significance in
recreational attributes, which may reflect that recreation and landscape are intertwined,
and the questionnaires design must address how the explanations regarding attributes
should be presented to quantify their values more accurately. ESSs are combined with each
other from an ecological point of view. Hence, it is crucial to improve the experimental
design to consider these obstacles. During the choice experiments, respondents chose the
most preferable coastal setting, which means that they agree to pay for it via an annual
tax instead of using the same amount of value for other goods and services, however,
the linkage between behaviors and statements has been controversial in stated preference
methods from a psychological perspective [56].

Second, this paper began by defining seawalls as gray infrastructure and coastal pine
forests as green infrastructure; thus, hybrid infrastructure was recognized as seawalls
combined with coastal forests, although this is the first application of choice experiments to
the valuation of coastal gray, green, and hybrid infrastructure, which focuses on seawalls
and coastal forests, coastal ecosystem functions commensurate with other vegetation (i.e.,
sand dunes and coral reefs), as well as the diverse structural improvements in coastal
armoring. Thus, it is inevitable to consider other forms of coastal engineering and natural
components, and their integration in both onshore and offshore environments.
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Third, ML is used to capture the heterogeneities in preferences, and has a more realistic
substitution pattern than CL. However, it is necessary to take current coastal land use (i.e.,
residential districts, tourist destinations, seawalls, or coastal forests) and topography, such
as mountainous coasts, into account. This study assumed that seawalls with a height of
2 m and 2000 m have been already constructed, however, the height and forms of seawalls
varies in each place in a real world. Hence, it is worth considering how existed gray
structures near respondents’ residences affect respondents’ decision making as a future
work. In the coastal analysis, the low-elevation coastal zone (LECZ), where the contiguous
area along the coast that is less than 10 m above sea level, has been described [4]. Following
this coastal distribution, 33% of the respondents were associated with the LECZ. Further,
considering the distance from coastlines, 18% of the respondents resided in coastal regions
that are 10 m below the elevation and within less than 5 km from the coastlines (Table A1
in Appendix A). Thus, it is important to assess the extent to which low-elevation coastal
populations are at risk of SLR, stronger storms, and other seaward hazards induced by
climate change ([4]), and what individual characteristics affect their coastal infrastructural
preferences using the latent class model. In addition, future works need to monitor the
disparity of settlements between low- and high-income residents [57]. In tackling these
issues, revealed preference methods such as the hedonic pricing method, which is one of the
revealed preferences in non-market valuations and assumes that house prices might be affected
by environmental attributes and neighborhood environments, will be useful. They usually
focus on coastal erosion, beaches, and their impacts on recreation and tourism [58–62]. For
instance, coastal residents in Mexico placed their importance on proximity to waterfronts
as one of the attributes when deciding a settlement and higher prices were paid for houses
located near most waterfront types [63]. The results in the ML model (Table 5) estimated
the WTP of coastal forest per 100 m to be JPY 695, with positive attitudes of nearly 60%;
however, enlarging coastal forests may cause an overlap with residences in some locations.
Interestingly, there was no strong evidence that the presence of seawalls affected housing
prices [64]. This obviously varies according to countries, regions, and their topographical
characteristics. A recent study on spatial hedonic analysis revealed that the regional
heterogeneities in hotel room pricing are affected by environmental and geographical
attributes, such as urban areas, elevation, and distance from coasts [65]; however, whether
coastal armoring and other environmental features are likely to affect housing values needs
to be further explored. Therefore, analyzing using both revealed preference and stated
preference methods will facilitate urban forestry in coastal zones by balancing gray and
green infrastructures, daily uses, and disaster management from human dimensions, as
well as provide some hints for sustainable coastal development, benefiting both humans
and nature.

5. Conclusions

The increasing frequency and magnitude of natural hazards coupled with SLR have
exacerbated the risks of coastal zones. This study quantified people’s preferences using
the ML model through choice experiments. Although this study has several constraints,
including the validity of responses in stated preference methods, the scenarios of SLR,
and their uncertainties, the results represent significant heterogeneity in the preferences of
coastal citizens. While the coastal people in Japan acknowledged gray’s coastal defense
function, the diverse perceptions toward seawalls for intensifying against SLR were notable
as its scenarios became severe. In addition, regarding landscapes, citizens showed positive
attitudes toward hybrid landscapes compared with the negative WTP of gray-based coastal
landscapes. Furthermore, coastal citizens’ perceptions regarding Eco-DRR offered by
coastal forests were positive, even though there are uncertainties in their performances.
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Figure A3. A number of avian species. The small number of bird species indicated that Columba 
livia, Larus crassirostris, and Corvus (Corvus macrorhynchos or Corvus corone), which are generally 
seen in Japan, can be observed while a wide range of avian species is described as raptors and 
includes Pandion haliaetus and Accipiter gentilis, which are associated with higher consumers. 
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Table A1. Lower Elevation Coastal Zone in Japan.

Classification Definition Data

LECZ
Near coasts 10 m below in elevation and within

less than 5 km from the coastlines 147 (17.5%)

Away from coast 10 m below in elevation and over 5 km
from the coastlines 127 (15.1%)

Non-LECZ
Near coasts 10 m above in elevation and within

less than 5 km from the coastlines 111 (13.2%)

Away from coast 10 m above in elevation and over 5 km
from the coastlines 455 (54.2%)
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