
sustainability

Article

Cloud Based Smart City Services for Industrial Internet of
Things in Software-Defined Networking

Himanshi Babbar 1 , Shalli Rani 1,* , Aman Singh 2 , Mohammed Abd-Elnaby 3 and Bong Jun Choi 4,*

����������
�������

Citation: Babbar, H.; Rani, S.; Singh,

A.; Abd-Elnaby, M.; Choi, B.J. Cloud

Based Smart City Services for

Industrial Internet of Things in

Software-Defined Networking.

Sustainability 2021, 13, 8910.

https://doi.org/10.3390/su13168910

Academic Editor: Fadi Al-Turjman

Received: 12 July 2021

Accepted: 4 August 2021

Published: 9 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401,
Punjab, India; himanshi.babbar@chitkara.edu.in

2 Department of Computer Science and Engineering, Lovely Professional University,
Kapurthala 144411, Punjab, India; amansingh.x@gmail.com

3 Department of Computer Engineering, College of Computers and Information Technology,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; maahmed@tu.edu.sa

4 School of Computer Science & Engineering, and School of Electronic Engineering, Soongsil University,
Seoul 06978, Korea

* Correspondence: shalli.rani@chitkara.edu.in (S.R.); davidchoi@soongsil.ac.kr (B.J.C.)

Abstract: The network session constraints for Industrial Internet of Things (IIoT) applications are
different and challenging. These constraints necessitates a high level of reconfigurability, so that
the system can assess the impact of an event and adjust the network effectively. Software Defined
Networking (SDN) in contrast to existing networks segregates the control and data plane to support
network configuration which is programmable with smart cities requirement that shows the highest
impact on the system but faces the problem of reliability. To address this issue, the SDN-IIoT based
load balancing algorithm is proposed in this article and it is not application specific.Quality of
service (QoS) aware architecture i.e., SDN-IIoT load balancing scheme is proposed and it deals
with load on the servers. Huge load on the servers, makes them vulnerable to halt the system and
hence leads to faults which creates the reliability problem for real time applications. In this article,
load is migrated from one server to another server, if load on one server is more than threshold
value. Load distribution has made the proposed scheme more reliable than already existing schemes.
Further, the topology used for the implementation has been designed using POX controller and
the results has been evaluated using Mininet emulator with its support in python programming.
Lastly, the performance is evaluated based on the various Quality of Service (QoS) metrics; data
transmission, response time and CPU utilization which shows that the proposed algorithm has
shown 10% improvement over the existing LBBSRT, Random, Round-robin, Heuristic algorithms.

Keywords: software defined networking; industrial internet of things (IIoT); cloud; smart cities; POX;
QoS metrics

1. Introduction

New technologies including the IIoT, autonomous vehicular networks, and intelligent
medical systems are time-critical applications [1]. Time-critical control loops that demand a
strict delay bound have begun to be implemented in industrial automation machines. The
novel difficulty of handling time-critical traffic has developed with the emergence of Indus-
try 4.0 and the IIoT. Nowadays, with many physical objects linked to the internet, IIoT has
been evolved gradually. Today, IIoT technology connects everyone and everything around
the globe via sensor networks, it can detect or track environments and can recognize objects
by scanning a Radio Frequency Identification (RFID) tag [2]. Smart homes, automation
systems, medical care, smart grid, smart cities, etc. are some current applications where IoT
technology is being used. As the volume of linked objects on the internet grows with each
day, IoT management and control is becoming a very challenging task. To support better
management and handling in current scenario without changing the structure of existing

Sustainability 2021, 13, 8910. https://doi.org/10.3390/su13168910 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4580-6617
https://orcid.org/0000-0002-8474-9435
https://orcid.org/0000-0001-6571-327X
https://orcid.org/0000-0002-6550-749X
https://doi.org/10.3390/su13168910
https://doi.org/10.3390/su13168910
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13168910
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13168910?type=check_update&version=4


Sustainability 2021, 13, 8910 2 of 14

implementations, SDN arose to provide the consistency and programmability of the IoT
network [3]. In addition, it will simplify network operations, minimize the costs and speed
up the delivery of services by segregating the SDN controllers from the forwarding devices.

Any delays in response time during data transmission would have a negative effect
on overall efficiency of the whole network system, particularly in real-time transaction
situations. IoT applications are used by SDN to decrease the response time while enhancing
the communication approach. Multiple controllers have recently been utilized in SDN
rather than using a centralized controller which thereby tends to disperse whole IoT
congested load amongst these controllers. The use for SDN in IoT is essential to understand
the complexity and difficulty of traditional networks. The SDN in IoT will provide an easy
to operate network architectures with no further complications [4,5]. These networks are
managed by the routers and switches for packet forwarding in each direction. Therefore, it
is hard to be customized for higher-level management policies. The higher-level policies,
for example, Second Generation (2G) traffic should be given lesser priority than Third
Generation (3G) demand routers by having two queues where one queue is for 2G and
the other for 3G packets and allows the 3G packets to be processed in higher proportion
concerning 2G packets [5,6]. Another aspect of traditional networking is that network
equipment is traditionally proprietary specifying the vendors that provides the integrated
solution in terms of operating system. Moreover, software is also composite of networking
devices, configuration, protocol implementation and this whole comes from the major
vendors. SDN in the cloud is required because different users of cloud need to innovate
new kinds of rules and methods to configure the network and run the services as per their
requirements [7,8].

The main constraints of SDN and IoT are fault tolerance, reliability, scalability, hetero-
geneous communication technologies, dynamic network conditions, massive amount of
data, application specific quality of service requirements etc. To overcome these constraints
we have proposed the SDN-IoT based load balancing algorithm which handles all the
network management related issues with the proposal of IoT for smart cities with SDN as
it is not application specific therefore, it can be implemented in any kind of application in
IoT for smart cities. This paper demonstrates the interaction of the switches and hosts for
data transmission on request of users for different applications in smart city domain. The
following contributions have been made towards this approach.

Contributions of the Paper

1. This study considers multiple distributed controllers for the implementation of SDN
in IIoT for smart city. The use of multiple controllers will help in managing excessive
traffic load which otherwise resides on single centralized controller in traditional
networks.

2. In the proposed architecture, authors are working on multiple controllers for the load
handling in which the network communication is done by the user in intra and inter
cluster which thereafter forwards the request to any one of the cluster.

3. The SDN POX controller is keeping the check on the number of requests and the
threshold value. If threshold value is more than the assigned number of requests then
the requests will be transferred from the intra cluster to inter cluster.

4. The clustering approach is used for the wide scale IoT network configuration which
eventually will support scalable and reliable communication with reduced power
consumption. The proposed architecture design will also improve the interoperability
and versatility of the whole network design.

5. The comparison of LBBSRT, Random, Round robin and heuristic algorithms are done
based on the various QoS metrics to evaluate the maximum throughput, minimum
latency and maximum CPU utilization.

6. The proposed architecture has been evaluated over Mininet emulator with POX as
experimental controller. The results have proved efficiency of our proposed work is
10% accurate than the existing work.



Sustainability 2021, 13, 8910 3 of 14

The rest of the paper is organised in Figure 1:

Figure 1. Roadmap of the paper.

2. Literature Review

In this section, authors are focusing on the recent publications that are attempting to
work on the smart city ecosystem based on IoT with the leverage of the SDN paradigm. To
the best of our knowledge based on the recent review done on the secure IoT paradigm
with SDN, various researchers have performed the integration of IoT based smart cities
with SDN.

Balasubramanian et al. [9] developed an algorithm that uses an SDN controller with a
broad perspective of the network and is focused on basic online techniques. This article, more
especially, in the framework of IEEE Time Sensitive Networking (TSN) norms: creates the TSNu
control policy framework, which ensures Scheduled Traffic data transmission distributions
while reducing congestion issues. Romero-Gázquez and Bueno-Delgado [10] overcomes the
challenges faced by the open source architecture solution based on the OpenDaylight (ODL), an
SDN controller for the IIoT scenarios orchestration. Son and Buyya [3] proposed methodology
to represent different benefits of cloud computing allowed by SDN but also to describe
every feature in description. Thorough surveys of cloud computing research using SDN
are described concerning power optimization in data centres, engineering of the traffic
and reliability. Kang and Choo [11] implemented the cloud-based network inflow is
distributed by the SDN-enhanced InterCloud Manager (S-ICM). For the evaluation, S-
ICM uses SDN control packet information and data collection, and the decision-making
process is focused on network congestion calculated for packets. Yen and Su [12] presented
IaaS and network security issues and issues of the federation presently dealt with this by
emerging technologies and innovative software-defined networking ideas that tackle a few
of the problems and could be used as effective solutions in the huge impact. Chen et al. [2]
proposed a wildcard mask to introduce the load balance method directly on switches
and routers and incorporate a user forecast function to dynamically modify the wildcard
mask. Accordingly, the load balancing mechanism can be applied following the actual
service situation. Vishnu Priya and Radhika [13] evaluated the efficiency of most common
OpenFlow controllers, such as NOX, POX, Ryu, FloodLight and OpenFlow reference
controller depending on their managing of the efficiency of the packet, by varying the size
of a packet, number of packets and pattern of arrival in the direction of IP-traffic.

2.1. IoT in Smart Cities

Mehmood et al. [14] developed a taxanomy based on IoT for smart cities which relies
on the various wireless technologies namely IEEE 802.11p, Wave, 6LowPan, etc. For the
benefit of researchers, we recently explored big open IoT platforms. In fact, to demonstrate a
growing pattern of IoT deployments, a range of published case studies of some of the latest
IoT deployments and research projects have been introduced. Arasteh et al. [15] discussed
the technologies, various features and components used in smart cities. Shown some light
on the practical experiences over the world which will enhance the day to day activities



Sustainability 2021, 13, 8910 4 of 14

that can be developed and increased by the use of it. Zhao et al. [16] authors implemented
the two schemes EOERA and CHERA, to efficiently and dynamically allocate all the
edge resources for various applications. EOERA embraces an apportionment approach
for all various applications to consider an appropriate case for allocation of resources.
Urbieta et al. [17] introduced a structure for adaptive service composition that facilitates
such dynamic reasoning. The architecture based on wEASEL, an abstract service model that
describes the identity, description (i.e. context-aware pre-conditions, post-conditions and
effects) and discussions of services and user tasks (i.e., behaviour with related data-flow
and context-flow constraints).

2.2. SDN in Smart Cities

Chen et al. [18] emphasised on locating the path and suggest a statistics-based trace
back strategy by using benefits of the SDN architecture to better protect against distributed
denial of service (DDoS) attacks. To evaluate the eigenvalue and create the anomaly tree, we
examine the flow changes via the Base Station (BS) nodes. Then trim it to obtain the attack
route with the DDoS detection algorithm. Xu et al. [19] proposed the strategy for DDOS
attacks based on defense classification of traffic to enhance the security of management of
data in SDN-enabled smart cities. Bi et al. [20] developed a dynamic architecture based
on SDN technology to enable smart city services. Instead, under the proposed system, we
examine the time-constrained big data transfer scheduling (TBTS) problem and introduce
an intelligent strategy to resolve the TBTS problem by using the SDN controller to perform
dynamic flow control and multi-path transfer scheduling.

2.3. IoT-SDN in Smart Cities

In order to provide a more scalable and agile network, we support IoT-based smart city
environments with the SDN paradigm. On top of the configured city, Gheisari et al. [21],
authors introduced a privacy-preserving technique. This is accomplished by the fact
that the data packets of all IoT devices are handled by the SDN controller and their
data is separated depending on the context. Ghosh et al. [22] presented our SDN-IoT
focused smart city framework, which is optimised, regulated, and controlled by a global
control centre. The proposed architecture embraces heterogeneous networks and includes
multiple networks, namely ZigBee, MANETs, sensor networks, and Bluetooth. Ouhab
et al. [23] proposed model utilizes flow routing, a network routing technique that takes
into consideration changes in data flow to improve routing efficiency and modify the
duration of packet forwarding between the various nodes from each instance of the Routing
Protocol for Low-Power and Lossy Networks (RPL). These two network control levels,
called SD- multi-hop clustering technique (MHC)-RPL, deliver better results in respect of
network efficiency. Gheisari et al. [21] implemented to test the SDN network infrastructure
integrated IoT management framework, and also the interaction of IoT traffic with SDN
switches. We conducted numerous IoT traffic tests to perform management system and
network infrastructure behavioral investigations, which were generated based on the one
M2M specification of the productive resources. Ogrodowczyk et al. [24] discussed the use
case of Poznan Smart City, illustrating how a single unifying SDN-based platform can be
used to “split” a city into multiple smart spaces functioning over a shared network and
cloud infrastructure, as well as how the network architecture allowed by OpenFlow can be
used to automate the development of IoT devices to be used in cloud-based multi-tenant
implementations. Rego et al. [25] proposed a new control system based on SDN and
IoT integration in smart city environments. When an emergency situation occurs, this
control system works and automatically alters the paths of regular and emergency traffic
congestion to diminish the amount of time that emergency services need to access the
emergency area [26] proposed the LBBSRT load balancing method, which is based on
server response times and takes benefit of SDN adaptability. We execute user requests
by achieving equally balanced server loads using real-time response time of each server
determined by the controller for load balancing. Our approach has a greater load balancing



Sustainability 2021, 13, 8910 5 of 14

impact and processes requests with the shortest average server response times, according
to simulations. The authors of [27] suggested to use POX controller to transform openflow
devices into hubs, switches, load balancers, and firewalls. The POX controller makes
running OpenFlow/SDN tests simple. Various QoS can be supplied to POX based on
real or experimental topologies, enabling you to execute experiments on real hardware,
testbeds, or in a mininet emulator. The first half of this paper will offer an introduction
to POX, OpenFlow, and SDN, followed by a description of the link between POX and
Mininet [28] represent a new software-defined networking (SDN) architecture for meeting
the QoS needs of different IoT services and balancing traffic among IoT servers at the
same time. The issue is first expressed as an NP-hard integer linear programming (ILP)
paradigm. Then, using time-series analysis and fuzzy logic, a predictive and proactive
heuristic technique is implemented.

The proposed methodology creates the different clusters in IoT which will balance the
load of all the clusters depending on the number of requests received on each cluster. If the
number of requests are greater than the threshold value assigned then the extra requests
received will be switched to the inter cluster from intra cluster so as to balance the load on
all the clusters in IoT. The SDN POX controller is responsible for managing the incoming
requests and forward to the IoT nodes in the respective clusters.

3. Proposed Architecture for Smart Cities in SDN-IoT

The grounds of the proposed work relies on creating an IoT network supporting smart
city application requirement [29]. The network uses SDN technology to create a complex,
programmatically optimized IoT network. The design of any physical networks should be
as simple as possible while improving the interoperability and versatility of the network.
Basically, the structure of this whole network is divided into three layers which comprises:

3.1. Data/Forwarding Layer

To implement optimized and effective decisions, IoT networks are composed of nodes
that facilitate the network with the cloud data. On the other hand, virtual devices especially
Openflow Switches which perform the role of Cluster Head (CH), are composed of SDN.
For the better network management with available resources, this study suggested a
clustering approach to arrange the IoT nodes in an effective way [24]. A cluster may
contain multiple nodes of the network say (I1, I2, I3, . . . , Im). The sensing capability of
these IoT nodes is to obtain data from their environment. Each cluster is controlled by
CH. We have placed the SDN POX Controller with every CH. The key objective of POX
controller is to manage and control the cluster region along with providing security from
all external and internal threats [25]. The inter cluster communication is achieved through
Gateway Nodes (GN).

The Figure 2 depicts virtual devices composed of various routers, switches, load
balancers, firewall, etc. The interaction between CH and SDN-IoT gateways controls the
SDN controller and control plane transfers the traffic through SDN OpenFlow protocol by
completing the whole routing on the data layer.



Sustainability 2021, 13, 8910 6 of 14

Figure 2. Clustering in IoT for SDN POX Controller.

3.2. Control Layer

Group of multi-functional controllers and virtualized resources are formed by the
control layer. It offers guidance of the behaviour of transmitting packets and virtualized
services for smart city applications. It is essential to delegate the tasks of the controller to
minimize congestion problems. The proposed system framework as shown in Figure 3,
the authors suggested several controllers. The researchers use three main categories of
network controllers: application, packet, and security controller.

Figure 3. Proposed Framework for SDN-IoT in Smart Cities.

The application controller is configured for the tracking of unauthorized network
applications. For balancing the load and monitoring of packets, the packet controller
is responsible. The three extended controllers, such as the main, intrusion and crypto
controllers, are added by the security controller. Throughout the entire network service,
these controllers are used to preserve honesty, anonymity, and confidentiality and are
referred as high-level applications.

3.3. Application Layer

This layer is considered as the uppermost layer of the system’s architecture in which
the built network’s application fields are deployed. This system architecture has been
proposed by the researchers, specifically for smart city applications as shown in Figure 4.



Sustainability 2021, 13, 8910 7 of 14

Figure 4. Applications of Smart City.

This layer includes a range of applications for smart cities such as smart homes, smart
energy, smart cars, smart health, smart transport, etc. [30]. In addition, it involves server
and cloud infrastructures that exchange content and facilitate the user with real-time
services. The most important tasks of this layer are both data processing and supplying
services.

3.4. System Model

The communication in the network gets initiated by an user while sending request
towards any one of the cluster. Considering a network scenario as shown in Table 1, each
cluster say clusteri is supposed to have predefined threshold value THi which defines
the increased number of requests which can be served by this cluster. All the nodes in
each cluster say I where (I → I1, I2, I3, . . .) are connected via a local SDN POX controller.
This controller is responsible for maintaining check on the number of requests currently
being served within its own cluster. At particular instance, when the threshold value
matches with the current number of processed requests, the POX controller does not let any
new request to get served in its own cluster and hence, it transmits this request towards
another cluster via GN. This request again has to be checked at newly arriving cluster for
its processing. In case of availability for request processing, the POX controller allows this
request to come in and transmits it to the node in its cluster based on remaining request
processing availability of that node and is checked at each node using Equation (1) :

current− reqI1,clusteri+1
< reqI1,clusteri+1

(1)

Here, current− reqI1,clusteri+1
is the current number of requests being served by node

I1 in clusteri+1, reqI1,clusteri+1
is the number of requests that can be processed by node I1

corresponding to clusteri+1.

In case of multiple nodes available for processing this request, it can be sent to any
one of them by after increment of 1 to its current− req count. The number of requests that
can be processed by any node I1 in its cluster say clusteri+1 is based on its threshold value
THi+1 and is computed using Equation (2):

reqI1,clusteri+1
=

THi+1

I
(2)

where THi+1 is the predefined threshold of clusteri+1 and I is the total number of nodes in
clusteri+1.



Sustainability 2021, 13, 8910 8 of 14

The process goes on until all the requests received from the users are not satisfied by
any one of the available clusters. The complete working of the proposed architecture is
represented in Table 1.

Table 1. Algorithm for Cluster IoT nodes mechanism.

Algorithm 1: Cluster-IoT nodes for smart cities

Variables: clusteri, reqi, THi
Procedure input: PacketIn Packets accepted from the controller
Begin: Clusteri
1 If THi = currentreqi
2 send request to clusteri+1
3 else clusteri processes the request
4 request received by nodej
5 If currentreq nodej < Maxreqnode j
6 nodej process the request
7 else
8 send request to nodej+1
9 endif
10 endif
End

4. Implementation of SDN Controller in Smart Cities

SDN Controller is the program which serves as a technical control plane within a
software-defined network. Generally, this is the network’s “brains” [31]. To deploy efficient
networks, an controller of SDN establishes flow access to switches/routers (via southbound
APIs) and applications and business logic (via northbound APIs). The POX controller is
used for the implementation of SDN.

POX Controller

SDN-based IoT network application that sits on top of the SDN controller provides the
solution’s primary logic. Using the SDN infrastructure, it rapidly generates and controls
end-to-end channels of communication from IoT devices to the cloud using TCP/UDP, the
program orchestrates cloud resources and controls IoT traffic between different clusters
and cloud services. OpenFlow SDN Controllers are included in this Python-based open
source framework SDN control program. It enables rapid prototyping and growth [27].
Features that are offered in POX are: Discovery of topology, follows similar visualization
tools as NOX, it can run anywhere and is a pythonic open flow interface with support from
platform like Windows, MAC OS, Linux.

Main Functions and Classes of POX Controller

• ofp_match: This class describes packet header fields and an input port to match on.
All fields are optional and these fields are not specified. Therefore,this will be treated
as wildcard and will match on anything. Some of the fields are:

– dl_type: It is used to specify whether the packet is arp (0x806) or IP(0x800) type.
– dl_src,dl_dst: It is for specifying layer 2 source and destination MAC address.
– in_port: The port through which packet came
– tp_dst: This is to specify TCP/UDP destination port

• ofp_flow_mod: It is OpenFlow message(instruction) sent by the controller to the
switch to install flow entries into the flow table. Incoming packets are matched against
these flow entries and action is performed on these packets as specified inflow entries.
The main fields of ofp_flow_mod message are:

– hard_timeout: After how many seconds the flow entry will be removed. The
default is no timeout.



Sustainability 2021, 13, 8910 9 of 14

– idle_timeout: After how many seconds the idle flow entries will be removed.
The default is no timeout.

– priority: relative importance of flow entries.
– buffer_id: The buffer id of the packet.

• ofp_packet_out: It is an OpenFlow message sent by the controller to the switch to
send the packet out. The packet sent out could be the one that was received by the
switch and delivered to the controller after buffering or the packet created by the
controller itself. The main fields are:

– data: raw data that you want to send. No need if sending buffered data.
– buffer_id: The buffer id of the packet
– action: list of actions in_port: the port on which the packet arrived. Specify

OFPP_NONE for the packet created at the controller.

5. System Analysis and Performance Evaluation

Authors are going to create a switch application using POX Controller as switches
are intelligent devices therefore, they maintain a dictionary of MAC addresses and ports.
Firstly, the logic of our application will be explained

Our switch topology consists of 4 hosts, 1 switch and 1 POX controller as shown in
Figure 5 . When our switch application is executed the “switch application-efficient” on
top of the POX controller, 2 tables will be maintained. One table will be maintained at
the controller and another table (flow table) will be maintained at the switch. The table
maintained at the controller will be “MAC to port table”. The table maintained at the
switch will contain flow entries. Initially, both tables will be empty.

Figure 5. POX Controller Using Switch Application.

Initially, the “MAC to port” at the controller will be empty. Now host h1 wants to
ping to host h4. What will happen in the MAC to port table ?

First, h1 will send ARP requests. Since the flow table at switch “s1” does not contain
any flow entry therefore, the packet is transferred to the controller. The controller looks at
SRC MAC address and the port on which packet came to the switch and makes 1 entry in
the “MAC to port” table maintained at the controller. Since in our case, the packet’s SRC
MAC address was “00:00:00:00:00:01” and came to the switch through port 1. Therefore,
the controller made the entry in the controller table as shown in Table 2. The controller
will look for the DST MAC address in the “MAC to port” table. If entry is found, the
packet will be sent out from the corresponding port, otherwise, it will be flooded. As can be
seen, the DST MAC address “00:00:00:00:00:04” is not in the table, so the packet is getting
flooded and no entry is made at the switch flow table. Now, h4 will send an ARP reply.
Since the flow table at switch “s1” does not contain any flow entry, therefore, the packet
is transferred to the controller. The controller looks at SRC MAC address and the port on



Sustainability 2021, 13, 8910 10 of 14

which packet came to the switch and makes 1 entry in the “MAC to port” table maintained
at the controller.

Table 2. Source MAC to port 1 table.

MAC Address Port

00:00:00:00:00:01 1

Therefore, the packet’s SRC MAC address was “00:00:00:00:00:04” and came to the
switch through port 4. So the controller made the entry in the “MAC to port” table as shown
in Table 3. Now the controller will look at the DST MAC address which is “00:00:00:00:00:01”
in our case. The controller will look for the DST MAC address in the “MAC to port” table.
If entry is found, the packet will be sent out from the corresponding port, otherwise, it will
be flooded. The entry added tells the switch if further packets with DST MAC address
“00:00:00:00:00:01” enters the switch, do not send these packets to the controller. Handle
these packets at the switch itself and sent the packet out from port 1. The next packet will
be ICMP request from host h1 (00:00:00:00:00:01) to host h4 (00:00:00:00:00:04). The switch
has got no entry regarding how to handle traffic going to DST MAC “00:00:00:00:00:04”, so
the packet will be sent to the controller. The controller will consult its table. Since now the
controller has information about DST MAC so it will instruct the switch to send the packet
out from port 4. After some time the “MAC to port” table at controller and flow table at
the switch.

Table 3. Destination MAC to port 4 table.

MAC Address Port

00:00:00:00:00:01 1

00:00:00:00:00:04 4

5.1. Creation of Topology and Testing of Connectivity in Mininet Emulator

Mininet is an emulator that works over many networks having a limited number
of resources. It is an emulator in which topologies can be created of very small size to
large. This emulator is used to run the gathering of end-hosts, switches, routers and
maintain a link by using the Linux kernel. To work with Mininet, require hosts, switches
and wires/cables to have a connection between controllers and switches. The creation of
topology comprises of 1 OpenFlow switch (s1) linked to 4 hosts (h1, h2, h3, h4) and a POX
controller. The syntax for single topology is: mn−−topo single, n. It consists of n hosts
and 1 OpenFlow switch. For e.g., h4 will ping h1. The successful pings mean all the links
in the network are active.

5.2. Performance Evaluation

In this section authors have framed three topologies of network with various QoS
metrics to calculate the flow of traffic of load and compared with the LBBSRT [26], Ran-
dom [27], Round Robin [27], Heuristic [28] algorithms. The whole simulations are done
in Mininet emulator with OpenFlow switches that imitates the real networking scenarios
and have captured the packets from the Wireshark for packets to analyze and calculates
the throughput, response time and CPU Utilization (TCP packets captured from Wire-
shark) of the different topologies. Authors found that proposed algorithms have better
efficient results than the existing algorithms on the basis of various QoS metrics namely
data transmission, response time and CPU utilization.

1. Comparison of Data Transmission: The data transmission is the number of incoming
requests received on the traffic at different time intervals. In Figure 6 the transmission
of data is achieved highest in the proposed algorithm as compared to the existing



Sustainability 2021, 13, 8910 11 of 14

algorithms, with the load of 100 Mbps the data transmission is 200 Mbps; and with
900 Mbps of load the data transmission is 800 Mbps and so on. As the load of traffic
is increasing the data transmission is rising accordingly. More load on clusters gives
rise to more data transmission. Proposed algorithm has shown the 65%, 70%, 70%,
72% improvement over LBBSRT [26], Random [27], Round Robin [27], Heuristic [28]
algorithms respectively in data transmission.

2. Comparison of Average Response Time: The response time signifies the minimum
number of incoming requests received on the clusters. Figure 7 gives the low response
time for the proposed algorithm which has been able to provide the unique flows for
the IoT nodes. As per the result, with 100 Mbps of load the response time is 0 ms;
300 Mbps of load the response time is 10 ms and so on. Proposed algorithm has shown
the 90%, 290%, 257%, 161% improvement over LBBSRT [26], Random [27], Round
Robin [27], Heuristic [28] algorithms respectively in response time.

3. Comparison of CPU Utilization: The balancing of load on the different servers i.e.,
server1, server2, server3 by various algorithms on different load on the clusters. As
seen, the CPU utilization of existing algorithms in Figure 8 is higher in all the servers
as compared to the proposed algorithm and the load imbalance occurs between the
IoT nodes if the resources are properly utilized. Proposed algorithm has shown the
64%, 79%, 72%, 63% improvement over LBBSRT [26], Random [27], Round Robin [27],
Heuristic [28] algorithms respectively in CPU utilization.

Figure 6. Data Transmission Rate.

Figure 7. Response Time.



Sustainability 2021, 13, 8910 12 of 14

Figure 8. CPU Utilization.

6. Conclusions

Software-Defined Networking will help cloud computing service providers to build
faster network with simple design configuration along with easy handling of huge number
of devices. This paper has presented the implementation of the SDN controller for IIoT
based ‘cloud services. SDN in the cloud has provided enormous opportunities to network
which facilitated changing adaptation and reorganization with its control layer separation
from the controlled forwarding system by the central server. This paper proposed a switch
application using the POX controller with its implementation in Mininet emulator using
python package and libraries. The comparison of LBBSRT, Random, Round robin and
heuristic algorithms are done based on the various QoS metrics to evaluate the maximum
throughput, minimum latency and maximum CPU utilization and it has shown the 10%,
12%, 7% improvement in data transmission, response time, CPU utilization respectively
over proposed algorithm. The future SDN can further be extended with more efficient
technique such as machine learning for real time applications.

Author Contributions: Conceptualization, H.B. and S.R.; methodology, S.R. and H.B.; validation,
A.S., S.R. and H.B.; formal analysis, A.S., S.R. and H.B.; investigation, S.R. and M.A.-E.; resources,
S.R.; data curation, B.J.C. and A.S.; writing—original draft preparation, S.R. and H.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by Taif University Researchers Supporting Project Number
(TURSP-2020/147), Taif University, Taif, Saudi Arabia; and the research was also supported by the
National Research Foundation (NRF) Korea (2019R1C1C1007277) funded by the Ministry of Science
and ICT (MSIT) Korea and by the Korea Institute for Advancement of Technology (KIAT) grant
funded by the Korea Government (MOTIE) (P0017123, The Competency Development Program for
Industry Specialist).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by Taif University Researchers Supporting Project
Number (TURSP-2020/147), Taif University, Taif, Saudi Arabia; and the research was also supported
by the National Research Foundation (NRF) Korea (2019R1C1C1007277) funded by the Ministry of
Science and ICT (MSIT) Korea and by the Korea Institute for Advancement of Technology (KIAT)
grant funded by the Korea Government (MOTIE) (P0017123, The Competency Development Program
for Industry Specialist).

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2021, 13, 8910 13 of 14

References
1. Al-Turjman, F.M. Information-centric sensor networks for cognitive IoT: an overview. Ann. Telecommun. 2017, 72, 3–18. [CrossRef]
2. Yang, C.T.; Chen, S.T.; Liu, J.C.; Su, Y.W.; Puthal, D.; Ranjan, R. A predictive load balancing technique for software defined

networked cloud services. Computing 2018, 101, 211–235. [CrossRef]
3. Son, J.; Buyya, R. A taxonomy of software-defined networking (SDN)-enabled cloud computing. ACM Comput. Surv. 2018, 51,

1–36. [CrossRef]
4. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun. Surv. Tutor. 2015,

17, 27–51. [CrossRef]
5. Astuto, B.N.; Mendonça, M.; Nguyen, X.N.; Obraczka, K.; Astuto, B.N.; Mendonça, M.; Nguyen, X.N.; Obraczka, K.; Sur, T.T.A.;

Nunes, B.A.A.; et al. A Survey of Software-Defined Networking : Past , Present , and Future of Programmable Networks. IEEE
Commun. Surv. Tutor. 2014, 16, 1617–1634.

6. Azodolmolky, S.; Wieder, P.; Yahyapour, R. SDN-based cloud computing networking. In Proceedings of the 2013 15th International
Conference on Transparent Optical Networks (ICTON), Cartagena, Spain, 23–27 June 2013; [CrossRef]

7. Lins, T.; Oliveira, R.A.R. Energy efficiency in industry 4.0 using SDN. In Proceedings of the 2017 IEEE 15th International
Conference on Industrial Informatics, INDIN 2017, Emden, Germany, 24–26 July 2017; pp. 609–614. [CrossRef]

8. Al-Turjman, F.; Alturjman, S. Context-sensitive access in industrial internet of things (IIoT) healthcare applications. IEEE Trans.
Ind. Inform. 2018, 14, 2736–2744. [CrossRef]

9. Balasubramanian, V.; Aloqaily, M.; Reisslein, M. An SDN architecture for time sensitive industrial IoT. Comput. Netw. 2021,
186, 107739. [CrossRef]

10. Romero-Gázquez, J.L.; Bueno-Delgado, M. Software architecture solution based on SDN for an industrial IoT scenario. Wirel.
Commun. Mob. Comput. 2018, 2018, 2946575. [CrossRef]

11. Kang, B.; Choo, H. An SDN-enhanced load-balancing technique in the cloud system. J. Supercomput. 2016, 74, 5706–5729.
[CrossRef]

12. Yen, T.C.; Su, C.S. An SDN-based cloud computing architecture and its mathematical model. In Proceedings ogf the 2014
International Conference on Information Science, Electronics and Electrical Engineering, ISEEE 2014, Sapporo, Japan, 26–28 April
2014; Volume 3, pp. 1728–1731. [CrossRef]

13. Vishnu Priya, A.; Radhika, N. Performance comparison of SDN OpenFlow controllers. Int. J. Comput. Aided Eng. Technol. 2019,
11, 467–479. [CrossRef]

14. Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances
and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [CrossRef]

15. Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In
Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy,
7–10 June 2016; pp. 1–6. [CrossRef]

16. Zhao, L.; Wang, J.; Liu, J.; Kato, N. Optimal Edge Resource Allocation in IoT-Based Smart Cities. IEEE Netw. 2019, 33, 30–35.
[CrossRef]

17. Urbieta, A.; González-Beltrán, A.; Ben Mokhtar, S.; Anwar Hossain, M.; Capra, L. Adaptive and context-aware service composition
for IoT-based smart cities. Future Gener. Comput. Syst. 2017, 76, 262–274. [CrossRef]

18. Chen, W.; Xiao, S.; Liu, L.; Jiang, X.; Tang, Z. A DDoS attacks traceback scheme for SDN-based smart city. Comput. Electr. Eng.
2020, 81, 106503. [CrossRef]

19. Xu, C.; Lin, H.; Wu, Y.; Guo, X.; Lin, W. An SDNFV-Based DDoS Defense Technology for Smart Cities. IEEE Access 2019,
7, 137856–137874. [CrossRef]

20. Bi, Y.; Lin, C.; Zhou, H.; Yang, P.; Shen, X.; Zhao, H. Time-Constrained Big Data Transfer for SDN-Enabled Smart City. IEEE
Commun. Mag. 2017, 55, 44–50. [CrossRef]

21. Gheisari, M.; Wang, G.; Khan, W.Z.; Fernández-Campusano, C. A context-aware privacy-preserving method for IoT-based smart
city using Software Defined Networking. Comput. Secur. 2019, 87, 101470. [CrossRef]

22. Ghosh, U.; Chatterjee, P.; Shetty, S.; Datta, R. An SDN-IoT-based Framework for Future Smart Cities: Addressing Perspective.
arXiv 2020, arXiv:2007.11536.

23. Ouhab, A.; Abreu, T.; Slimani, H.; Mellouk, A. Energy-efficient clustering and routing algorithm for large-scale SDN-based IoT
monitoring. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; pp. 1–6. [CrossRef]

24. Ogrodowczyk, .; Belter, B.; LeClerc, M. IoT Ecosystem over Programmable SDN Infrastructure for Smart City Applications.
In Proceedings of the 2016 Fifth European Workshop on Software-Defined Networks (EWSDN), Den Haag, The Netherlands,
10–11 October 2016; pp. 49–51. [CrossRef]

25. Rego, A.; Garcia, L.; Sendra, S.; Lloret, J. Software Defined Network-based control system for an efficient traffic management for
emergency situations in smart cities. Future Gener. Comput. Syst. 2018, 88, 243–253. [CrossRef]

26. Zhong, H.; Fang, Y.; Cui, J. Reprint of “LBBSRT: An efficient SDN load balancing scheme based on server response time”. Future
Gener. Comput. Syst. 2018, 80, 409–416. [CrossRef]

http://doi.org/10.1007/s12243-016-0533-8
http://dx.doi.org/10.1007/s00607-018-0665-y
http://dx.doi.org/10.1145/3190617
http://dx.doi.org/10.1109/COMST.2014.2330903
http://dx.doi.org/10.1109/ICTON.2013.6602678
http://dx.doi.org/10.1109/INDIN.2017.8104841
http://dx.doi.org/10.1109/TII.2018.2808190
http://dx.doi.org/10.1016/j.comnet.2020.107739
http://dx.doi.org/10.1155/2018/2946575
http://dx.doi.org/10.1007/s11227-016-1936-z
http://dx.doi.org/10.1109/InfoSEEE.2014.6946218
http://dx.doi.org/10.1504/IJCAET.2019.10020284
http://dx.doi.org/10.1109/MCOM.2017.1600514
http://dx.doi.org/10.1109/EEEIC.2016.7555867
http://dx.doi.org/10.1109/MNET.2019.1800221
http://dx.doi.org/10.1016/j.future.2016.12.038
http://dx.doi.org/10.1016/j.compeleceng.2019.106503
http://dx.doi.org/10.1109/ACCESS.2019.2943146
http://dx.doi.org/10.1109/MCOM.2017.1700236
http://dx.doi.org/10.1016/j.cose.2019.02.006
http://dx.doi.org/10.1109/ICC40277.2020.9148659
http://dx.doi.org/10.1109/EWSDN.2016.17
http://dx.doi.org/10.1016/j.future.2018.05.054
http://dx.doi.org/10.1016/j.future.2017.11.012


Sustainability 2021, 13, 8910 14 of 14

27. Kaur, S.; Singh, J.; Ghumman, N.S. Network programmability using POX controller. In Proceedings of the ICCCS International
Conference on Communication, Computing & Systems, Macau, China, 19–21 November 2014; IEEE: Piscataway, NJ, USA , 2014;
Volume 138.

28. Moghaddam, Y.; Hossein, M. Load-Balanced and QoS-Aware Software-Defined Internet of Things. IEEE Internet Things J. 2020,
7, 3323–3337.

29. Al-Turjman, F.; Malekloo, A. Smart parking in IoT-enabled cities: A survey. Sustain. Cities Soc. 2019, 49, 101608. [CrossRef]
30. Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities.

Comput. Commun. 2020, 154, 313–323. [CrossRef]
31. Paliwal, M.; Shrimankar, D.; Tembhurne, O. Controllers in SDN: A review report. IEEE Access 2018, 6, 36256–36270. [CrossRef]

http://dx.doi.org/10.1016/j.scs.2019.101608
http://dx.doi.org/10.1016/j.comcom.2020.02.069
http://dx.doi.org/10.1109/ACCESS.2018.2846236

	Introduction
	Literature Review
	IoT in Smart Cities
	SDN in Smart Cities
	IoT-SDN in Smart Cities

	Proposed Architecture for Smart Cities in SDN-IoT
	Data/Forwarding Layer 
	Control Layer
	Application Layer
	System Model

	Implementation of SDN Controller in Smart Cities
	System Analysis and Performance Evaluation
	Creation of Topology and Testing of Connectivity in Mininet Emulator
	Performance Evaluation

	Conclusions
	References

