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Csaba Biro 4, Gergely Pápay 5, Attila Fűrész 5, Károly Penksza 5, Diána Pácsonyi 1, Krisztina Demény 6,
Erika Juhász 7, Dorottya Dékány 1, Lili Csernyava 1, Gábor Illés 8 and András Molnár 9,*

����������
�������

Citation: Bakó, G.; Molnár, Z.; Bakk,

L.; Horváth, F.; Fehér, L.; Ábrám, Ö.;

Morvai, E.; Biro, C.; Pápay, G.; Fűrész,
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Abstract: Aerial surveys have always significantly contributed to the accurate mapping of certain
geographical phenomena. Remote sensing opened up new perspectives in nature monitoring with
state-of-the-art technical solutions using modern onboard recording equipment. We developed the
technical background and the methodology that supports detailed and cost-effective monitoring
of a network of natural areas, thereby detecting temporal changes in the spatial pattern of land
cover, species, biodiversity, and other natural features. In this article, we share our experiences of
the technical background, geometric accuracy and results of comparisons with selected Copernicus
Land Monitoring products and an Ecosystem Map based on the testing of our methodology at
25 sites in Hungary. We combined a high-spatial-resolution aerial remote sensing service with
field studies to support an efficient nature conservation monitoring network at 25 permanent sites.
By analyzing annually (or more frequently) orthophotos taken with a range of 0.5–5 cm spatial
resolution and 3D surface models of aerial surveys, it is possible to map the upper canopy of
vegetation species. Furthermore, it allows us to accurately follow the changes in the dynamics at
the forest edge and upper canopy, or the changes in species’ dominance in meadows. Additionally,
spatial data obtained from aerial surveys and field studies can expand the knowledge base of the
High-Resolution Aerial Monitoring Network (HRAMN) and support conservation and restoration
management. A well-conducted high-resolution survey can reveal the impacts of land interventions
and habitat regeneration. By building the HRAMN network, nature conservation could have an
up-to-date database that could prompt legal processes, establish protection designation procedures
and make environmental habitat management more cost-effective. Landscape protection could also
utilize the services of HRAMN in planning and risk reduction interventions through more reliable
inputs to environmental models.
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1. Introduction
1.1. Motivations

In an information society, it is crucial to know about the actual state, patterns, and
trends of our environment [1–3]. The role of ecosystem services and the conservation
status of natural habitats in decision-making and legislation is increasing [4–6]. Ecosystems
can provide a range of services that are of fundamental importance to human well-being,
health, livelihoods, and survival [7,8]. Applying the latest remote sensing technologies in
an innovative way can expand the range of monitoring tools and enhance nature conser-
vation and scientific research efficiency. Demands on the use of high-resolution remote
sensing procedures and spatial data in nature conservation projects [9–12], in environ-
mental and restoration ecology [13–15], mapping and monitoring natural phenomena are
growing [16–19]. However, data collection is confronted with the controversial challenges
of increasing spatial resolution, higher frequency of surveys, and ever-faster evaluation
providing readily available information on increasingly large areas [20–27]. Our team is
continuously experimenting with the latest technologies and workflows to find the most
cost-effective, innovative solutions adapted to the different spatial resolutions demanded
by nature conservation monitoring [28–32] which comply with legal requirements.

1.2. General Background

The transformation, fragmentation, and degradation of valuable natural areas [33–
35] have led to a dramatic loss of biodiversity worldwide [36]. The naturalness of the
vegetation has decreased continuously over past centuries and decades [37], and the cost
of potential restoration is constantly growing.

The socio-ecological resilience and climate change tolerance of natural areas are much
higher than artificially created or degraded areas [38–40]. Global changes and changing
disturbance regimes have substantial impacts on the resilience and stability of forests,
which seem to be higher in natural stands due to the high diversity of their native species,
structures, functions, and patterns [41,42]. Human society can benefit from the protection
of natural habitats via the various ecosystem services provided by them [43,44]. The
protection of natural and cultural values and ecosystem services can often be supported
by economic arguments [45,46]. Nowadays, environmental interventions that trigger
positive and sustainable ecosystem processes are also economically viable [47–52]. In
contrast, projects that seem to be successful throughout the implementation phase can
fail in the long term if biological and ecosystem processes are contradictory [53]. Various
socio-economic movements and actions can also be strongly supported by clear visual
messages like a series of interpreted aerial photos displaying the results of conservation
monitoring projects.

1.3. Recent Technological Innovations

The novel remote sensing and digital photogrammetry methodologies can offer new
ways to meet the needs of nature conservation monitoring [28,54–56]. The most effective
tools that can help to study environmental processes on a large scale are numerous spatially
distributed study sites, frequent image acquisition, quick evaluation of the results, and
free flow of information [57]. Digital photogrammetry and multi-source satellite remote
sensing create data at higher spatial, spectral, and temporal resolution than data collected
at any other time on the ground [30–32,58]. The main technological components of our
innovative workflows are aerial remote sensing by fixed-winged aircraft imagery, high-
precision autopilot flight itineraries, digital photogrammetry technology, very high spatial
and spectral resolution, orthophotos and additional oblique imagemaps and point clouds,
high-rate image data acquisition, a direct georeferenced photogrammetric platform, high-
speed automatic image preprocessing, field validation with local experts, and cooperation
with research projects [28,32].
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1.4. Monitoring System Based on Regular Aerial Surveillance of Landscape Details

Following the development of the technical bases, pilot surveys began in 2018 with a
high-resolution sampling of 25 study sites in Hungary. Based on these centimeter spatial
resolution multispectral aerial surveys, a nationwide database could be built in the future.

The proposed features of the High Spatial Resolution Aerial Monitoring Network
(HRAMN) are as follows:

• High cost-efficiency: several hundred representative and permanent sample areas
(i.e., 800 sites measuring 1 km2 each) in a 100,000 km2 area can be surveyed within
a few days and can provide high spatial resolution digital orthoimage maps and
point clouds up to four times a year at high flight speeds (200–800 km/h) for nature
conservation, monitoring, and research projects.

• Prompt availability of digital orthoimage datasets, 3D point clouds to the field experts
for evaluation in a few days: fast post-processing of thousands of images taken by
aerial cameras in a few days can be achieved by the so-called direct orientation;
every exposition’s location and tilt is recorded using an aerial camera system with a
differential GPS and precision compass.

• Orthoimage maps can improve spatial accuracy while field experts provide special
knowledge for interpretation. Applying orthophotos can enhance the exact local-
ization of field objects by one order of magnitude, while experts can provide addi-
tional information and knowledge which is difficult or impossible to map by remote
sensing alone.

• No interference with wildlife. We have conducted numerous experiments on the
stress tolerance of mammals and birds with a UAV (unmanned aerial vehicle) and
aeroplanes at different heights above ground level. There is no wildlife disturbance at
flight altitudes above 450 m.

• Data and maps should be freely accessible and secured. It is suggested to grant public
administrations and authorities, universities and academic research institutions, as
well as citizens and not-for-profit organizations, free access to our datasets. Open
access is one of the most important principles of the suggested infrastructure and
service, except for sensitive data on wildlife and nature conservation. Therefore,
investment in secure data storage and online access is also needed.

1.5. Objectives

This paper examines how the geometric accuracy, detection accuracy, and applica-
bility of the tested services of the High Spatial Resolution Aerial Monitoring Network
(HRAMN) databases relate to European databases. Moreover, we attempt to determine
how the HRAMN can supplement the knowledge gained from other aerial, space-born,
and field surveys.

We used some examples from Hungary to explain the importance of fine-scale aerial
monitoring data in protecting natural landscapes. Our results demonstrated the effective-
ness of the monitoring method and indicated a potential for further developments.

• The primary goal was to design, develop and test a cost-effective methodology and its
technical background, including the selection of aircraft and onboard equipment and
the whole workflow from flight planning through to image acquisition to the final
digital product.

• A critical task is to improve and test the methods of data extraction and interpretation
of high-resolution spatial data.

• It is important to examine how HRAMN databases relate to Copernicus and country-
scale products.
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2. Methods
2.1. The Main Components of Remote Sensing Technologies

During the last several years, various aeroplane types (Piper-Pa-32, Piper-Pa-34,
Cessna 182, Cessna 210) flown by a pilot, but also unmanned aircraft systems (UAS), i.e.,
fixed-winged large drones and professional octocopters were tested and applied to develop
mission-specific remote sensing platforms. More than a hundred digital frame camera
systems and sensor combinations were also tested.

We surveyed sample areas of about one square kilometre with various flight settings
and spatial resolutions ranging from 0.5 to 5 cm. This enabled us to define spatial resolution
characteristics depending on the flight’s altitude above ground level, groundspeed, and the
camera shutter speed of different remote sensing platforms. Modern sensors can capture
sharp images at groundspeeds of up to 600 km/h with a 0.5 cm spatial resolution from a
flight altitude of 600 m, however other flight and optical zoom parameters, such as the
readout speed and data flow rate of recordings have to be optimized [59]. The following set
of parameters is used for the aerial surveys. When the Sun’s angle of attack is beyond 30◦,
taking high-quality photographs requires a camera axis tilt less than 4◦, a yaw of less than
7◦, and a maximum of 2.5% deviation from the flight altitude [60]. A sufficiently detailed
high dynamic range image should show the topmost branches of trees and the shady parts
of forest gaps between trees clearly. As long as the aerial records meet these requirements,
it does not matter whether we install the camera device on a plane or a drone. What really
matters is the unperturbed accuracy of the flight path, the velocity, and smooth stability.

2.2. Area Frame Sampling Approach

It is unnecessary and not cost-effective to survey the whole area of countries with
such a high spatial resolution. However, the establishment and operation of a monitoring
network is a reasonable choice of experiment. This way, only certain parts of the territory
are surveyed, and data can be gathered at a more detailed level, then the results can be
extrapolated to larger reference zones [61]. Compared to whole area coverage mapping
approaches, sample surveys provide rapid results, thus seasonal surveys become feasible.
In addition, accuracy estimates of area frame sampling are possible depending on sample
size, which judges reliability and the efficiency of large reference zones [62].

Irregularly shaped sampling areas can be selected if a methodological investigation
finds no significant differences in results compared to regular square sample sites [63].

2.3. Main Types of Sample Areas and Spatial Resolution

Initially, 25 sample areas were selected, but we are currently surveying 32 areas
(Supplementary File S1). Selected strict forest reserves represent old-growth natural forest,
characteristic of the Carpathian Basin, where the natural ecological processes of forest
ecosystems can be recognized and studied [64]. Furthermore, other forested research sites
are selected for long-term monitoring and to support research investigations. In the case
of wetlands, the main tasks are vegetation mapping, the population count of breeding
heron colonies, and beaver impact monitoring. In the case of rocky sites and grasslands, we
focus on the detailed mapping of vegetation and monitoring of the patterns and dynamics
of patches.

We surveyed some of the wetlands with a 0.5 cm spatial resolution and oblique aerial
images, while images of forests, rocky grasslands and populated urban areas were taken
by aerial photos with 2–5 cm spatial resolution and 3D point clouds. In many sample
areas, the aerial surveys were repeated over several months. For waterfowl colonies, aerial
photography was performed three times during the breeding period for a more accurate
population estimate.

2.4. No Disturbance and Other Survey Limitations

A broad range of information can be gathered about natural systems in field surveys.
However, in certain cases, field surveys are limited or restricted by nature conservation
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regulations. Thus, the monitoring of wildlife populations and biodiversity [59] should be
conducted without disturbing the populations (Figure 1), as this is also a worldwide ethical
issue [65]. Aerial data should usually be completed and compared with field data, but they
can also be used in themselves with some limitations. For example, HRAMN could be a
feasible solution for monitoring changes in the Háros Peninsula Forest Reserve, where it is
restricted to enter because of the nesting of protected birds. Still, with orthophotos, side-to-
top oblique orthophotos, and three-dimensional models available with 5–20 cm planimetric
accuracy combined with a field control point study limited to the outside of the area, we
performed an all-tree orthophoto interpretation of the 25.5 hectares area without prior
fieldwork. Later a field validation and photo documentation were completed successfully
with the help of the staff of the Danube Ipoly National Park Directorate (Figure 2).
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Figure 1. Monitoring of the breeding colony of herons in the reed belt of Lake Kolon sample area from aircraft. Three nests,
one adult great egrets (Ardea alba) (a) and nine young (b) can be detected in this detailed orthophoto. Any resolution smaller
than the current one renders counting every piece impossible. Due to higher altitude the images are foggier than they were
if taken from lower. The relatively high altitude (800 m above ground) of the flight mission did not trouble the nesting birds.
In addition to the 0.5 cm high spatial resolution of orthophotos, the oblique image series also helped to identify and count
the birds. (Photo Credit: Biro, Bakó, Ábrám, Morvai—INTERSPECT 2018).
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Figure 2. High-resolution orthophoto mosaic of the Háros peninsula sample area used for the interpretation and mapping
of dominant trees. Field validation and photo documentation of the trees were performed later with the specific permission
of the nature conservation authority (Photo Credit: Bakó—INTERSPECT).

In the Land Use/Cover Area frame Survey (LUCAS) methodology, interpretation
of remotely sensed photos is needed if the surveyed location is too inaccessible [66].
Simultaneous aerial and field surveys can help to understand natural phenomena more
deeply and reduce the field efforts needed to explore and quantify the landscape changes
(e.g., beaver impact study sites, Supplementary File S2).

2.5. Additional Attribution

In most cases, orthophoto products support more detailed studies, like the well-spring
map, which was generated by combining the photo interpretation of a winter orthophoto
map with a digital terrain model based on a geohydrological investigation (Figure 3), and
a full-cover segmentation map of the upper canopy of forest based on a summer survey
(Figure 4). Ensuring that surveys and field validation are well-timed is very important.
The autumn forest’s images are often much more diverse than the images from summer.
However, in many cases, the combined effect of seasonal differences and other phenomena
can be detected (such as soil features and differences in the phenology of species or
individual trees), highlighting the importance of the time series in aerial surveys.
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Figure 3. Well-spring spots were explored and classified based on a wintertime survey in the Magas-Bakony Landscape
Protection Area, Hungary. The orthophoto map and a 3D point cloud of the terrain were combined with a geohydrological
modelling. Legend: 1. The riverbed pattern of the stream is meandering, with asymmetrical bends. 2. Branches are
connected to the stream. 3. Springs that cannot have abundant water because their beds taper to the stream, located above
the erosion base. 4. A straighter riverbed section that may indicate a reduction in slope, 5. Vegetation in the zone along
the stream is natural. The trees definitely affect the flow of the stream and the resilience of the riverbed. 6. Higher, rocky
terrain: a strip appears along the stream because of natural vegetation. 7. Traces of deer or wild boar activity. 8. A new road
was passing through tributaries (artificial passages below the road). 9. An artificially created deep road. 10. Evergreen
trees, like the European spruce (Picea abies). 11. The bend of an artificially deep road starting from the stream. 12. Red deer
(Cervus elaphus). (Photo Credit: Bakó, Pál-Somogyi, Fehér, Síkhegyi, Licskó, Molnár—INTERSPECT 2019).

The datasets of orthophotos and 3D point clouds are evaluated in cooperation with
local experts in botany, forestry, ecology, geology, etc., to deepen our knowledge of the
sample areas. In addition, an integrated spatial database with attributes on land cover,
land use, habitat, and species occurrence, is developed (Supplementary File S3). The
attributes are attached during the basic, landscape-level evaluation of aerial surveys. The
classification of land cover categories applied is given in Supplementary File S3.
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Figure 4. High-resolution orthophotos of the Bakonybél forested sample area, Magas-Bakony Landscape Protection Area,
Hungary, in winter (a), in summer (b), and the resulting segmentation map (c) of the upper canopy layer. (Photo Credit:
Fehér, Bakó, Molnár, Burai—INTERSPECT 2019).

2.6. Comparison: Applicability, Geometric Accuracy, and Detection Accuracy

HRAMN can help to develop, scale, and improve ecological databases based on space
remote sensing and country-wide aerial remote sensing. At some sites, we examined the
HRAMN’s efficiency in detecting landscape patterns and other data features. We analysed
the novel methodology by comparing our results with data gained from the following
databases: Copernicus Land Monitoring Service CORINE Land Cover 2018 and Urban
Atlas 2018; National, High-resolution Ecosystem Map of Hungary [67,68]. We applied the
overlap matrix approach to analyse deviations in land cover classes, focusing on types
with higher influence on the ecosystem services.

Geometric accuracy was examined by field geodetic inspection at a separate set of
test control points with 1 cm accuracy and by comparing the areas of the detected spots.
If the land cover categories in the small-scale database did not allow the identification of
specific land cover categories in the large-scale database, then we merged the corresponding
categories into the HRAMN database for comparison. After the preprocessing of the two
land cover databases, the translation of the nomenclature (pair to pair identification) is
the next step. The third step is to calculate the overlap between classes and insert these
overlap values into the matrix. When calculating the detection accuracy, we looked at the
mistakenly categorized pieces. When comparing to a larger-scaled database, the two maps
had been sliced up using geoprocessing tools. This created as many identical overlapping
features as there were features that participate in that overlap. We examined the area of
the small-scale database that differs from the higher-precision layer for specific land cover
categories. HRAMN databases can be used to draw even further conclusions.
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3. Results
3.1. Brief Guidelines on Aerial Surveys

To ensure uniform weather and illumination circumstances within an array of aerial
recordings, high-speed flights (>200 km/h) are highly preferable. In our experience,
high-quality orthophotography and point clouds are achievable cost-effectively using fast
readout full-frame CMOS sensors that can take detailed and dynamic pictures even when
illumination is insufficient, plus they are not overloaded by taking 9000 photos daily. In
cameras with sensors of 36 × 24 to 53.4 × 40 mm bounding dimensions, we use fix focal
length objectives (in the range of 35–500 mm focal length), locked to infinity, and our flight
altitude is between 450 and 800 m. The resolution of our cameras varies between 36 and 200
megapixels. We recommend >85% overlap within rows, and 80% overlap between rows.
We determined the settings of the groundspeed, flight altitude, spatial resolution, and
shutter speed so that the images were not blurred by forward motion (Figure 5). Modern
digital frame cameras are capable of capturing sharp images even at high groundspeeds.
The diagram shows how the spatial resolution at a given flight altitude corresponds with
groundspeed and what shutter speed is required to keep the image sharp with a 50 mm
focal length. The same correlations can be applied for wide-angle lenses and telelenses with
different altitudes so that the required spatial resolution can be reached at a much higher
flight altitude. Below the line of 65% overlap of aerial images display the appropriate
combinations of groundspeed, flight altitude, and shutter speed with a standard 50 mm
focal length objective.
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Figure 5. Spatial resolution diagram at 36 × 24 mm sensor and 50 mm focus distance depending on flight altitude,
groundspeed, and the shutter speed of the camera. The 65% inline overlap of aerial images shows the limit of the
appropriate combinations of taking sharp images for 3D photogrammetry.

Increasing the flight speed also works with multispectral bands in the spectral range
of 350 nm to 1100 nm [60] (Figure 6).
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Figure 6. Multispectral images can be taken up to half a cm in spatial resolution or during high-speed flights, depending on
the flight altitude and groundspeed.

The following figure shows an example of a high-resolution (0.5 cm) infrared com-
posite image taken by an aircraft with 220 km/h groundspeed, 500 m above the ground
(Figure 7). A more coarse-grained (3 cm) version for spatial resolution can be produced at
ground speeds of up to 600 km/h.

3.2. Comparison with Large-Scale Maps

It is essential to know how HRAMN functions compared to other spatial databases,
like the Corine Land Cover (CLC) and Ecosystem Map of Hungary. We examined the
spatial overlap of land cover categories for some HRAMN sites. Table 1 shows spatial
coincidences and differences between land cover categories of CLC and broad land cover
classes of HRAMN in the case of the Hármashatár-hegy sample area. More land cover
categories can be differentiated on the HRAMN product, despite that it does not make
a distinction between broadleaved and conifer trees. However, considering the more
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elaborated version of vegetation classes, the HRAMN orthophoto reveals a much more
detailed pattern and classification of the same site (Figure 8). More diverse forest types can
be distinguished and mapped based on the species-level classification of the upper canopy
trees. Accurate local assessment cannot be made using the CLC database in the case of
diverse forests.
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Figure 7. Color infrared composite orthoimage detail with 0.5 cm spatial resolution from an aerial survey at 500 m altitude
with 220 km/h groundspeed. It clearly shows the branch structure of (leafless) broadleaved trees and snowy patches. (Photo
Credit: Bakó—Molnár INTERSPECT 2011).

Table 1. Spatial overlap matrix between land cover categories of CLC 2018 and HRAMN 2018 maps of Hármashatár-hegy
sample area in m2.

HRAMN Categories

Land Cover
Categories

Canopy
Cover of
Woody

Vegetation

Forest
Gaps

Artificial
Objects

Barren
Soil Grasslands Barren

rocks
Artificial

Coverings

Densely
Built-Up

Anthropogenic
Areas

Shrub
Areas

Total
Cover

by
Corine
Land
Cover
(m2)

C
LC

ca
te

go
ri

es

Discontinuous
urban fabric

(CLC 112)
288 0 0 6 0 0 815 15.9 0 17

Broadleaved
forest

(CLC 311)
374.2 3964 298 7519 8715 10.5 12.1 624 606 418.6

Mixed forest
(CLC 313) 39.7 135 0 1258 1634 376 0 0 18 43.1

Transitional
woodland-

shrub
(CLC 324)

238 0 0 0 0 0 0 0 0 238

Total cover by
HRAMN (m2)

414.5 4099 298 8783 10.3 10.9 12.9 16.6 624 479
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Figure 8. Various remote sensing-based vector maps of the Hármashatár-hegy sample area, Hun-
gary: (a) Copernicus CLC 2018, (b) HRAMN 2018 land cover, (c) Ecosystem Map of Hungary 2019,
(d) HRAMN 2019 vegetation classes (Bakó, Pápay, Fűrész, Molnár—INTERSPECT).
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It is worth examining the coincidenfce between CLC and HRAMN at Hár-mashatár-
hegy sample area, where the vegetation is dominated by deciduous and black pine (Pinus
nigra) trees (Figure 9). The CLC classifies 8.7% of the forests in the sample area as inhabited,
71.5% as decidufous broadleaved forests, 15% as mixed forests, and 4.8% as temporary
shrubberies representing a 13.4% error for the sample area for discontinuous urban fabric.
The screening for evergreen-invasive vegetation shows significantly less bias than mapping
for invasive deciduous woody and herbaceous species (e.g., tree of heaven, Ailanthus
altissima or common milkweed, and Asclepias syriaca). When we validated the HRAMN
product using field surveys, an exceptionally high 95% accuracy was achieved in the Háros
Peninsula sample area due to timing the survey correctly in the flowering period.
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Figure 9. The summarized cover of broadleaved forest and mixed forest classes by Corine Land Cover and HRAMN in the
Hármashatár-hegy sample area. The CLC 2018 detected less than half of the area was covered by the invasive coniferous
black pine (Pinus nigra) and overestimated the canopy of broadleaved trees. (Bakó—INTERSPECT).

For one of the other sample areas (Közös-erdő Strict Forest Reserve), the relationship
between CLC 2018 and HRAMN 2018 highlights the importance of fine-scale validation of
broad-scale databases (Table 2). Moreover, Table 3 and Figure 10 point out the need to and
possibilities of increasing Urban Atlas’s accuracy.

Table 2. Spatial overlap matrix between the land cover categories of CLC 2018 and HRAMN 2018 maps of Közös-erdő Strict
Forest Reserve sample area in m2, at Páhi-Csengőd, Kiskunság Biosphere Reserve, Hungary.

HRAMN Categories

Land Cover
Categories

Canopy Cover
of Woody

Vegetation

Gaps in the
Forest

Canopy
Artificial
Objects

Water
Surface Barren Soil Grasslands

Total Cover by
Corine Land
Cover (m2)

C
LC

ca
te

go
ri

es

Pastures
(CLC 231) 25.4 122 529 114 2000 35.9 64.1

Natural grassland
(CLC 321) 50.5 14 895 32.4 5116 95.6 184.5

Broad-leaved
forest (CLC 311) 439.2 13.6 17.9 7210 4495 57.9 540.4

Total cover by
HRAMN (m2)

515.1 13.7 19.4 39.8 11.6 189.4 789
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Table 3. Spatial overlap matrix between Copernicus Urban Atlas and HRAMN 2018 maps of Hármashatár-hegy sample
area in m2. The degree of coincidence was classified into 3 classes from high (green) to low (gray).

HRAMN Categories

Land Cover
Categories

Canopy
Cover of
Woody

Vegetation

Forest
Gaps

Artificial
Objects

Barren
Soil Grasslands Barren

Rocks
Artificial

Coverings

Densely
Built-Up

Anthropogenic
Areas

Shrub
Areas

Total
Cover

by
Corine
Land
Cover
(m2)

U
rb

an
A

tl
as

C
at

eg
or

ie
s Discontinuous

urban fabric 298 5 2 5 0 0 787 13.6 0 14.7

Road and
roadside 10.6 22 55 551 467 0 1151 736 53 13.7

Forest 403.5 4072 241 8227 9881 10.9 11 2220 572 450.6
Total cover by
HRAMN (m2)

414.5 4099 298 8783 10.3 10.9 12.9 16.6 625 479
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Figure 10. Overlapping maps of Urban Atlas and HRAMN 2019 vegetation patterns. There are remarkable geometric
differences in the roads digitized from space imagery (yellow versus orange).

The Copernicus Tree Cover Density (TCD) product consists of the status layers show-
ing the level of tree cover density in a range from 0–100% available for 2012, 2015, and
2018’ used as reference years. In the case of Közös-erdő Strict Forest Reserve sample area,
515.194 m2 of the total 789.045 m2 is covered by forests, and 189.423 m2 is covered by
grasslands. The Copernicus TCD map does not detect 11% of the forest of Közös-erdő, the
remaining 89% has a tree cover density above 40%. It shows a tree cover density value
above 80% in 79% of forest gaps. 32% of the artificial objects show TCD values above 40%
instead of 39% in uncovered water surfaces, and instead of 20% of spots covered with
barren soil. The TCD map shows false woody cover on 20% of the grasslands.

Table 4 shows the tabulated overlap areas between the Dominant Leaf Type status
layer and HRAMN 2018 in square m in the case of the Közös-erdő Strict Forest Reserve
sample area. The Dominant Leaf Type status layer is a space remote sensing product
providing information on the dominant leaf types: broadleaved or coniferous.

It is also interesting to tabulate the Dominant Leaf Type (DLT) category system com-
pared to HRAMN in the case of Közös-erdő Strict Forest Reserve sample area. There is
a misinterpretation of DLT considering coniferous trees, but one can find a high level of
similar results in the other categories (Table 5).
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Table 4. Spatial overlap matrix between the Copernicus Dominant Leaf Type (DLT) status layer and HRAMN 2018 maps of
the Közös-erdő Strict Forest Reserve sample area in m2, at Páhi-Csengőd, Kiskunság Biosphere Reserve, Hungary.

HRAMN Categories

Land Cover
Categories

Canopy Cover
of Woody

Vegetation
Forest
Gaps

Artificial
Objects

Water
Surface

BARREN
SOIL Grasslands

Total Cover by
DLT Status
Layer (m2)

D
LT

ca
te

go
ri

es

All non-tree covered
areas 56.6 94 13.020 24.2 9300 151 254.1

Broadleaved trees 456.5 13.6 6251 11.8 2310 38.4 529

Coniferous trees 2107 0 101 3787 0 6 6001

Total cover by
HRAMN layer (m2)

515.2 13.7 19.4 39.8 11.6 189.4 789.1

Table 5. Dominant Leaf Type (DLT) status layer classes in m2 compared with HRAMN results at
Közös-erdő sample area in Kiskunság Biosphere Reserve, Hungary.

HRAMN 2018 DLT Comments on DLT

Non-tree-covered natural areas 273.9 254.1 93%, a bit underestimated

Broadleaved trees 515.2 529 103%, a bit overestimated

Coniferous trees 0 6000 misinterpreted by DLT

In the case of the Copernicus Imperviousness High Resolution Layer, the level of sealed
soil (imperviousness degree 1–100%) is produced using a semi-automated classification
based on calibrated NDVI. For the Imperviousness High Resolution Layer, the total sample
areas were in the non-sealed category, which was 2.45% error for the Közös Forest Biosphere
Reserve, for example, and only 8.49% for the Hármashatár submountain sample area.

The Copernicus Land Monitoring Service Small Woody Features (SWF) vector layer
provides harmonized information on linear structures such as hedgerows and patches
(200 m2 ≤ area ≤ 5000 m2) of woody features. Thirty-one percent of the Small Woody
Features layer fell on the non-tree-covered area for the Közös-erdő HRAMN sample area.

The combined Water and Wetness product is a thematic layer showing the occurrence
of water and wet surfaces over the period from 2009 to 2018. These layers are based on multi-
temporal and multi-seasonal optical high-resolution satellite imagery. In addition, these
layers are also based on radar information (Sentinel-1 data) with a geometric resolution of
10 m on a pan-European basis. The Water and Wetness database did not detect 33% of the
total water surface in the Közös-erdő HRAMN sample area, but instead overestimated the
dry category four times.

Finally, we also examined the coincidence between HRAMN and the Ecosystem Map
of Hungary [67,68] at the Hármashatár-hegy sample area. We found remarkable differences
in the land cover overlap matrix (Table 6, Figure 8).

3.3. Complex Evaluation Options

The orthophoto and a 3D point cloud from the area of the Kékes-Észak Strict Forest
Reserve in the Mátra Mountains, Hungary, made it possible to develop the HRAMN
deadwood mapping methodology. Using winter orthophoto and DSM (digital surface
model) point clouds made by photogrammetry, we found nearly 3300 fallen dead trees,
classified into two trunk diameter categories (Figure 11). Deadwood can be observed and
digitized properly if its diameter is more than 11 cm because a trunk has to be at least
two pixels wide to be recognizable. The lying deadwood were classified according to
their widths. We separated trunks less than 70 cm in diameter and those over 70 cm in
diameter into classes during the photo interpretation. Trees with about 60–70 cm trunks
are commonly classified as a ‘large canopy size’ class of trees, while the larger size trees are
considered ‘very large’ [69–71]. No fallen tree with a trunk diameter wider than 130 cm
was found in the area. As a third category, we marked the piles of wood. The terrain
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of the sample area is extremely steep and rugged here, so deadwood monitoring on the
field is challenging and expensive. The development of an automated learning algorithm
is underway.

Table 6. Spatial overlap matrix between the Ecosystem Map of Hungary (EMH) and HRAMN 2018 in the Hármashatár-hegy
sample area, in m2.

HRAMN Categories

Classification
of HRAMN
and EMH

Canopy
Cover of
Woody

Vegetation

Forest
Leaks

Artificial
Objects

Barren
Soil Grasslands Barren

Rocks
Artificial

Coverings

Densely
Built-Up

Anthropogenic
Areas

Shrub
Areas

Total
Cover

by
EMH

Low buildings
(1110) 0 0 0 0 0 0 0 0 3064 3064

EM
H

ca
te

go
ri

es

Paved roads
(1210) 3630 4 7 0 0 1 0 2275 3527 9444

Other artificial
areas (1310) 25 0 0 0 0 65 0 309 0 400

Green urban
areas with trees

(1410)
32.6 627 32 0 164 130 0 2993 8729 45.2

Green urban
areas without

trees (1420)
1295 7 0 0 25 292 0 2034 347 4000

Other
herbaceous
vegetation

(3500)
361 0 0 0 0 39 0 0 0 400

Sessile
oak–hornbeam
forests (4102)

2740 0 0 0 48 0 0 0 0 2788

Turkey oak
forests (4103) 76.5 146 0 0 2700 146 41 35 611 80.2

Downy oak
forests (4104) 109.1 755 187 0 2817 4503 284 2220 0 119.8

Pedunculate
oak forests

(4110)
35.3 87 36 0 13 0 0 829 38 36.3

Other native
forests (4111) 19.6 593 0 0 609 0 0 0 0 20.7

Other mixed
deciduous

forests (4112)
45.2 558 0 0 1002 3531 19 1639 0 52

Conifer-
dominated
plantations

(4401)
13.5 69 0 0 0 17 0 32 0 13.6

Black locust
dominated
plantations

(4402)
8210 659 0 0 0 0 0 332 0 9201

Other
non-native
deciduous

forests (4404)
7756 153 1 0 32 0 0 217 241 8401

Afforestation
sites (4502) 52.7 95 0 0 860 1759 10 0 0 65.5

Other woody
vegetation

(4600)
6329 348 36 0 518 298 521 2 0 8051

Total cover by
HRAMN (m2)

414.8 4100 298 0 8787 10.8 10.9 12.9 16.6 479.1
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Figure 11. Middle spatial resolution (5 cm) winter orthophoto map of the Kékes-Észak Strict Forest Reserve sample area
(lower left). The upper maps show standing and fallen dead trees, and the forest canopy gaps are digitized (Photo Credit:
Csernyava, Bakó, Horváth, Molnár—Centre for Ecological Research, INTERSPECT 2018).

The size of canopy gaps is an important factor and indicator in forest ecosystems [72].
Propagation vectors of invasive plant species are also traceable in the sample areas using
aerial remote sensing [11]. Large-scale and frequent repetition of habitat mapping is key to
the protection of rocky grasslands, as well. Human determined, metropolitan areas can also
hide ‘biodiversity islands’ with outstanding natural values that are worth monitoring [1,73].

3.4. Geometric Accuracy of HRAMN

Factors determining the geometric accuracy and limitations of the method should also
be mentioned. In lowland grasslands, marshlands, bogs, and nesting sites, the planimetric
accuracy of the survey is between 5.1 to 20.7 cm root mean square error (RMSE). In the
worst case, RMSE was 15.3 cm in large-scale flat areas, and its reliability was 26.6 at a 95%
confidence level based on independent test investigations. The average planimetric error
was 13.6 cm, and the maximum planar deviation was 28.0 cm.

We can maintain the spatial resolution of 2.5 cm with a 75% side and an 80% inline
overlap of the images, where planimetric and vertical RMSEs are 12 cm and 18 cm, respec-
tively. With a constant set of ground control points, the geometric error can always be held
under 6 cm planimetric and 8 cm vertical RMSE.

The spatial bias of the canopy patches of canopy maps originating from different
image acquisition missions is highly variable. In forested mountainous sample areas, the
accuracy strongly depends on overlap settings and flight altitude (Table 7). For ground
points (i.e., the tree trunk position at the ground level of the trees), we can achieve similar
accuracy as commercial UAVs; for example, with DJI Phantom RTK or other multi-rotor
helicopters. However, for the top of the trees or canopy structure, the flight altitude can
cause considerable perspective distortions. Due to the strong perspective distortion of
the low-acquired UAV images at the Pilis Gap Experiment sample area (Table 7), the
orthophoto-based canopy maps shift considerably compared to the results of field laser
scanning as geometric reference (Figure 12). The productivity, however, is much higher,
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and the distortion indicators are much better in the case of aircraft missions capturing
images with large overlaps.

Table 7. Distortion: RMSE and bias of canopy patches of different canopy maps depending on the platform, image overlap,
and flight altitude settings over the 3200 m2 Pilis Gap Experiment site.

Platforms
and Overlaps

The Spatial
Resolution of the

Raster Data
Flight Altitude

above Ground Level
Data Acquisition

Productivity
RMSE of Land
Cover Vectors

Bias of Canopy
Patches

Multicopter
side overlap: 50%
front overlap: 70%

3 cm 110 m 1 HRAMS area/day 33.5 m2 41.3%

Multicopter
side overlap: 70%
front overlap: 85%

3 cm 110 m 0.5 HRAMS area/day 23.6 m2 28.8%

Aeroplane
side overlap: 70%
front overlap: 92%

3 cm 700 m 12–16 HRAMS
area/day 3.9 m2 5.3%
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orthophoto mosaic of the same window is next to a commercial UAV (right below). Although the orthophoto is accurate at
ground level, the pattern of the canopy cover map shifts (left below) because of the perspective distortion of the low flight
altitude and wide-angle lens. Pilis Gap Experiment sample area—https://www.piliskiserlet.okologia.mta.hu/en, Accessed
on 10 October 2020 (Photo Credit: Bakó, Burai, Molnár, Illés).
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3.5. Detection Accuracy of HRAMN

In addition to the accuracy of delimiting individual patches, another critical factor
is the accuracy of patch identification. A quality control analysis of the upper canopy
layer of the Háros Peninsula forest reserve was performed to test detection accuracy. The
HRAMN map was produced using 5 cm spatial resolution RGB orthophotos, and the
control was a field survey. We were also interested in whether late autumn, low-foliage,
or early spring aerial surveys would give more accurate results. Therefore, we conducted
two aerial surveys for the 25.5-hectare test sample area, one in late October and another
in mid-April.

The misidentification error of the upper canopy layer of trees was 5.0% based on the
spring RGB orthophoto for the whole test area (Figure 13). If only the area covered by
trees is considered (i.e., clearings were disregarded), the error was 7.3%. In 0.1% of the
sample area, the orthophoto provided a more accurate result than the first field validation
(clarified by a repeated field checking), mainly in inaccessible areas or where the upper
canopy structures were not visible from the ground.
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Figure 13. Misidentification of trees on canopy maps (red colored) derived from spring blooms (a) and leafless, late
autumn (b) orthophotos of the Háros Peninsula forest reserve test sample area, and discrepancies compared to the first field
validation. The second field validation discovered minor field survey errors (green colored). (Bakó—INTERSPECT).

The interpretation of leafless (late autumn) orthophotos provided a better result. The
misidentification error of the upper canopy layer was 0.8% (or 1.1% disregarding clearings)
compared to the field validation. In comparison, an interpretator unfamiliar with the site
achieved a misidentification error of 3.5% (or 2.2% disregarding clearings). In 0.3% of the
sample area, the orthophoto provided a more accurate result than the lengthy field survey.
There was a 9.1% difference in the total area of poplar trees and 1.5% for the canopy of oaks.

At such high spatial resolution, the structure and shade of the branch system were
visible on the autumn images, so the upper canopy map derived from the spring images is
notably less accurate.

The number of species identifiable without any fieldwork has increased with the high-
resolution method. The tree of heaven (Ailanthus altissima) can be identified with very high
accuracy. In leafless images, the American plane tree (Platanus occidentalis), the common
dogwood (Cornus sanguinea), blackthorn (Prunus spinosa), and Japanese knotweed (Reynou-
tria japonica) can be clearly distinguished from the poplar, willow, and European white elm
(Ulmus laevis) trees, even in a suppressed stand position. In the spring, Cornus, blackthorn,
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and Japanese knotweed were not discernible. The boxelder maple (Acer negundo), sycamore
maple (Acer pseudoplatanus), small-leaved lime (Tilia cordata), European white elm, field
maple (Acer campestre), and green ash (Fraxinus pennsylvanica) can be defined as one
category. The Norway maple (Acer platanoides) can be distinguished from the English oak,
poplar, and linden trees at a spatial resolution of 5 cm.

There have been some typical errors that are worth noting. While the branch system of
poplar species has a light-looking, fibrous structure, the branch system of pedunculate oak
is recognizable by its dark color in addition to its different pattern. In one case, a poplar
tree much higher than its surroundings cast a shadow on a medium-sized poplar, so its
branches appeared dark on the orthophoto (Figure 14). The arrangement of the branches of
the oak tree was also similar to the poplar’s. As both the color and the structure are similar
in this particular case, the poplar was misclassified as oak.
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Figure 14. The poplar marked with an arrow appeared in the shade of the taller poplar, similar to oak because the bark
seems darker in the shadow. (Photo Credit: Bakó—INTERSPECT).

In the case of rocky grasslands, for example, in the Sas Hill Nature Reserve, Budapest,
we tested how much the high-resolution orthophoto map can refine and enrich the result
of habitat mapping (Figure 15, Table 8).
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Figure 15. In the case of Sas Hill Nature Reserve (Budapest), the suppression of invasive plant species (Ailanthus altissima,
Forsythia species, Mahonia aquifolium, Pinus nigra and Syringa vulgaris) can be planned for based on more detailed orthophoto
maps. A time series of images with a 3 cm spatial resolution, were applied and interpreted. Part (a) is the land cover map.
Keys of the habitat map, 2012 (b), and the habitat map, 2020 (c), are shown in Table 8. Infection of invasive species (d) and
naturalness (e) maps are a different color to the same map. The green color shows an area of the highest naturalness (5). The
full list of keys can be found in Supplementary File S3. (Photo Credit: Bakó-Pácsonyi).

Table 8. Comparison of the results of habitat mapping surveys taken with classical 20–50 cm spatial resolution orthophotos
(summer 2012) and the method of HRAMN (summer 2020, taken with 3 cm spatial resolution). Values are in m2.

ÁNÉR Hybrid Habitat Categories
Area (m2)

2012
Area (m2)

2020

Accuracy of Classical
Resolution Study Compared

with HRAMN

Calcareous open rocky grasslands-Calcareous rocky steppes (G2-H2) 18.1 19.6 91.5%

Calcareous rocky steppes-Stands of non-native shrubs or Reynoutria
species (H2-P2c) 11.9 11.3 94.9%

Calcareous rocky steppes-Dry and semi-dry pioneer scrub (H2-P2b) 8272 7923 95.8%

Closed rocky grasslands-Stands of non-native shrubs or Reynoutria
species-Dry and semi-dry pioneer scrub (H1-P2c-P2b) 6114 6361 95.9%

Closed rocky grasslands-Dry and semi-dry pioneer scrub-Stands of
non-native shrubs or Reynoutria species (H1-P2b-P2c) 3979 5176 69.9%

Closed rocky grasslands-Dry and semi-dry pioneer scrub (H1-P2b) 2709 3610 66.8%
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Table 8. Cont.

ÁNÉR Hybrid Habitat Categories
Area (m2)

2012
Area (m2)

2020

Accuracy of Classical
Resolution Study Compared

with HRAMN

Non-native deciduous forests and plantations mixed with native tree
species-Dry and semi-dry pioneer scrub-Stands of non-native shrubs
or Reynoutria species (RDb-P2b-P2c)

22 25.6 83.3%

Dry and semi-dry pioneer scrub-Stands of non-native shrubs or
Reynoutria species-Calcareous open rocky grasslands (P2b-P2c-G2) 7095 5247 73.9%

Stands of non-native shrubs or Reynoutria species (P2c) 3521 3725 94.2%

Dry and semi-dry pioneer scrub-Stands of non-native shrubs or
Reynoutria species (P2b-P2c) 5243 3899 74.3%

Calcareous open rocky grasslands-Stands of non-native shrubs or
Reynoutria species (G2-P2c) 1420 2106 51.6%

Uncharacteristic dry and semi-dry grasslands-Calcareous rocky
steppes(OC-H2) 1127 1395 76.2%

Other habitat categories (not represented in 2012 habitat map but
represented in 2020 HRAMN) 4564 - -

Total 95.9 95.9

4. Discussion

Based on earlier studies and our results, the photogrammetric method does not
provide as detailed three-dimensional spatial data on the trees and topography of a forest
as static, field-by-position terrestrial laser scanning. However, it can be performed much
faster and more cost-effectively. As for spatial resolution, aerial and space sensing methods
provide much more detailed and accurate information about the state of landscape details,
and are more cost-effective than airborne LiDAR (Light Detection and Ranging). Besides
aerial monitoring, other 3D methods are available for surveying forests, but compared to
TLS- (Terrestrial Laser Scanning) based measurements, the costs of airborne solutions are
neglectable [74].

Laser (ALS—Airborne Laser Scanning) technologies have become more common in
estimating the number of dead trees. An algorithm using machine learning performs the
point cloud analysis. A research team achieved 89% accuracy in detecting standing dead
trees in its experiments [75]. Based on experts’ experience applying the method in practice,
the efficiency of detection, the size of the trees, and the resolution of the point cloud also
depended on the undergrowth density [76].

Our method provides the safest solution for surveying protected areas where entry is
prohibited. Detecting, understanding, and quantifying landscape processes are time- and
cost-effective, e.g., the impact of certain ecosystems’ animal species on the environment;
the extent of landscaping processes; the state of temporary watercourses in submontane
environments; and changes in grassland patch dynamics, mowing and grazing in, and
changes in forests, can be documented.

It is easier and faster to develop databases available on a continental scale, appropriate
to their scale and commitments if we can validate rough-scale space sensing data with such
reliable spatial information. The indisputable advantage of space-born remote sensing and
the databases based on it lies in its ability to provide valuable data on entire countries and
continents. At the same time, it is useful to examine their limitations and accuracy with
fine-scale methods. Our method, which can survey many areas in a short time, is suitable
for this. With the development of a database, it will also become easier and quicker to
validate smaller-scale, space-based data with reliable spatial information.

Protecting, preserving, and restoring biodiversity, as well as enhancing natural capital
(notably air, water, soil, forest, freshwater, wetland, and marine ecosystems) is one of the
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six priority objectives of the 8th EAP (Environment Action Program to 2030) [77]. The
8th EAP proposal suggests setting up a new monitoring framework that will help the EU
and its member states determine to what extent we live within the planet’s environmen-
tal boundaries.

Compliance with the target of enhancing the resilience of ecosystems through the
restoration of degraded land is still insufficient, partly due to the lack of appropriate
baselines and the follow-up of restoration efforts [78].

With a precise quantification of the economic value of landscape and its contribution
to human wellbeing, both the popularity of restoration processes preserving landscape
values and scientific knowledge can be increased [79]. In contrast to some economic
benefits of developments that lead to habitat degradation as a side effect, there are also
specific material disadvantages, particularly the known expected costs of preserving the
environment and health [80]. On small scales, using spatial data based on satellite earth
observation systems, the United States of America and the European Union already use
similar sources of information to support decision-making [81]. However, these, and the
administrative databases of the member states’ aerial surveys, are not sufficiently sensitive
to nature conservation issues. They do not fully tackle environmental challenges, although
the excellent state of our natural environment is one of the pillars of human health.

Several articles highlight that changes in vegetation status cannot be described only by
the infrared domain changes of satellite data [82–86]. However, with the help of very high
spatial resolution aerial surveys, we can detect changes in vegetation more efficiently [87].
Despite the access of multispectral satellite imagery, high spatial resolution aerial surveys
are applied in the USA to detect insect damage and analyse the forward progress and the
end of infections [88]. High spatial resolution aerial photogrammetry helps to identify
physiological stress in mature plantation trees even during the early stages of tree stress [89].

Point-frame surveys are widespread in forestry, for example, TER-UTI (Utilisation
du territoire), run by the French Ministry of Agriculture, or the FMOS (Forest Protection
Measuring and Observation System) in Hungary, launched in 1987 [90]. Particularly in
Europe, aerial photography still plays a prominent role in forest inventories. The intensive
use of aerial photography in Europe is the result of a combination of factors. They include
the long-term traditional usage; the high spatial resolution; the often strong link between
forest administration and the survey institutes that produce the aerial photographs; the
relatively high costs for very high-resolution satellite data; and the higher probability of
obtaining cloud-free data for the envisaged area within a certain period [91].

5. Conclusions

The High Spatial Resolution Aerial Monitoring Network contains reliable fine-scale
data about many natural or urban study sites. The sites should be selected by experts and
be relevant to conservational, biological, ecological, and geological questions at regional-
and national levels of importance. Moreover, a non-contiguous area-based sampling
network can help to increase the accuracy of procedures employed for mapping Europe
and our understanding of habitats and ecosystem services without disturbing wildlife. It
can contribute, for example, to the calibration of the High-Resolution Layers of Copernicus
Land Monitoring Service.

An extended network could provide the National parks with spatial databases which
can support management plans and monitoring. In addition, by better understanding the
processes in space, models predicting the effects of interventions and treatment plans could
also be built.

High-resolution (0.5–5 cm) orthophotos are used in more and more surveys and the
various works based on them. More accurate and detailed habitat maps are available than
before, providing a solid basis, e.g., for planning, mowing and grazing regimes. Forest sur-
veys that can specify individual tree can be used in planning forestry work and monitoring
its effects. The importance of mapping woody and herbaceously invasive plants should be
stressed, which can significantly contribute to the efficiency and cost reduction of their erad-
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ication. More accurate monitoring programs can be carried out based on regularly available
aerial photographs, such as surveying bird breeding sites, mapping the seaweed of open
water surfaces, monitoring swamp sawgrass (Cladium mariscus) population dynamics, or
large-scale surveying of individual plant species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13168807/s1, File S1, File S2, File S3.
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