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Abstract: Harmful cyanobacterial blooms have been one of the most challenging ecological problems
faced by freshwater bodies for more than a century. The use of satellite images as a tool to analyze
these blooms is an innovative technology that will facilitate water governance and help develop
measures to guarantee water security. To assess the viability of Sentinel-2 for identifying cyanobacte-
rial blooms and chlorophyl-a, different bands of the Sentinel-2 satellite were considered, and those
most consistent with cyanobacteria analysis were analyzed. This analysis was supplemented by
an assessment of different indices and their respective correlations with the field data. The indices
assessed were the following: Normalized Difference Water Index (NDWI), Normalized Differences
Vegetation Index (NDVI), green Normalized Difference Vegetation Index (gNDVI), Normalized Soil
Moisture Index (NSMI), and Toming’s Index. The green band (B3) obtained the best correlating
results for both chlorophyll (R2 = 0.678) and cyanobacteria (R2 = 0.931). The study by bands of
cyanobacteria composition can be a powerful tool for assessing the physiology of strains. NDWI gave
an R2 value of 0.849 for the downstream point with the concentration of cyanobacteria. Toming’s
Index obtained a high R2 of 0.859 with chlorophyll-a and 0.721 for the concentration of cyanobacteria.
Notable differences in correlation for the upstream and downstream points were obtained with the
indices. These results show that Sentinel-2 will be a valuable tool for lake monitoring and research,
especially considering that the data will be routinely available for many years and the images will be
frequent and free.
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1. Introduction

Reservoirs are important freshwater reserves that have undergone highly negative
impacts resulting in qualitative and quantitative changes in their physicochemical com-
position and impacts on fauna and flora. As a result, their ecosystems undergo a process
called eutrophication, which poses a major ecological challenge for freshwater bodies [1].
With the development of industry and agriculture, large amounts of nutrients have been
discharged into rivers and lakes, resulting in increased eutrophication of water bodies [2].
Cyanobacteria are a key group responsible for environmental problems associated with
eutrophication processes [3]. In the past few decades, the world’s freshwater ecosystems
have suffered a steady increase in cyanobacteria blooms, which have multiplied rapidly as
a result of eutrophication [4,5]. These are photosynthetic prokaryote organisms [6] that can
produce a wide variety of toxic secondary metabolites known as cyanotoxins [7]. The pro-
liferation of cyanobacteria depends mainly on the availability of nutrients [8], though
they are also affected by several other factors such as water temperature [9,10], pH [11,12],
and light [13,14]. Harmful cyanobacterial blooms pose a serious risk to freshwater quality,
affecting human and animal health [15]. Their proliferation affects water quality and thus
supplies of drinking water, fishing activities and recreation [16]. Consequently, the water
security of basins decreases.
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In the past few decades, monitoring and quality control of water bodies as required
by the Water Framework Directive have led to the emergence of new techniques and meth-
ods that can facilitate the monitoring of water quality. Water quality indicators, such as
chlorophyll-a (Chl-a), total suspended matter, turbidity, depth of the secchi disc, and col-
ored dissolved organic matter (CDOM) can be measured using remote sensing techniques.
Satellite-borne spectrometric sensors are capable of detecting phytoplankton growth and
composition, and especially the presence of cyanobacteria [17]. In the past, most water-
quality monitoring studies were based on remote sensing employed satellite data from
MERIS (Medium Resolution Imagining Spectrometer) [18], MODIS (Moderate Resolution
Imaging Spectroradiometer) [19], and Landsat [20]. However, few studies focused on the
recognition and monitoring of water color anomalies, due to long observation time or high
spatial resolution [21]. The new series of Copernicus satellites from the European Union’s
Earth Observation Program called Sentinel have now brought the Sentinel-2 (S2-A and B)
into service with an MSI (Multispectral Instrument) sensor. The imagery features a spatial
resolution of 10 m, 20 m, and 60 m, meaning that even small lakes can be studied [22].
Data are acquired in 13 spectral bands and radiometric resolution of the sensor is 12-bit [23].
These measurement bands have interesting applications in the estimation of phytoplank-
ton [24] and cyanobacteria based on the measuring of their major pigments: Chl-a [25] and
phycocyanin [26].

The early detection of these toxic substances produced by cyanobacteria is of interest
for assessing potential risks to human health [27]. The development of a technology to
obtain the concentration of cyanobacteria would facilitate the water security and help
to achieve the sustainable development of ecosystems. In addition, it would provide in-
formation that could ensure good water governance. In this sense, the main objective
of this research is to assess a method of continuous spatial monitoring of cyanobacteria
based on multispectral images (MSI) generated by the Sentinel-2 satellite. Conventional
water quality measurements are tedious and costly, in addition to complicating continuous
monitoring of water status. The use of satellite imagery provides a complementary moni-
toring tool, supplies high spatial and temporal resolution water quality data, and greatly
improves our understanding of variations in water quality in the reservoir, which gen-
erates highly relevant information for managers. In addition, this need for monitoring
is increased by events such as pandemics or disasters [28]. On the one hand, ordinary
but frequent sensors like Terra/Aqua MODIS provide daily observations but with coarse
spatial resolutions (e.g., 250 ma 1000 m) that cannot reveal spatial details of CyanoHABs
in small reservoirs. On the other hand, fine but sparse sensors such as Landsat-8 OLI can
provide more spatial details of algal blooms with their fine resolution pixels, but their
long revisit cycle (16 days) makes them insufficient to capture the temporal dynamics
of algal blooms [29]. Sentinel-2, with a 10-day pass over Europe [30], is a promising
satellite for detecting cyanobacteria, as shown by some of the most recent studies [17,31].
Most studies of this type focus on finding the bands that correlate most closely with the
presence of cyanobacteria, while others analyze photosynthetic pigments. Previous stud-
ies [32,33] of other areas with similar environmental problems reveal that bands 3 and
4 (wavelength 500–650) are the most commonly used to detect cyanobacteria. For pho-
tosynthetic compounds, band 5 (705 nm) seems to be the most suitable for chlorophyll
detection. Other studies focus on other pigments that could be indicative of its presence
such as phycocyanin (PC) (620 nm) [34] and phycoerythrin (PE) (560 nm) [35]. However,
more research is needed for near real-time operational protocols to address the different
spatio-temporal variability of cyanoHABs [36]. In the study reported here, correlation
analyses of concentrations of cyanobacteria and chlorophyll with the main relevant bands
of Sentinel-2 were performed. Finally, the use of different indices was assessed to gauge
their usefulness in the study area. Specifically, two indices established to highlight pixels
in a satellite image that contains vegetation—NDVI (Normalized Difference Vegetation
Index) and gNDVI (green Normalized Difference Vegetation Index) were selected and
calculated with the different bands generated by Sentinel-2. These vegetation indices were
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supplemented by others that analyze suspended solids (NSMI-Normalized Soil Moisture
Index), water quality (NDWI-Normalized Difference Water Index), and indices for analyz-
ing Chl-a (Toming’s Index [37]). Finally, the efficacy of this methodology is assessed by
performing a correlation analysis between the data collected from the reservoir in the study
area. The main objective is to perform a correlation and regression analysis, from which to
explore or establish relationships between the variables studied, indices and bands from
Sentinel-2 images, and cyanobacteria and chlorophyll-a concentration. All this with the
aim of using satellite images to help monitor eutrophied waters.

2. Materials and Methods
2.1. Study Area and Dataset

According to Bermúdez et al. [38], blooms of cyanobacteria (Microcystis aeruginosa)
are becoming increasingly recurrent in the A Baxe reservoir in Galicia (northwestern
Spain, Figure 1) as a result of increasing levels of different anthropogenic pressures in the
Umia catchment basin [39]. The main land uses in the basin are shown in Figure 1: 35%
broad-leaved forest, 24.8% complex cultivation patterns, 15.6% moors and heathland, 10%
coniferous forest, and 15% other land uses [40]. The Umia reservoir was built in 2000 with
a capacity (maximum normal level) of 8.05 hm3. The total area of the river basin upstream
of the reservoir is 440.4 km2 and the average flow rate is 16.2 m3/s−1. The main tributary
of the Umia is the Gallo River, which has a sub-basin area of 44.3 km2. Average rainfall in
the region is almost 282 hm3/year (2018), and temperatures vary from 7.3 ◦C in January
to 19.5 ◦C in July–August (2018). The watershed altitudes range from 99 m.a.s.l. in the
reservoir area to 798 m in the Umia River headwaters.
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Figure 1. Study area, showing the A Baxe reservoir, the sampling points, and land uses in the basin. (UTM 533823E
471635N).

Harmful algal blooms have become a persistent problem in the A Baxe reservoir.
To deal with the problem, the regional government has implemented a water quality mon-
itoring program with a network of sampling stations [41], plus an alarm system for the
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proliferation of cyanobacteria. According to a study by regional water authority Augas de
Galicia [42], the main causes of the eutrophication process in the reservoir are: (1) the con-
tributions of nutrients from agro-livestock activities to the river ecosystem; (2) discharges;
(3) insufficient sanitation in rural areas; and (4) the elimination of riverside forest.

There were two sampling points: upstream and downstream in the reservoir (Figure 1).
The following parameters were used at both sampling points throughout 2018: Chl-
a concentration (mg/L) and concentration of potentially toxic cyanobacteria (cell/mL)
(Appendix A). Cyanobacteria were identified microscopically and cells were counted in a
Neubauer chamber using optical microscopes Kyowa Optical Medilux 12 ((Kyowa Optical
Company Ltd, Tokyo, Japan) and Binocular ZUZI 122/147 (ZUZI, Nikon, Japan) connected
to a Moticam 5 MP( Motic, Japan).

2.2. Remote-Sensing Datasets

The dataset used in this study is the standard Sentinel-2 Level-1C product, produced
by radiometric and geometric corrections, provides spatial registration on a global reference
system with sub-pixel accuracy. The Sentinel-2 Level-1C product comprises 100 km ×
100 km tiles in the UTM/WGS84 projection and provides the Top-Of-Atmosphere (TOA)
reflectance. The Sentinel-2 Level-1C images were downloaded from the ESA Sentinel-2 Pre-
Operations Hub (https://scihub.copernicus.eu/ (accessed on 29 January 2018)). The im-
ages were processed with the free software QGIS 3.8.2, using the SCP (Semi-automatic
classification) tool. All satellite data processing was performed using the Sentinel Applica-
tion Platform (SNAP). Sentinel-2 is composed of bands with a spatial resolution of 10 m
(band 2, band 3, band 4, and band 8), 20 m (band 5, band 6, band 7, band 11, and band
12) and 60 m (band 1, band 9, and band 10). Before processing, all bands were rescaled to
10 m resolution, using the resampling algorithm available in SNAP. To recognize water
color anomalies by extracting the hue angle of a water body from a Sentinel-2 image, it is
necessary to conduct pre-processing, such as atmospheric correction, band resampling,
and water body extraction [21]. These 13 spectral bands that compose the satellite range
from visible and near-infrared wavelengths (VNIR) to short-wave infrared (SWIR) along
a 290 km orbital strip. In this case, bands 3 (560 nm), 4(665 nm) and 5 (705 nm) were
analyzed. These bands were chosen because the reflectance peak between 700 and 720 nm
has been used for estimating the Chl-a concentration in lake waters [43]. In addition,
cyanobacteria have a wavelength range of 500 to 650 nm (bands 3–4), phycocyanin (PC)
(620 nm), or phycoerythrin (PE) (560 nm) [32].

Then, an internal buffer of 10 m was set up to eliminate the edges of the reservoir and
thus reduce the distortion caused by riparian vegetation. The images were downloaded for
each day of the study (Appendix A) and the atmospheric correction was carried out using
the Dark-Object Subtraction (DOS) methodology proposed by Chavez [44]. This process
was applied to ensure that differences in reflectance are due to water and not to radiometric
distortions [45]. Before extracting the reflectance, a multiple raster clipping was made with
the shape file of the reservoir created earlier. This was done so that the images of all the
bands could be cut in a single action. The result is a raster for each band that contains the
reflectance data for the entire reservoir.

2.3. Superspectral Satellite Data Pre-Processing and Retrieval of Indices

The analysis was performed using two bands extracted from Sentinel-2 (Bands 3
and 5) and five calculated spectral indices. This was expected to improve the analytical
capacity, and to obtain the bands or indices with the better correlation with cyanobaterias
and Chl-a. The spectral indices used were the Normalized Difference Water Index (NDWI),
the Normalized Differences Vegetation Index (NDVI), the green Normalized Difference
Vegetation Index (gNDVI), the Normalized Soil Moisture Index (NSMI), and Toming’s
Index (Table 1).

https://scihub.copernicus.eu/
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Table 1. Indices used to assess the concentration of chlorophyll-a and cyanobacteria in the study area.

Index Definition Definition Based on Sentinel-2 References

NDWI ρGreen−ρNIR
ρGreen+ρNIR

B3−B8
B3+B8 [46]

NDVI ρNIR−ρRed
ρNIR+ρRed

B8−B4
B8+B4 [47]

gNDVI ρNIR−ρGreen
ρNIR+ρGreen

B8−B3
B8+B3 [48]

NSMI ρRed+ρGreen−ρBlue
ρRed+ρGreen+ρBlue

B4+B3−B2
B4+B3+B2 [49]

Toming’s Index ρVRE5 −
(

ρRed
ρVPR6

)
2

B5 − ( B4
B6 )
2

[24]

The NDWI, proposed by McFeeters [41], is designed to: (1) maximize the reflectance
of the water body in the green band; and (2) minimize the reflectance of water body in the
NIR band [50,51]. The NDVI is a dimensionless index that describes the difference between
visible and near-infrared reflectance of vegetation cover. It is used to detect vegetation
in different environments; in our case, it was used only to evaluate the surface level of
the lake [52]. The gNDVI is resistant to atmospheric effects, and it has a greater dynamic
range than the NDVI and is five times more sensitive to chl-a concentrations; this index
avoids the saturation problem of the NDVI at relatively low chlorophyll concentrations [53].
The index used to obtain the value model is a transformation of Total Suspended Solids
(TSS) using NSMI. NSMI is a widely used universal transformation. The values generated
vary between −1 and 1, where lower figures indicate the presence of clearer water [54].
The height of the Chl-a reflectance peak between 700 and 720 nm was studied to estimate
the concentration of Chl-a in the waters of lakes or reservoirs. Band 5 of Sentinel-2 analyzes
this spectral region (705 nm). The logarithm studied in Toming et al. [24] was followed.
This logarithm calculates the height of the peak against the baselines of band 4 (665 nm)
and band 6 (740 nm).

2.4. Statistical Analysis

The experimental data were analyzed and plotted with SPSS 16.0. Pearson’s correla-
tion was studied between Chl-a and cyanobacteria concentration in situ data (rD for the
downstream point, rU for the upstream point), and the regression equation and coefficient
of determination (R2) between them were calculated to determine the empirical relation-
ship. With the data obtained from the bands analyzed and the indices calculated, the same
analyses were carried out to study the correlation between the in situ values and those
calculated from the satellite images. For the regression analyses, a bibliographic review
was carried out. The most recent studies in this field indicate that the use of a polynomial
regression model has a better fit with these data [31,55,56]. In the regression analysis
between chlorophyll-a concentration and cyanobacteria concentration, the first would be
the dependent variable and the second the independent variable. Furthermore, when per-
forming the regression analyses with the Sentinel-2 information, these data would be the
independent variable, while the parameters chlorophyll-a and cyanobacteria would be the
dependent ones. Model performance was evaluated by using Coefficient of Determination
(R2) and Student’s t-test (p = 0.05).

3. Results and Discussion
3.1. In Situ Data

At the downstream point, 98.8% of the potentially toxic cyanobacteria found in the
whole sampling belonged to Microcystis sp. At the upstream point, 94.3% belonged to
this genus (Appendix A). The concentration of cyanobacteria and Chl-a were more closely
correlated upstream (p = 0.528 *) than downstream (p = 0.245) (α = 0.01) (Figure 2).
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Figure 2. Regression equations for data collected in situ.

3.2. Sentinel-2 Spectral Band Performance

The correlation between the spectral bands and the water quality parameters measured
in situ is shown in Table 2. There was a high Pearson’s correlation high for band 3 with
Chl-a (rD = 0.807) and with cyanobacteria (rD = 0.882), while the RU (rU = 0.717 and
0.713, respectively) values were slightly lower. These results indicate the presence of
suspended solids, which is why reflectance peaks were detected in the range of 530 to
600 nm, corresponding to band 3 [57]. By contrast, Saberioon et al. [58] found a negative
correlation with bands 3 and 4 and a similar value to B5 (0.59) for Chl-a. However,
Ha et al. [59] obtain a better correlation with B3 than with B4. Their study posits that
this correlation depends largely on the biogeochemical characteristics of the water mass,
i.e., algae, colored dissolved organic matter, and suspended inorganic solids. On the other
hand, Toming et al. [37] also analyzed B5 to estimate Chl-a, and found a closer correlation
(R = 0.83) than in this study (RD = 0.614; RU = 0.568). The good correlation obtained for
this band is due to the fact that the peak reflectance for Chl-a analysis is between 700 and
720 nm (B5 in the Sentinel) and has traditionally been the main way of estimating Chl-a
by remote sensing [43]. However, for more effective results, in addition to taking into
account the biogeochemical composition, it is necessary to analyze the peak height of the
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contiguous bands, as discussed in the next section. Moreover, Ansper and Alikas [60]
attribute this low correlation in small lakes to the adjacency effect, a phenomenon that
affects the pixels near the shore of the reservoir. As a correction method for this effect,
the buffer used here did not include those pixels, so the low correlation may be due to the
set of photosynthetic pigments contained in the phytoplankton sampled and to a broader
spectral length, which includes the possible uses of three bands (B4, B5, and B6) to carry
out a correct analysis of Chl-a in the study area.

Table 2. Pearson’s correlation obtained for the spectral bands analyzed at each sample point. Statisti-
cally significant by Student´s t-test (p = 0.05).

Band Point Description
Pearson’s Correlation

Chlorophyll-a Cyanobacteria Concentration

Band 3 (ρGreen,
543–578 nm)

Downstream point 0.807 (p = 0.011) 0.882 (p = 0.045)

Upstream point 0.717 (p = 0.000) 0.713 (p = 0.001)

Band 4 (ρRed,
650–680 nm)

Downstream point 0.370 (p = 0.011) 0.263 (p = 0.045)

Upstream point 0.319 (p = (0.011) 0.453 (p = 0.045)

Band 5 (ρVRE5,
698–713 nm)

Downstream point 0.614 (p = 0.011) 0.575 (p = 0.045)

Upstream point 0.568 (p = 0.011) 0.443 (p = 0.045)

As shown in Table 2, in the performance of the bands extracted from Sentinel-2A and
in the calculated water spectral indices, the B3 spectral band (560 nm) provided the closest
correlations with Chl-a and Cyanobacteria concentration. By contrast, B4 (665 nm) gave a
low correlation with the concentration of cyanobacteria (rD = 0.263, rU = 0.453) even though
cyanobacteria have a wavelength range of 500 to 650 nm. The photosynthetic pigments
contained in the physiology of cyanobacteria may be key to correctly analyzing satellite
images. Phycocyanin (PC) (620 nm) and phycoerythrin (PE) (560 nm) are identified at
different wavelengths [32]. According to these studies, this better correlation with B3 could
indicate that the strain is rich in PE. Binding et al. [61] observe that the pigment PE is
strongly absorbed in the green portion of the spectrum. They find a significant deviation
from the blue to green reflectance ratio typically observed for Chl-a bearing phytoplankton.
Microcystis aeruginosa is the principal species in the area study, and the composition of PC
and PE can vary according to the strain. Close correlation with band 3 (rD = 0.882) may
indicate that ceps with PE like pigment predominate.

The values measured in the field for Chl-a range from 0.69 mg/L to 111.17 mg/L.
The data from the estimation maps generated from the Sentinel images for band 3 (Figure 3)
vary between 0 and 99 mg/L. The values measured in the field for cyanobacteria vary
between 0 and 223,000 cells/mL, while, for the estimation map for band 3, the figure varies
from 0 to 220,111 cells/mL. This value coincides with the coefficient of determination (R2)
calculated. A higher value is obtained for the concentration of cyanobacteria (R2

D = 0.931)
(Figure 4) than for Chl-a (R2

U = 0.678). This low value of the Chl-a determination coefficient
is due to the fact that this band does not reflect the correct wavelength for this photosyn-
thetic pigment. Despite this, numerous studies [62,63] have focused on this pigment to
analyze the occurrence of these blooms of cyanobacteria.
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Figure 4. Polynomial regression equation for band 3, analyzing chlorophyll-a and the concentration of cyanobacteria for
both sample points.

Chl-a may not be the only photosynthetic pigment that indicates the presence of
cyanobacteria in lakes and reservoirs, so in-depth analysis of other pigments that form
these cells is needed. This will facilitate the analysis of satellite images and help discern
aquatic phytoplankton. In turn, the physiology of strains could be analyzed using this
technology, making it a tool that facilitates the correct monitoring of the water quality
of reservoirs.

3.3. Water Indices via Sentinel-2

The correlation between water indices and water quality data collected in situ, specifi-
cally Chl-a and cyanobacteria concentration, was studied (Table 3). With Toming’s Index,
this correlation was close for Chl-a (RD = 0.768). The coefficient of determination in this
case peaks at R2

D = 0.859 (Table 4) for the downstream measurement point. This index
was created by Toming [37] to recover Chl-a data by describing the 705 nm peak height
against the baseline of two neighboring spectral bands. In his study, a value of R = 0.80 was
obtained, i.e., slightly higher than in the study reported here. NDVI and gNDVI showed
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negative correlations (Table 3). Saberioon et al. [58] obtained a high correlation of R = 0.58
with the NDVI index. The gNDVI index is very sensitive to change in chlorophyll content,
which is related to changes in nitrogen content in reservoirs [64] and could explain this
negative correlation. This basin is characterized by land uses with high loads of nitrogen
and phosphorus that contribute significantly to lake eutrophication [39].

Table 3. Pearson’s correlation obtained for the indices studied at both points. Statistically significant
by Student´s t-test (p = 0.05).

Index Point Description
Pearson’s Correlation

Chlorophyll-a Cyanobacteria Concentration

NDWI
Downstream point 0.545 (p = 0.011) 0.651 (p = 0.045)

Upstream point 0.612 (p = 0.001) 0.651 (p = 0.011)

NDVI
Downstream point −0.247 (p = 0.012) −0.352 (p = 0.045)

Upstream point −0.211 (p = 0.011) −0.198 (p = 0.011)

gNDVI Downstream point −0.545 (p = 0.012) −0.651 (p = 0.045)

Upstream point −0.609 (p = 0.000) −0.678 (p = 0.011)

NSMI
Downstream point 0.505 (p = 0.012) 0.418 (p = 0.045)

Upstream point 0.767 (p = 0.001) 0.735 (p = 0.000)

Toming´s Index Downstream point 0.768 (p = 0.011) 0.683 (p = 0.045)

Upstream point 0.682 (p = 0.010) 0.662 (p = 0.010)

Table 4. Polynomial regression equation for indices, analyzing chlorophyll-a and the concentration
of cyanobacteria for both sample points.

Index Point Description Regression Equations R2

NDWI

Chlorophyll-a
Downstream y = 354.14x2 + 88.15x + 10.93 0.498

Chlorophyll-a
Upstream y = 7.70x2 + 125.64x + 29.64 0.442

Cyanobacteria
Downstream y = 1 × 10 6x2 + 213,239x + 7619.9 0.849

Cyanobacteria
Upstream y = 283,144x2 + 297,113x + 61478 0.532

NSMI

Chlorophyll-a
Downstream y = 1491x2 − 632.08x + 65.449 0.356

Chlorophyll-a
Upstream 2903.4x2 − 1332.8x + 152.81 0.662

Cyanobacteria
Downstream y = 2 × 106x2 – 1 × 106X + 101,716 0.239

Cyanobacteria
Upstream

y = 4 × 106 + 06x2 – 2 × 106 + 06x +
152,481

0.507

Toming’s Index

Chlorophyll-a
Downstream y = 52,947x2 + 6561x + 20.691 0.859

Chlorophyll-a
Upstream y = 85,859x2 + 5397.6x + 35.035 0.526

Cyanobacteria
Downstream y = 1 × 109x2 + 1 × 107x + 31,304 0.721

Cyanobacteria
Upstream y = −1 × 108x2 + 1 × 107x + 86,899 0.489
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The highest correlation for cyanobacteria concentration was obtained with the NSMI
index (R = 0.735) at the upstream point, i.e., the point with the lowest mean concentration,
and the best Pearson’s correlation with Chl-a (p = 0.528 *, α = 0.01). This index has been
related to TSS and includes bands 3 and 4. However, it is less closely correlated when the
concentration is lower. This better correlation at the upstream point could also be due to the
physiology of the strain. As discussed in the previous section, band 4 (whose wavelength
is longer) detects phycocyanin more precisely. This is the only index studied that analyzes
these two bands (3 and 4). Gutiérrez and Toro [65] obtain a close correlation with this index
and achieve the best estimate with it since it best represents the reality of their study area.
González Caro [66] classifies it as the index with the least representation in his study. Given
the disparity of results in the different studies and the fact that the result obtained here
is not entirely conclusive either, we coincide with Malahlela [67] in considering that this
index needs optimization for each water body.

The correlation for Toming’s Index was high for cyanobacteria (rD = 0.683, rU = 0.662),
and indeed gave the highest value on average (Table 3). This gives a useful algorithm for
both Chl-a and cyanobacteria concentration, with less interference from other variables
such as gNDVI, nitrogen, or NSMI, the concentration of solids in suspension.

The values measured in the field for Chl-a range between 0.69 and 111.17 mg/L.
The data from the estimation maps generated from the Sentinel images for Toming´s Index
(Figure 5) vary between 0.15 and 177 mg/L. A high value for Chl-a is obtained with the
coefficient of determination (R2

D = 0.859).
The values measured in the field for cyanobacteria vary between 0 and 223,000 cells/mL,

while the data calculated for Toming´s Index in the estimation map range from 8200 to
322,200 cells/mL. This value coincides with the coefficient of determination (R2) calculated.
A medium value is obtained for the concentration of cyanobacteria (R2 = 0.721) (Table 4),
then for the Chl-a value (R2 = 0.678). For the NDWI, with a coefficient of determination,
the value was R2 = 0.849, which is higher, and the data calculated from the estimation map
range from 0 to 223,00 cells/mL.

Although the accuracy of the method introduced is significantly high, it needs to
be improved. The uncertainties associated with the measurements in situ need to be
known, and errors need to be controlled for. Ways of doing this include incorporating more
sampling points and taking measurements of other photosynthetic pigments that could
provide information on the strains present in the reservoir. The index studied by Toming
obtained a good fit for the Chl-a value. However, for the determination and quantification
of cyanobacteria in the reservoir, the indices have shown mismatches between the upstream
and downstream points. The precision of the model could be improved by improving
the field measurements and adjusting them to the timetables of the satellite. At the same
time, analyzing the water column of the reservoir could help obtain a correct spectral
unmixing to break down the optical components of the water. This study focuses on
analyzing two sampling points due to the monitoring network established in this body of
water arising from the Water Framework Directive. However, incorporating more points
would provide information with fewer errors and the entire body of water would be
analyzed. This would further facilitate environmental management by the administration,
which would be able to design preventive and corrective measures to guarantee ecological
integrity and water security.
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3.4. General Discussion

In this study, the three NDWI indices, NSMI, the index in Toming et al. [37], and spec-
tral band 3 provide the highest Pearson’s correlation with the data measured in the field
for Chl-a. The index that best correlates with the Chl-a variable is that of Toming et al. [37],
while, for the cyanobacterial variable, the strongest correlation is obtained with band 3 and
the NDWI index.

On the other hand, extracting the 10 m buffer to calculate the spatial model can lead
to a small loss of data from the areas closest to the shore, where large concentrations of
microalgae and cyanobacteria are usually found when blooms are known to exist. However,
this is considered necessary to obtain more real values from the reservoir and reduce the
distortion of data due to potential riverside vegetation. It is also necessary to address
the optical depth of the waters from the point of view of remote sensing. It is difficult to
estimate the properties of the water column when the remote sensing signal comes mainly
from the bottom of the lake or when those properties vary significantly over the course
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of the water column. This problem is accentuated in small lakes or reservoirs with more
marked stratification, which are difficult to manage by remote sensing. However, in large
lakes or reservoirs where the upper tens of meters are mixed uniformly and the optical
depth is less than the depth of the mixed layer, this would not be a problem [68].

A look at the results for the different indices in similar studies such as Malahlela [67],
Toming et al. [37], and Salgado [57] shows that these indices are useful for many types
of water bodies. At this time, this methodology could be used in any regional, national,
and even international geographic area. Continuing the line of research to further optimize
the indices, it is necessary to develop machine learning algorithms. This approach helps
address complex problems with no prior knowledge and is less affected by atmospheric
and background factors in unfavorable contexts. Through this development, more op-
timal approaches can be obtained where this technology can be applied to other inland
waters under the same terrestrial and atmospheric conditions. However, it still needs to be
validated and adjusted to the peculiarities and specific characteristics of each study area.
Improving these algorithms would not only provide information on when blooms may
occur but also on the physiology of the strains that occur.

Thus, continuing with the line of research to further optimize the indices, this method-
ology could be used by the administration to improve data collection and speed up action
times in case of blooms. This would reduce the costs of water quality management and
the risks associated with high levels of toxicity. Some recommendations for future im-
provements in the predictive algorithm are: (1) increase the number of sampling points
to provide a broad sampling network throughout the water body that enables the specific
characteristics of each point to be known; and (2) assess the use of multispectral satellite
images with higher resolution and multispectral cameras on drones, obtaining spectral
images with a spatial resolution of less than 10 m.

4. Conclusions

The use of satellite images as a tool for analyzing cyanobacterial blooms is an in-
novative technology that will facilitate water governance and help develop measures
to guarantee water security. Different bands of the Sentinel-2 satellite are analyzed and
those most consistent with the analysis of cyanobacteria are selected. The green band (B3)
gives the best results in correlating both Chl-a (R2 = 0.678) and cyanobacteria (R2 = 0.931).
The study of cyanobacteria composition by bands can be a powerful tool for assessing the
physiology of strains. This analysis is supplemented by an assessment of different indices
and their respective correlation with the field data. NDWI gives an R2 value of 0.849 for
the downstream point of the reservoir with the concentration of cyanobacteria. Toming’s
Index gives a high R2 of 0.859 with Chl-a, and 0.721 for the concentration of cyanobacteria.

Notable differences in correlation at the upstream and downstream points are found
with the indices. One possible reason for this is the complex composition of the Microcystis
population and the high diversity of species. This highlights the difficulties of predicting
the competitive outcome of cyanobacterial populations in natural settings. This complexity
problem can be partially resolved by experimental approaches in which isolated species
are grown in individual and mixed crops under a wide range of environmental conditions.
Sentinel-2 could be a valuable tool for lake and reservoir monitoring and research, especially
considering that the data will be routinely available for many years, and the images will be
frequent and free.
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Appendix A

Table A1. Sampling information in the A Baxe reservoir (Upstream point 42.604343E, −8.608041; Downstream point
42.606574, −8.6148194716953N).

Date
Chlorophyll-a

Dowstream
Point (mg/L)

Chlorophyll-a
Upstream

Point (mg/L)

Cyanobacteria
Concentration

Downstream Point
(Cells/mL)

Microcystis sp.
Dowstream

Cyanobacteria
Concentration

Upstream Point
Microcystis sp.

Upstream
(Cells/mL) (Cells/mL) (Cells/mL)

29 January2018 0.82 0.81 250 250 0 0

18 June 2018 8.05 25.79 14,000 14,000 63,600 63,600

25 June 2018 16.5 15.21 3750 3750 52,400 52,400

09 July 2018 11.29 33.69 28,750 28,750 139,250 139,250

13 August 2018 74.9 71.05 181,900 150,000 194,000 160,000

20 August 2018 14.42 50.93 22,000 22,000 78,800 65,000

27 August 2018 4.72 47.64 3750 3750 70,900 51,250

10 September2018 7.3 52.85 10,500 10,500 151,750 151,750

17 September 2018 13.21 65.26 16,000 16,000 203,000 203,000

24 September 2018 9.86 62.79 11,500 11,500 93,500 93,500

08 October 2018 26.49 44.51 38,750 38,750 89,250 89,250

15 October 2018 67.6 111.17 56,000 56,000 223,000 223,000

19 November 2018 3.87 0.43 3000 3000 0 0

03 December 2018 0.78 2.51 1750 1750 0 0

10 December 2018 0.74 1.08 250 250 0 0

26 December 2018 0.79 0.69 0 0 0 0
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