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����������
�������

Citation: Cavusoglu, S.; Yilmaz, N.;

Islek, F.; Tekin, O.; Sagbas, H.I.;

Ercisli, S.; Rampáčková, E.; Nečas, T.
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Abstract: Various treatments are carried out in order to extend both the shelf life and storage life
of fresh fruit and vegetables after harvest and among them non-toxic for humans, environmentally
and economically friendly alternative treatments are gained more importance. In the current study,
methyl jasmonate (MeJA), cytokinin, and lavender oil which are eco-friendly and safe for human
health were applied on apricot fruit. The treated fruit were stored at 0 ◦C and 90–95% relative
humidity for 25 days and catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase
(APX) enzyme activities and lipid peroxidation of apricots after treatments were studied. According
to the findings obtained from the study, it was observed that 5 ppm cytokinin and 1000 ppm lavender
oil treatments of apricot fruit gave better APX and CAT enzyme activity, respectively. In addition,
better SOD enzyme activity in fruit was obtained with MeJA + lavender oil treatments. As a result,
it can be emphasized that the product quality of apricot fruit is preserved as both the eco-friendly
application of MeJA, cytokinin, and lavender oil separately from each other and the treatment of
combinations between these compounds activate the enzymatic antioxidant defense systems of
apricot fruit after harvest.

Keywords: antioxidative enzymes; storage; lavender oil; MeJA; cytokinin

1. Introduction

Fruit and vegetables are a huge portion of the food supply chain and are depended on
globally for good health and nutrition. The supply of good food, however, greatly depends
on good pre and postharvest handling practices. Substantial research has been carried out
to preserve the quality of fresh horticultural produce. Eco-friendly technology for pre and
postharvest produce quality presents the scope of emerging eco-friendly technologies to
maintain the postharvest quality of fresh produce in terms of safety and nutrition [1–6].

Apricot (Prunus armeniaca L.) is one of the most popular fruit species preferred in
the world due to its high nutritional and antioxidant properties and taste and aroma
characteristics [7,8]. Turkey dominates world apricot production for a long time because
of favorable climate and soil conditions for apricot growing [9,10]. World fresh apricot
production was around 4.08 million tons and Turkey contributes 846 thousand tons of this
production [11]. As of 2019, apricot production is carried out on an area of 561 thousand
hectares in the world, and 23.35% of this production area is located in Turkey.
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It is well known that fresh fruit can be available on the markets in certain periods
that depend on the harvest periods of different fruit species. The consumers demand
fresh fruit out of season thus the fruit has been storing for a longer period of time to meet
these consumer demands. Post-harvest storage of apricot fruit is limited due to the fact
that the flesh of apricots is perishable and easily spoiled, has a medium respiration rate,
and is susceptible to decay and spoilage. In order to present a quality product to the
consumer, the fruit must be kept under suitable conditions after harvest. Apricots can be
stored for a very short time such as 3–5 days under normal room conditions. However, at
appropriate temperature (0 ◦C) and humidity (90–95%) levels, this period can be extended
to approximately 2–4 weeks [12,13]. In addition to fruit, apricot kernels are also a valuable
food source, and apricot blossoms are edible, too [14,15].

In recent years, there has been an increasing interest in the use of natural compounds
in extending the post-harvest shelf life of agricultural products and maintaining product
quality [16–18]. Jasmonic acids (JA), which are showed to be effective in maintaining
the quality of many food products, are compounds that are activated by the effect of
lipoxygenase (LOX3) enzyme found in chloroplasts obtained from linoleic acid in the
plant [19]. Jasmonic acids become active against biotic and abiotic stress conditions in the
plant, and they stimulate the formation of flavonoids, alkaloids, polypeptides, terpenoids,
and phytoalexins in the plant by promoting proteinase enzyme synthesis [20,21].

Methyl jasmonate (MeJA), on the other hand, is the methyl ester of JA, and it has been
determined to be effective in increasing aromatic components and anthocyanins in the plant,
providing chlorophyll degradation, reducing blackening and chilling damage, preventing
fungal growth, and increasing plant resistance against pathogens. The effectiveness of
MeJA against chilling damage during storage was determined in horticulture crops [22–24].

It is known that endogenous hormones, including cytokinins, have an important
effect on the prevention of post-harvest aging. Cytokinins can prevent the degradation of
proteins due to their effects on tRNA in the cell [25,26]. It has been reported by different
researchers that postharvest cytokinin treatments gave positive results in broccoli [26,27],
and cauliflower [28].

Scientific studies show that the effects of the substances used as edible coatings on
the product are different from each other. Essential oils, which have an antimicrobial
effect, are used extensively to prevent microbial deterioration. One of the largest groups of
natural components is essential oils. Essential oils increase the shelf life of unprocessed or
processed foods by reducing the rate of microbial growth [29]. Some of these substances
extend the life of the products by contributing to the plant’s defense system against
infectious organisms [29–31].

Essential oils are found in different proportions in edible and medicinal plants. Es-
sential oils and their components are frequently used as flavoring agents in foods and are
well known to have broad-spectrum antimicrobial effects [32,33]. Among them, it has been
observed that the oils of clove, thyme, rosemary, mountain thyme, sage, and vanilla plants
are very active against microorganisms. They generally show an inhibitory effect against
Gram-positive rather than Gram-negative bacteria [34,35].

There is no study in the literature on the effects of postharvest MeJA, cytokinin,
lavender oil (Lavandula angustifolia Mill.), MeJA + lavender, and cytokinin + lavender
treatments on antioxidative enzymes (CAT, SOD and APX) and lipid peroxidation in
apricot fruit. The aim of the study is to investigate the effects of these treatments on CAT,
SOD, and APX enzyme activities and lipid peroxidation in apricots stored at 0 ◦C and
90–95% relative humidity for 25 days.

2. Materials and Methods
2.1. Plant Material

In the study, the ‘Bebeco’ apricot cultivar collected from Van Yüzüncü Yıl University
Application and Research Experimental orchard was used as fruit material (when three-
quarters of the fruit surface, and half of the fruit pulp had a yellow color). After being
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harvested, the fruit was precooled to +4 ◦C for 12 h. Nitrozyme, an organic cytokinin,
commercially available 100% lavender oil and MeJA (PubChem CID: 5281929, 95% Sigma
Aldrich, cat no.392707, St. Louis, MO, USA) were used. Then, fruit with the same maturity
stage were divided into 6 groups by applying control, 0.2 mM MeJA, 1000 ppm lavender
oil, 5 ppm cytokinin, 0.2 mM MeJA + 1000 ppm lavender, and 5 ppm cytokinin + 1000 ppm
lavender. While the control group was dipped in distilled water, the others were dipped
for 5 min at 20 ◦C, preparing treatment solutions before, respectively. After the treatments,
apricot fruit were stored in foam plates in 3 repetitions (each package per 400 g), covered
with stretch film, and stored at 0 ◦C with 90–95% relative humidity in the cold storage room.
Analyses were carried out at 5-day intervals throughout the trial. The research was carried
out in the Cold Storage Facilities of Van Yüzüncü Yıl University, Faculty of Agriculture,
Department of Horticulture.

2.2. Material Preparation for Antioxidative Enzyme Assays

One gram of frozen fruit pulp sample was homogenized (Ika Ultra-Turrax T20 Basic,
Staufen, Germany) with a mixture of 5 mL cold 0.1 M Na-phosphate, 0.5 mM NaEDTA and
1 mM ascorbic acid (pH: 7.5) for one minute, and then was centrifuged at 18,000× g for
5 min at 4 ◦C. Ascorbate peroxidase (APX) activity was determined immediately on the
homogenate prepared in this way. For the determination of CAT and SOD activities, 1 g
frozen fruit pulp sample was homogenized with 5 mL cold 0.1 M Na-phosphate, 0.5 mM
Na-EDTA mixture (pH: 7.5) for one minute, and then was centrifuged at 18,000× g for
5 min at 4 ◦C [36].

2.3. Ascorbate Peroxidase (APX) Activity

APX activity was measured at a wavelength of 290 nm based on the reduction of
H2O2 connected to ascorbic acid. A mixture of 50 mM phosphate buffer (KH2PO4), 0.5 mM
ascorbic acid, 0.1 mM EDTA, 1.5 mM H2O2 was used as the reaction solution (pH: 7.0).
Next, 0.1 mL of fruit pulp extract was mixed with 3 mL of reaction solution. Readings
were taken at 0 and 60 s at 290 nm wavelength in the spectrophotometer (Thermo Scientific
Genesys 10S Model UV-VIS spectrophotometer, Waltham, MA, USA). The reaction was
initiated by the addition of 0.1 mL of enzyme extract. Evaluation was made by considering
the change in absorbance within 1 min [36].

2.4. Catalase (CAT) Activity

CAT was determined by monitoring the disappearance of H2O2 at a wavelength of
240 nm. A mixture of 0.05 M phosphate buffer (KH2PO4) and 1.5 mM H2O2 was used
as the reaction solution (pH: 7.0). A 2.5 mL aliquot of reaction solution was mixed with
0.2 mL of fruit pulp extract. Readings were taken at 0 and 60 s at 240 nm wavelength in
the spectrophotometer (Thermo Scientific Genesys 10S Model UV-VIS spectrophotometer
USA). The reaction was initiated by the addition of 0.1 mL of enzyme extract. Evaluation
was made taking into account the change in absorbance within 1 min [36].

2.5. Superoxide Dismutase (SOD) Activity

It was determined by the inhibition of nitroblue tetrazolium (NBT) at a wavelength of
560 nm. A mixture of 50 mM Na-phosphate buffer (Na2HPO4 × H2O2), 0.1 mM Na-EDTA,
33 µM NBT, 5 µM riboflavin, 13 mM methionine was used as the reaction solution (pH: 7.0).
A 2.5 mL aliquot of the reaction solution was mixed with 0.2 mL of fruit pulp extract. The
reaction was achieved by keeping it under 75 µmol m−2 s−1 (40 W) light for 10 min at
25 ◦C. The control solution was kept in the dark for the same time without enzyme. The
control and reaction solution were read at 560 nm wavelength in the spectrophotometer
(Thermo Scientific Genesys 10S Model UV-VIS spectrophotometer USA). SOD activity was
determined as the activity that reduces 50% of NBT as a unit [36].
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2.6. Lipid Peroxidation

Lipid peroxidation in fruit is expressed as malondialdehyde (MDA) content. A 0.5 g
sample of fruit flesh was homogenized with 10 mL of 0.1% trichloroacetic acid (TCA) for
one minute and then centrifuged at 15,000× g for 5 min at 4 ◦C. A 1 mL aliquot of the clear
part of the centrifuged sample was taken and 0.5% thiobarbituric acid (TBA) dissolved in
4 mL of 20% TCA was added to it. After the mixture was kept at 95 ◦C for 30 min, it was
rapidly cooled in an ice bath and centrifuged at 10,000× g for 10 min, its absorbance was
determined at 532 and 600 nm wavelengths (Thermo Scientific Genesys 10S Model UV-VIS
spectrophotometer USA) in the clear part and MDA content was determined [37].

2.7. Statistical Analysis

Descriptive statistics for the searched features; expressed as mean and standard error.
The study was carried out as factorial experiments with three factors including storage
periods, and treatments based on a randomized design with 3 replicates. N = 90 for APX,
CAT, SOD, and MDA (three replicates × five storage periods × six treatments for each
replicate), and the test of normality was performed according to Kolmogorov–Smirnov. One
way ANOVA for completely randomized design was conducted for analyzing the effects
of storage periods and treatments. Duncan’s test was used to determine the difference
between the averages of treatments and storage periods following the analysis of variance.
The statistical significance level was taken as 5% in the calculations and the “SPSS version
20.0” statistical package program was used for the calculations.

3. Results

During the storage period, an increase in ascorbic peroxidase (APX) enzyme activity
was observed in general considering all treatments compared to the beginning of storage,
but higher enzyme activity was observed in the treated fruit samples (Table 1). The highest
enzyme activity was determined on the 15th day of storage on 5 ppm cytokinin applied fruit
as 0.655 mmol/g−1. The difference between storage periods was found to be statistically
significant. When the difference between the treatments was examined, it was observed
that fruit samples treated with 5 ppm cytokinin were the most effective treatments to obtain
the highest APX level.

It was observed that there was an increase in catalase (CAT) enzyme activity in all
treatments from the beginning of the storage period. However, it was determined that the
fruit samples subjected to the treatments contained higher CAT enzyme activity during
storage. The difference between storage times was found to be statistically significant.
Compared to the control group fruit, it was observed that there was a statistically significant
increase in the CAT enzyme activity of the fruit subjected to the treatments. When the
changes in superoxide dismutase (SOD) enzyme activity during the storage period are
examined; it was determined that the highest SOD activity occurred after 10 days of storage.
In addition, it was observed that there was a statistically significant increase on the 15th
day of storage. The difference between treatments was found to be statistically significant
(Table 1).

Malondialdehyde (MDA) levels increase in harvested products during the storage
period, especially due to aging. As a matter of fact, in the present study, it was determined
that MDA content increased in all fruit groups during the storage period. However,
compared to the control group fruit, it was determined that MDA accumulation was
relatively inhibited in the treated fruit groups. The difference between storage times
was found to be statistically significant. In addition, compared to the control group, a
statistically significant decrease was observed in the MDA level of the fruit subjected to the
treatments (Table 2).
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Table 1. Changes in APX (mmol g−1), CAT (mmol g−1), SOD (unit g−1) enzyme activities, and MDA (nmol g−1) levels
during the storage period of ‘Bebeco’ apricot cultivar (fresh weight base). Data are expressed as mean ± standard error.

Treatments Storage Periods (Day)

0 5 10 15 25 Average

APX
Control 0.204 ± 0.009 0.183 ± 0.004 0.289 ± 0.027 0.250 ± 0.124 0.262 ± 0.216 0.237 ± 0.040 B

0.2 mM MeJA 0.204 ± 0.009 0.275 ± 0.199 0.308 ± 0.042 0.318 ± 0.012 0.533 ± 0.283 0.327 ± 0.064 AB

5 ppm cytokinin 0.204 ± 0.009 0.277 ± 0.043 0.332 ± 0.020 0.655 ± 0.127 0.624 ± 0.008 0.418 ± 0.065 A

1000 ppm lavender 0.204 ± 0.009 0.275 ± 0.074 0.360 ± 0.276 0.510 ± 0.098 0.503 ± 0.029 0.370 ± 0.061 AB

MeJA + lavender 0.204 ± 0.009 0.280 ± 0.001 0.321 ± 0.013 0.370 ± 0.058 0.410 ± 0.004 0.317 ± 0.026 AB

Cytokinin + lavender 0.204 ± 0.009 0.347 ± 0.213 0.293 ± 0.054 0.398 ± 0.018 0.464 ± 0.258 0.341 ± 0.059 AB

Average 0.204 ± 0.003 c 0.273 ± 0.040 c 0.317 ± 0.036 bc 0.417 ± 0.048 ab 0.466 ± 0.064 a

p values; p treatments = 0.285; p storage periods = 0.004; p treatments × p storage periods = 0.984

CAT
Control 0.065 ± 0.002 0.087 ± 0.004 0.093 ± 0.002 0.089 ± 0.012 0.064 ± 0.020 0.079 ± 0.005 B

0.2 mM MeJA 0.065 ± 0.002 0.095 ± 0.004 0.144 ± 0.002 0.122 ± 0.004 0.115 ± 0.004 0.108 ± 0.009 A

5 ppm cytokinin 0.065 ± 0.002 0.111 ± 0.008 0.122 ± 0.004 0.116 ± 0.006 0.101 ± 0.005 0.103 ± 0.007 AB

1000 ppm lavender 0.065 ± 0.002 0.123 ± 0.001 0.132 ± 0.012 0.121 ± 0.043 0.115 ± 0.003 0.111 ± 0.010 A

MeJA + lavender 0.065 ± 0.002 0.095 ± 0.002 0.142 ± 0.002 0.136 ± 0.005 0.111 ± 0.016 0.109 ± 0.010 A

Cytokinin + lavender 0.065 ± 0.002 0.121 ± 0.003 0.125 ± 0.002 0.118 ± 0.000 0.097 ± 0.007 0.105 ± 0.008 A

Averages 0.065 ± 0.000 d 0.105 ± 0.004 bc 0.126 ± 0.005 a 0.117 ± 0.007 ab 0.100 ± 0.006 b

p values; p treatments = 0.001; p storage periods = 0.001; p treatments × p storage periods = 0.278

SOD
Control 163.96 ± 9.42 243.87 ± 8.81 348.60 ± 3.36 279.10 ± 6.29 252.50 ± 4.12 257.61 ± 19.98 B

0.2 mM MeJA 163.96 ± 9.42 276.70 ± 1.93 436.20 ± 5.52 388.76 ± 3.29 360.31 ± 5.18 325.19 ± 32.01 AB

5 ppm cytokinin 163.96 ± 9.42 288.41 ± 2.11 453.24 ± 18.40 389.78 ± 4.01 379.64 ± 2.65 335.01 ± 33.62 AB

1000 ppm lavender 163.96 ± 9.42 334.62 ± 3.70 397.45 ± 3.14 278.28 ± 6.03 258.24 ± 3.01 286.51 ± 26.10 AB

MeJA + lavender 163.96 ± 9.42 364.30 ± 2.77 442.46 ± 1.90 412.68 ± 10.24 397.38 ± 6.64 356.16 ± 33.20 A

Cytokinin + lavender 163.96 ± 9.42 362.04 ± 4.07 374.82 ± 4.06 362.33 ± 6.84 271.76 ± 16.75 306.98 ± 27.01 AB

Average 163.964 ± 2.84 c 311.656 ± 13.66 b 408.79 ± 11.79 a 351.823 ± 16.32 b 319.97 ± 18.36 b

p values; p treatments = 0.001; p storage periods = 0.001; p treatments × p storage periods = 0.001

Lowercase letters show difference between storage periods in same line at p < 0.05. Capital letters show difference between treatments in
same column at p < 0.05.

Table 2. Changes in MDA (nmol g−1) levels during the storage period of ‘Bebeco’ apricot cultivar (fresh weight base). Data
are expressed as mean ± standard error.

Treatments Storage Periods (Day)

0 5 10 15 25 Average

MDA
Control 3.020 ± 0.203 5.153 ± 0.877 5.996 ± 0.897 6.278 ± 0.204 6.304 ± 0.408 5.350 ± 0.459 A

0.2 mM MeJA 3.020 ± 0.203 4.039 ± 0.188 4.114 ± 0.733 4.687 ± 0.081 5.108 ± 0.610 4.193 ± 0.278 B

5 ppm cytokinin 3.020 ± 0.203 3.001 ± 1.538 4.267 ± 0.089 4.572 ± 0.325 4.584 ± 0.150 3.889 ± 0.339 B

1000 ppm lavender 3.020 ± 0.203 3.429 ± 0.173 3.774 ± 0.985 4.483 ± 0.418 4.950 ± 1.569 3.931 ± 0.369 B

MeJA + lavender 3.020 ± 0.203 3.303 ± 0.127 3.618 ± 0.547 4.098 ± 0.034 4.462 ± 0.085 3.700 ± 0.196 B

Cytokinin + lavender 3.020 ± 0.203 3.428 ± 0.090 4.320 ± 0.695 4.401 ± 0.338 4.682 ± 0.051 3.970 ± 0.243 B

Average 3.020 ± 0.061 c 3.725 ± 0.307 bc 4.348 ± 0.320 ab 4.753 ± 0.228 a 5.015 ± 0.284 a

p values; p treatments = 0.001; p storage periods 0.001; p treatments × p storage periods 0.969

Lowercase letters show difference between storage periods in same line at p < 0.05. Capital letters show difference between treatments in
same column at p < 0.05.

Changes in APX, CAT, SOD enzyme activities, and MDA levels as a percentage during
the storage period of the ‘Bebeco’ apricot cultivar (See Figure 1).
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4. Discussion

Antioxidative enzymes, which are associated with both aging and defense mecha-
nisms, play an important role in suppressing oxidative stress. Enzymes such as APX,
CAT, and SOD are the main enzymes that can protect cells from oxidative damage by
scavenging free oxygen radicals [38]. The accumulation of free radicals causes oxidative
damage and accelerates the development of various aging-related disorders. With the
increase of free radicals, the SOD enzyme catalyzes the decomposition of the superoxide
radical into molecular O2 and H2O2. On the other hand, H2O2 enters into chain reactions
where it is detoxified by CAT and POD [39]. The CAT enzyme reduces H2O2 to water and
oxygen. APX, on the other hand, acts as an electron donor to ascorbic acid and prevents
the formation of H2O2 [40].

Liu et al. [41], in their study on cucumber, suggested that methyl jasmonate (MeJA) re-
duces chilling damage and increases CAT enzyme activity by reducing H2O2 accumulation.
Many researchers have stated that the chilling damage prevented by MeJA applications is
related to the increase in CAT enzyme activity [42–45]. According to Zhu and Tian [24],
they suggested that MeJA applications activate CAT and POD activities, causing H2O2 to
deteriorate and that MeJA increases endurance in tomatoes by regulating the production
of reactive oxygen species, and also causes an increase in CAT enzyme activity.

Menga et al. [46] in their study on mushrooms reported that SOD and CAT enzymes
have an important role in protecting mushroom quality and protection against oxidative
stress since they provide membrane integrity by destroying free oxygen radicals. Again,
in the same study, higher SOD and CAT activity were detected in mushrooms treated
with MeJA during storage compared to the control. In addition, it has been suggested that
accumulation of free radicals leads to lipid peroxidation, leading to disruption of membrane
integrity, thus causing MDA accumulation in the cell [47]. It has been reported that MeJA
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applied to kidney beans after harvest significantly reduces MDA levels [48]. In the current
study, it was observed that the effects of MeJA and MeJA + lavender applications on
antioxidative enzymes and MDA were similar to the above studies.

Cytokinins are phytohormones that can promote cell division and play a role in
plant growth regulation, development, and differentiation [49–51]. Information on the
role of cytokinin applications in regulating ripening and senescence in harvested fruit is
limited in the literature. However, postharvest, the treatment of a synthetic cytokinin,
BAP (6-Benzylaminopurine), alone or in combination with other chemicals is known to be
effective in controlling decay in crops [52–54]. It has also been reported to delay cell wall
degradation and softening in fruit [55]. BAP applied to litchi fruit after harvest caused
higher CAT, SOD, and APX enzyme activity and lower MDA content in fruit compared
to control fruit [54]. In the current study, similar results were obtained with the above-
mentioned study, with higher CAT, SOD, and APX enzyme activity and lower MDA
content in fruit treated with 5 ppm cytokinin and 5 ppm cytokinin + 1000 ppm lavender oil
compared to the control.

Several studies have been conducted on volatile compounds, such as methyl jas-
monate, salicylic acid, and tea oil, to maintain product quality in fruit and vegetables [56–60].
In addition, researchers reported that essential oils are environmentally friendly applica-
tions and perform safer antibacterial and antifungal activities for human health [61–64].
One of the essential oils, lavender oil (Lavandula angustifolia Mill.) mainly contains linalool
and linalyl acetate, with moderate levels of lavandulyl acetate, terpinen-4-ol, and lavandu-
lol [65]. There are studies in the literature that MeJA applied in different crops after harvest
reduces chilling damage and protects product quality by preventing the accumulation of
reactive oxygen species by increasing the activity of enzymes such as CAT, SOD, and APX,
which are antioxidative enzymes. However, studies on the effect of lavender oil alone or in
combination with MeJA on antioxidative enzymes are not yet available in the literature.
In the current study, it was determined that the application of MeJA + lavender resulted
in higher SOD and CAT enzyme activity in apricot fruit, as well as lower MDA content,
compared to fruit treated with MeJA alone.

5. Conclusions

As a result, synthetic fungicides are mainly used to control post-harvest diseases of
fruit and vegetables around the world today. However, the development of fungicide-
resistant pathogens and the growing consumer trend around the world to reduce harmful
chemicals in the food chain has promptly led to the discovery of alternative biocontrol meth-
ods with high efficiency, low residue rates, non-toxic, environmentally, and economically
friendly. In the current study, it was determined that the treatments of MeJA, cytokinin, and
lavender oil, which are environmentally friendly and safe for human health, have positive
effects on antioxidative enzymes (CAT, SOD, and APX) and lipid peroxidation in apricot
fruit during the storage period. According to the findings obtained from the study, it was
observed that 5 ppm cytokinin applied for APX enzyme activity and 1000 ppm lavender
oil applied for CAT enzyme activity gave better results. In addition, better results were
obtained in fruit treated with MeJA + lavender oil in terms of SOD enzyme activity and
MDA content. As a matter of fact, the high antioxidative enzyme activities in post-harvest
products are accepted as an indication that product quality is preserved during storage and
chilling damage is inhibited. Therefore, it can be said that the product quality of apricot
fruit is preserved as both the application of MeJA, cytokinin, and lavender oil separately
from each other and the application of combinations between these compounds activate
the enzymatic antioxidant defense systems after harvest.
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