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Abstract: Currently, the Remaining Useful Life (RUL) prediction accuracy of stochastic deterioration
equipment is low. Existing researches did not consider the impact of imperfect maintenance on
equipment degradation and maintenance decisions. Therefore, this paper proposed a remaining
useful life prediction-based maintenance decision model under data-driven to extend equipment life,
promoting sustainable development. The stochastic degradation model was established based on the
nonlinear Wiener process. A combination of real-time update and offline estimation estimated the
degradation model’s parameters and deduced the equipment’s RUL distribution. Based on the RUL
prediction results, we established a maintenance decision model with the lowest long-term cost rate
as the goal. Case analysis shows that the model proposed in this paper can improve the accuracy of
RUL prediction and realize equipment sustainability.

Keywords: stochastic deterioration equipment; data-driven; nonlinear Wiener process; RUL predic-
tion; maintenance decision; sustainability

1. Introduction

With the advancement of science and technology, the requirements for equipment
reliability are getting higher and higher. The health management of equipment is an
essential factor that determines the sustainable development of enterprises and improves
production efficiency [1,2]. However, the complex working environment gradually reduces
the equipment’s Remaining Useful Life (RUL) and reliability, leading to serious safety
accidents [3]. At present, preventive maintenance is still the primary maintenance method
for stochastic deterioration equipment, and there is a phenomenon of over or under
maintenance [4]. With the rapid development of Sensor technology [5], Data mining [6],
and Intelligent algorithms [7], Prognostics and Health Management (PHM) has gradually
become the main management methods for complex equipment systems [8], which has
attracted the attention of many scholars at home and abroad [9–12].

PHM technology mainly includes RUL prediction and health management. At present,
most researches focus on the RUL prediction. The main methods include degradation
mechanism, [13–15], data-driven, and hybrid models [16,17]. The model method based
on the equipment degradation mechanism requires an in-depth understanding of the
physical principles of the equipment, and the actual complex working environment limits
its development [18,19]. The data-driven method is widely used in RUL estimation due
to its flexibility [20], mainly including neural network-based method, regression-based
method [21], random filtering-based method [22,23], and random process-based method.
Han, C. et al. [24] proposed a mobile convolutional neural network (TCNN) to learn
domain invariant features. The trained TCNN can be used to predict RUL by feeding
data. Chen, Z. et al. [25] proposed an attention-based deep learning framework to predict
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the RUL of the equipment. Meng, M. et al. [26] proposed a convolution-based long short-
term memory (CLSTM) network to predict the RUL of rotating machinery. Unlike the
literature [25], the proposed network performs convolution operations on both the input
state transition and state transition of LSTM, which retains the advantages of LSTM and
integrates time-frequency characteristics.

However, the above method requires a large amount of status monitoring data to
model the degradation process. Furthermore, due to the complex operating environment
of the equipment, the error in the measurement data and other factors cannot guarantee
the accuracy of the results. Considering the uncertainty of life prediction, the modeling
method based on a stochastic degradation process proposed by Nozer, D. [27] has been
recognized as an effective method for equipment health management and remaining life
prediction [28–30]. In addition, many scholars have established random degradation
models based on the Gamma process [31,32], Gaussian process [33,34], Inverse-Gaussian
process [35], and Wiener process. Both the Gamma process and the Gaussian process are
only applicable to the monotonic degradation process. However, the Wiener process can
describe the non-monotonic process of equipment degradation and has become a research
hotspot [36,37]. Li, N. et al. [38] designed an RUL prediction method based on Wiener
Process Model, which is based on the Maximum Likelihood Estimation (UMLE) algorithm
to predict RUL. Man, J. et al. [39] established a random degraded signal model based on
the Wiener process with drift and proposed a joint model and a Markov model of the
Wiener process. Wang, H. et al. [40] proposed an improved Wiener process model for RUL
prediction, in which drift, and diffusion parameters are obtained by real-time updates
of monitoring data. Liu, D. et al. [41] proposed a reliability estimation and degradation
modeling method based on the Wiener process and evidence variables. By applying
evidence variables to describe the model parameters, the Wiener process is combined with
evidence theory. The above studies are mainly based on the Wiener process to predict the
remaining life of the equipment, and there are few studies on the maintenance decisions
taken from the prediction results. Zhang, M. [42] established an imperfect maintenance
model based on Wiener stochastic process and considered the impact of degradation
rate on maintenance. Liu, B. et al. [43] developed an imperfect maintenance strategy
for task-oriented systems, established a random equipment degradation model based on
the Wiener degradation process. They adopted preventive replacement and corrective
replacement strategies to establish a decision-making model. Based on the Wiener process,
Pei, H. et al. [44] proposed a performance degradation and maintenance decision model
that considers imperfect maintenance. They adopted a regular maintenance strategy and
comprehensively consider the impact of equipment degradation and degradation rate.
However, the above models describe the linear degradation process without considering
the nonlinear degradation characteristics. The preventive threshold is specified in advance,
resulting in inaccurate decision-making results. Wang, Z. et al. [45] used the nonlinear
Wiener process and the homogeneous Poisson process to model the cumulative effect of
equipment, thereby improving the accuracy of RUL prediction. However, this model does
not study equipment maintenance decisions and assumes that the number of imperfect
repairs is unlimited. Therefore, Chen, Y. et al. [46] used nonlinear Wiener process and non-
homogeneous Poisson process based on literature [45] to establish an imperfect decision-
making model that satisfies the upper limit of the number of repairs. However, this model
adopts the maximum likelihood method for parameter estimation and cannot update
the parameters according to the equipment’s real-time data, making the predicted result
inaccurate and affects the accuracy of maintenance decision.

In summary, the current RUL prediction methods can hardly reflect the true degra-
dation process of equipment. Researchers does not consider the impact of imperfect
maintenance on equipment degradation and maintenance decisions. Therefore, this paper
establishes the equipment maintenance decision model based on the RUL prediction un-
der the data-driven method. First, we use the nonlinear Wiener process to establish the
equipment degradation model, and the method of online parameter update is introduced.
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The offline estimation and online update are combined to estimate the parameters of the
degradation model, and the RUL distribution of the equipment is derived. Then, based on
the result of the RUL prediction, an imperfect maintenance strategy with limited mainte-
nance times is adopted. The maintenance decision model is established with the lowest
long-term cost rate as the goal. Finally, taking the bearing as an example, we compared the
validity and accuracy of the model.

2. Problem Description and Model Assumptions
2.1. Problem Description

Maintenance includes perfect maintenance, imperfect maintenance and minor repairs.
It is not easy to achieve perfect maintenance in the actual production process, especially in
the face of complex equipment. Most projects use imperfect maintenance, and maintenance
activities cannot restore the equipment to a brand new state. With the development of
sensing technology, we can detect the operating data of the equipment, obtain the current
degradation state, and provide a basis for maintenance. Based on the idea of imperfect
maintenance, this paper adopts a restrictive maintenance strategy. When equipment degra-
dation reaches a certain threshold, it will be maintained. However, it cannot be restored
as new and equipment maintenance does not increase indefinitely. As the number of
maintenance increases, equipment degradation increases until it completely fails. Figure 1
shows the equipment degradation process.

Figure 1. Equipment degradation process.

In Figure 1, the abscissa is the equipment operating time t, the ordinate is the equip-
ment degradation X(t), ω is the failure threshold, and ωp is the maintenance threshold.

2.2. Model Assumptions

The assumptions of this article mainly include the following points:

(1) Preventive maintenance does not affect the degradation mechanism of the equipment
itself and can slow down the process of equipment degradation. However, preventive
maintenance activities are not unlimited. When the number of maintenance reaches
the prescribed upper limit N, maintenance activities will no longer be carried out.

(2) The status value of each period can be obtained through the detection method, and the
replacement and repair time of the equipment under any maintenance means is ignored.

(3) When equipment degradation is less than the preventive maintenance threshold ωp,
no maintenance, and the equipment usually operates.

(4) When equipment degradation is greater than the preventive maintenance threshold ωp,
but the number of maintenance does not exceed N, we take preventive maintenance.
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(5) When the overall degradation exceeds the failure threshold ω, the system will fail,
and time-sensitive replacement will be adopted.

3. Model Building
3.1. Non-Linear Drift Wiener Degradation Model

The mathematical expression of the Wiener process [47] can be expressed as:

X(t) = X(0) + µt + σB(t) (1)

where, X(t) is the degradation of the equipment at time t. X(0) is the degradation of the
equipment at time 0. µ is the drift coefficient. σ is the diffusion coefficient. B(t) is the
standard Brownian motion.

The Wiener process expression of nonlinear drift can be written as [48]:

X(t) = X(0) + α
∫ t

0
µ(τ, β)dτ + σB(t) (2)

where, α
∫ t

0 µ(τ, β)dτ represents the average cumulative effect of the equipment degrada-
tion process, which is the nonlinear drift of the degradation amount. α is a random parame-
ter, β and σ are common parameters, α ∼ N(µ0, σ2

0 ). α and B(t) are statistically independent.
The Wiener degradation process based on imperfect maintenance can be expressed

as [44]:

X(t) = Xi + α
∫ t

Ti

µ(τ, β)dτ + σB(t− Ti) (3)

where, Xi is the degradation amount of the equipment after i maintenance, i(0 ≤ i ≤ N).
N is the total number of maintenance. The probability density of Xi satisfies:

f (Xi) =
ai−1b

1− exp(ai−1bωp)
exp[

ai−1b(ωp − Xi)

ωp
X′i ] (4)

3.2. RUL Prediction Model

Based on the first arrival time, the equipment degradation life T represented by the
Wiener process with nonlinear drift is defined as [49]:

T = in f t, X(t) ≥ ω|X(0) < ω (5)

where, ω is the known failure threshold.
In order to obtain the probability density of the analytical form of the equipment life

T, considering the randomness of the parameters, redefine the probability density function
of the life T can be given as:

fT|α(t|α) ∼=
ω− α

∫ t
Ti

µ(τ, β)dτ + σB(t)

σt
√

2πt
exp{

[ω− α
∫ t

Ti
µ(τ, β)dτ]2

2σ2t
} (6)

The unconditional total probability density function of life T is fT(t), and the total
probability formula can be derived as:

fT(t) =
∫

Φ
ft|α f (α)dα (7)

where, fT and Φ are the probability density function and parameter space of random parameters.
Through the probability density of life T, the probability density of the RUL of equip-

ment degradation can be obtained. Let tn be the current time and ln be the remaining life
of the current time. If the equipment reaches the failure threshold for the first time at time
t, the actual remaining life is ln = t− tn. Based on the Wiener process, we can get:
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X(t)− X(tn) = X(0) + α
∫ t

tn
µ(τ, β)dτ + σB(ln) (8)

From Equations (6)–(8), we know that the probability density function of the remaining
life of the degraded equipment at time tn can be written as:

fLn(ln) ∼=
1√

2πl2
n[σ

2
α,n(α

∫ t
tn

µ(τ, β)dτ)2 + σ2ln]

{ω− xn − [α
∫ t

tn
µ(τ, β)dτ − µ(ln + tn, β)ln]

σ2
α,n(ω− xn

∫ t
tn

µ(τ, β)dτ) + µα,nσ2ln

σα,n(
∫ t

tn
µ(τ, β)dτ)2 + σ2ln

}

exp{−
[ω− xn − µα,n

∫ t
tn

µ(τ, β)dτ]2

2[σα,n(
∫ t

tn
µ(τ, β)dτ)2 + σ2ln]

}

(9)

where, µα,n and σ2
α,n are the mean value and variance of the random parameter α obtained

after the update at time tn, respectively. xn is the degradation observation of the degraded
equipment at time tn.

3.3. Maintenance Decision Model

This paper takes the lowest long-term cost rate as the decision-making goal, and uses
the maintenance threshold as the decision variable to establish a maintenance decision-
making model. According to related theories [50], the average cost rate in the life cycle can
be expressed as:

C∞ = lim
t→+∞

C(t) =
E[C]
E[T]

(10)

where, C∞ is the average cost rate. E[C] is the average cost, and E[T] is the average life cycle.
The total cost includes inspection cost CI , preventive maintenance cost CM, preventive
replacement cost CP, failure replacement cost CS, and CI < CM < CP < CS The total cost
can be expressed as:

C∞ =
CI E[NI ] + CME[NM] + CPPP + CSPS

E[T]
(11)

NI is the number of inspections. NM is the number of maintenance. PP is the probabil-
ity of preventive replacement of the equipment. PS is the probability of failure replacement
of the equipment.

The equipment inspection time interval is ∆t, when the amount of degradation after
detection meets 0 ≤ X(di∆t) < ωp, and no maintenance measures are taken. When the
amount of degradation after detection meets ωp ≤ X(di∆t) < ω, preventive maintenance
is taken. When it is detected that the amount of equipment degradation meets ωp ≤
X[(k + 1)∆t] < ω, (K ≥ N) after completing N maintenance, preventive replacement is
adopted. When the equipment has undergone N preventive maintenance, it is detected
that the degradation amount satisfies ω ≤ X[(k + 1)∆t] in the interval (k∆t, (k + 1)∆t),
and the failure replacement is adopted.

The maintenance process is shown in Figure 2.
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Figure 2. Maintenance process.

3.3.1. Preventive Replacement

Assuming that the time of the i-th maintenance is di∆t, the probability of preventive
maintenance of the equipment at time di∆t can be expressed as [51]:

P(di∆t) =
∫ ωp

0
{1− Fi−1,ωp [(di − (di − 1))∆t|Xi−1]∫ ωp

Xi−1

fi−1[x, (di − (di − 1)− 1)∆t](Fi−1,ωp−x(∆t, x|Xi−1)

− Fi−1,ω−x(∆t, x|Xi−1))dx} f (Xi−1)dXi−1

(12)

where,

fi(x) =
1√

2πσ2t
exp[−

(x− Xi − α
∫ Ti

0 µi(τ, β)dτ)2

2σ2t
] (13)

fi,ω−x(δ|Xi) =
ω− x√
2πσ2δ3

exp[−
[ω− x− (α

∫ t
Ti

µi(τ, β)dτ)δ]2

2σ2δ3 ] (14)

When the number of maintenance is less than N and the equipment degradation satis-
fies X((di − 1)∆t) < ωp ≤ X(di∆t) < ω, preventive maintenance is taken. The probability
at this time is expressed as:

P1(di∆t) = Pωp ≤ X(di∆t) < ω a X((di − 1)∆t) < ωp|i ≤ N

= Pωp ≤ X((di − 1)∆t) < ωp

− PX((di − 1)∆t) < X(di∆t) ≥ ω

= ωp a PX((di − 1)∆t) < ω a X(∆t) ≥ ωp − X((di − 1)∆t)

− PX((di − 1)∆t) < X(di∆t) ≥ ωp a ω− X(di − 1)∆t

(15)

The expenses incurred at this time can be expressed as:

C′1 = CI N1
I + (i− 1)CM (16)

When the number of maintenance exceeds N and the equipment degradation satisfies
X(k∆t) < ωp ≤ X((k + 1)∆t) < ω), preventive replacement is adopted. The probability at
this time is expressed as:
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P2(k + 1, N) = PX(k∆t) < ωp ≤ X((k + 1)∆t) < ω|k ≥ N

=
k

∑
i=1

[
N

∏
i=1

P1 · PX(k∆t) < ωp ≤ X((k + 1)∆t) < ω|k ≥ N]

=
k

∑
i=1

[
N

∏
i=1

P1

∫ ωp

0
{1− FN,ωp [(k− dN∆t)|XN

∫ ωp

XN

fN(x, (k− dN)∆t)

(FN,ω−x(∆t, x)|XN)− (FN,ωp−x(∆t, x)|XN)]}dx f (XN)dXN ]

(17)

After N times of maintenance, the probability of preventive replacement of equipment
can be given as:

PP =
∞

∑
k=N

(k + 1, N)P2 (18)

The cost at this time can be expressed as:

C′′1 = CI N1
I + NCM + CP (19)

The total cost of preventive replacement at the end of the life cycle can be written as:

CI = C′1 + C′′1 (20)

3.3.2. Failure Replacement

When the number of maintenance exceeds N and the equipment degradation satisfies
X(k∆t) < ωp a ω ≤ X((k + 1)∆t), the failure replacement is adopted, and the probability
at this time can be expressed as:

PS(k + 1, N) = PX(k∆t) < ωp a ωX((k + 1)∆t)|k ≥ N

=
k

∑
i=1

[
N

∏
i=1

P1 · PX(k∆t) < ωp a ωX((k + 1)∆t)|k ≥ N]

=
k

∑
i=1

[
N

∏
i=1

P1

∫ ω

0
{1− FN,ω [(k− dN∆t)|XN

∫ ω

XN

fN(x, (k− dN)∆t)

(FN,ω−x(∆t, x)|XN)− FN,ω−x(∆t, x)|XN ]}dx f (XN)]

(21)

The cost C2 incurred at this time can be given as:

C2 = CI N2
I + NCM + Cp (22)

The total cost of the entire maintenance process can be written as:

C = C1 + C2 (23)

The life cycle expectations can be expressed as:

E(T) =
∞

∑
k=N

N

∑
i=0

[(k + 1)∆tPS] +
∞

∑
k=N

[(k + 1)PP] (24)

The number of detections can be written as:

E(Ni =
E(T)

∆t
) (25)
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The number of maintenance can be expressed as:

E(NM) =
∞

∑
k=N

N

∑
i=0

kPS +
∞

∑
k=N

NPP (26)

The long-term minimum cost rate of the maintenance decision model can be expressed as:

min C∞ = min
E[C]
E[T]

(27)

3.4. Parameter Estimation

Traditional parameter estimation methods mainly use offline estimation, which has
low accuracy. This paper introduces an online update method that combines offline
estimation and online updates to estimate the parameters. Parameter estimation is divided
into two steps: (1) Offline estimation: Estimate the standard parameters β and α based
on the historical data of equipment degradation, and hyperparameters µα,0 and σ2

α,0 in
the prior distribution of random parameter α. (2) Online update: at any time tn use the
actual monitored degradation data to update the parameters in the random parameter α
distribution f (α).

3.4.1. Parameter Offline Estimation

Suppose there are degradation data of M devices of the same type, and the degradation
data of the j-th device is Mj.Then the degradation amount of the j-th device at the k-th
moment is X(tj,k).

From Equation (2), we can get:

Xj,k = X(0) + α0

∫ tj,k

0
µ(τ, β)dτ + σB(tj,k) (28)

where: α0 is the prior value of the random parameter α, and its distribution is
π0(α) v N(µα,0, σ2

α,0).
Assume that the degradation data of different degraded equipment is irrelevant, while

the data of the same degraded equipment is related. The jth equipment degradation data
is Xj = (Xj,1, Xj,2, Xj,3, · · ·Xj,M)′ , Xj obeys the multivariate Gaussian distribution, and the
mean and covariance can be written as [52]:

µi = µα,0 Ij

Σj = σ2
0 Ij Ij′+ σ2Kj

(29)

Ii = (
∫ tj,1

0
µ(τ, β)dτ,

∫ tj,2

0
µ(τ, β)dτ, · · ·

∫ tj,Mj

0
µ(τ, β)dτ)′ (30)

Kj =


tj,1 tj,1 · · · tj,1
tj,1 tj,2 · · · tj,1
...

...
. . .

...
tj,1 tj,2 · · · tj,Mj

 (31)

From Equation (11), the mean value of Xj is µj = µα,0 Ij, and the covariance matrix Xj
can be expressed as:

Σj =


D(Xj,1) covD(Xj,1, Xj,2) · · · covD(Xj,1, Xj,Mj)

· · · covD(Xj,1, Xj,Mj)

. . .
...

covD(Xi, Xj,Mj)

 (32)
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The variance D(Xj,k) can be expressed as:

D(Xj,k) = D(α0

∫ tj,k

0
µ(τ, β)dτ + σB(tj,k))

= σ2
α,0[

∫ tj,k

0
µ(τ, β)dτ]2 + σ2tj,k

(33)

From Equation (12), the likelihood function formed by the degradation data of M
degraded devices is:

`(Θ|Xj) = −
1
2

ln(2π)ΣM
j=1Mj −

1
2

ΣM
j=1 ln |Σj|

= −1
2
(Xj − µj)′ΣM

j=1(Xj − µj)′Σ−1
j (Xj − µj)

(34)

where: Θ = (µα,0, σα,0, β, σ)′ is an unknown parameter, andXj = (X1, X2, · · ·XM) is the
degradation data of M devices.

3.4.2. Real-Time Parameter Estimation

For a certain device, at any time tk during its life, the random parameter α of the
degradation model can be estimated from all the data previously observed by the device.
Based on Bayesian theory, the posterior parameter distribution of the random parameters
of the degradation model at time tk is as follows [53]:

P(α|x1,k) ∝ p(x1,k|α)π0(α) (35)

where, P(α|x1,k) represents the likelihood function under given random parameters,
and the prior distribution can be obtained by Equation (17).

Using the basic characteristics of Brownian motion, we can get:

P(α|x1,k) =
1

∏k
q=1

√
2πσ2(tq − tq−1)

exp{−Σk
q=1

[xq − xq−1 −
∫ tq

q−1 µ(τ, β)dτ]2

2σ2(tq − tq−1)
} (36)

Since P(α|x1,k) and π0 are both normally distributed, P(x1,k|α) is also normally dis-
tributed. From Equations (18) and (19), it can be seen that the mean and variance of
P(x1,k|α) are expressed as:

µα,k =

µα,0
σ2

α,0
+ Σk

q−1{
(xq−xq−1−

∫ tq
q−1 µ(τ,β)dτ)2

σ2(tq−tq−1)
}

Σk
q−1{

(
∫ tq

q−1 µ(τ,β)dτ)2

σ2(tq−tq−1)
}+ 1

σ2
α,0

(37)

σ2
α,k =

1

Σk
q−1{

(
∫ tq

q−1 µ(τ,β)dτ)2

σ2(tq−tq−1)
}+ 1

σ2
α,0

(38)

Incorporating Equations (34), (37) and (38) into Equation (9), the probability density
function of the remaining life of the equipment at the moment can be obtained.

4. Case Analysis and Discussion
4.1. Case Analysis

Bearing is a critical component of mechanical equipment. Its primary function is to
support the mechanical rotating body, reduce the friction coefficient during its movement,
and ensure its rotation accuracy. At present, bearings are widely used in complex equip-
ment such as aerospace, large machinery, and equipment. As a crucial part of significant
equipment, bearings develop in high speed, high precision, high reliability and long life.
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However, the complex and harsh working environment has led to a relatively high failure
rate of bearings, affecting the regular operation of the equipment and even causing severe
safety accidents. In the actual operation process, people take regular replacement strategy
for bearings, which does not extend the remaining service life of the bearings, which is not
conducive to sustainable development.

This paper takes bearing as the research object, we use the bearing degradation data
of PHM competition [54] as the original data for analysis and calculation. FEMTO-ST
Research Institute provides the PHM data set, and the experiment is carried out on the
laboratory experimental platform (PRONOSTIA). The sampling frequency is 25.6 kHz,
and the original vibration signal changes of the three sets of data of the same bearing
during the whole life cycle are shown in Figure 3.
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Figure 3. Original signal of three sets of data.

The Root Mean Square (RMS) can reflect the vibration signal well, so we use the
RMS as the characteristic signal data. The RMS value of the three sets of data is shown in
Figure 4.

The bearing failure threshold after RMS processing is 6. It can be seen from Figure 4,
the first set of data and the second set of data have failed. The third set of data has not
failed. The first set of data has a longer life cycle. Therefore, this paper selects the first set
of data as historical degradation data and the second set of data as test data to verify the
effectiveness of the degradation and prediction method.

To further analyze the degradation process of the vibration signal of the first set of
data, plot its Spectral Kurtosis. The changes of spectral kurtosis with time and frequency is
shown in Figure 5.

It can be seen from Figure 5, as the frequency of the bearing signal increases, the greater
the value of spectral kurtosis and the more pronounced the signal characteristics. With time,
the health status of the bearing gradually decreases. As the bearing increases, the ampli-
tude of the bearing vibration signal gradually increases, and the bearing gradually fails.
The spectral kurtosis results show that the degradation process of the vibration signal of
the first set of data satisfies the degradation law of the whole life cycle.
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Figure 4. The degradation process of the three sets of data.

Figure 5. Spectral kurtosis of the first set of data.

4.2. RUL Prediction

The method proposed in this paper is denoted as M1. The method proposed in [44]
is denoted as M2. The method in [45] is denoted as M3. By comparing the prediction
results of the three prediction methods, the accuracy of the prediction model proposed
in this paper is proved. Taking the bearing data of the first group as historical data, it is
brought into the degradation model of this article, and the results of parameter estimation
are ˆµα,0 = 0.189, ˆσα,0 = 0.015, β̂ = 1.135, σ̂ = 0.9871. Bring the parameter estimation
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results into Equation (9) to perform RUL prediction. The prediction degenerate path is
shown in Figure 6.
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Figure 6. Three methods to predict degradation path.

It can be seen from Figure 6 that the degradation result predicted by M1 is closer
to the true value, followed by M3, and M2 has the lowest accuracy. With the running
time increases, the degree of deviation between the predicted signal of M2 and M3 and
the original signal becomes more and more apparent. Further analysis shows that the
larger predicted value of M2 is because it does not consider the influence of nonlinearity
on the Wiener process, which leads to the more immense predicted value. M3 considers
the non-linear Wiener process but does not adopt the real-time update strategy, and the
parameter estimation value cannot be updated in real-time, making the predicted value
larger. Both M2 and M3 are pessimistic estimates, which may cause delays in replacement
time and reduce equipment reliability.

In order to further prove the superiority of this method, we introduced Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) [55] to analyze the error between the
predicted value and the true value of the three methods.

MAE =
1
N

N

∑
1
|l∗n − ln| (39)

RMSE =

√√√√ 1
N

N

∑
1
(l∗n − ln)2 (40)

where, l∗n is the predicted value at the current moment, ln is the true value at the current
moment, and N is the number of samples. The smaller the value of MAE and RMAE,
the higher the accuracy.

Table 1 shows the error between the predicted value of the three methods and the true
value. The method M1 in this paper is minor than M2 and M3 in both MAE and RMSE.
The values of MAE and RMSE of M2 are the lowest, followed by M3, which matches the
prediction result of Figure 6. The MAE of M1 is 56.20% and 50.25% higher than M2 and
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M3. Compared with M2 and M3, the RMSE of M1 has increased by 46.23% and 24.30%,
respectively. Therefore, the method presented in this paper has higher accuracy in the
prediction of residual life. It is worth noting that M3 is lower than M2 in both MAE and
RMSE, which indicates that the introduction of a non-linear Wiener process will make the
prediction model more effective.

Table 1. Bearing error under 3 methods.

Method MAE MAE Lift Rate RMSE RMSE Lift Rate

M1 0.240 - 0.378 -
M2 0.548 56.20% 0.703 46.23%
M3 0.485 50.52% 0.621 24.30%

In order to further prove the accuracy of the method in this paper, we introduce the
relative accuracy (RA) criterion [56].

RA = 1− | l
∗
n − ln

ln
| (41)

The larger the RA, the higher the accuracy of the method. Figure 7 shows the accuracy
analysis results of the three methods.

It can be seen from Figure 7a that the relative accuracy of M1 is greater than that of
M2 and M3. It further shows that the M1 method proposed in this article is more accurate
than M2 and M3, proving that the nonlinear Wiener degradation process is close to the
actual degradation process of the equipment.

According to the literature [56], the confidence interval is 20%. It can be seen from
Figure 7b that most of the remaining values predicted by M1 fall within the confidence
interval of ±20% of the true life. The RUL predicted by M2 and M3 almost all fall outside
the confidence interval, which further proves that the method in this paper can accurately
predict the remaining life of the equipment.
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Figure 7. Cont.
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(b)

Figure 7. Accuracy analysis of three methods. (a) Comparison of three methods of RA. (b) Error Analysis.

4.3. Decision Analysis

According to the information of the remaining life prediction, the maintenance activi-
ties are arranged. The specific costs of the maintenance activities are shown in Table 2.

Table 2. Maintenance fee schedule.

Parameter CI CM CP CS

Cost/$ 10 100 500 1000

Based on the above prediction information, the genetic algorithm is used to iterate the
three models to solve the optimal long-term expense ratio. The iteration parameters are
consistent. The number of iterations is 200. The iteration results are shown in Figure 8.

Figure 8 shows the process of solving the optimal average cost rate by two different
methods. It can be seen from the figure that the long-term average cost rate of M1 is $8.33,
the average cost rate solved by M2 is $13.26, and the average cost rate solved by M3 is
$10.58. Compared with M2 and M3, the lowest average cost of M1 is reduced by 37.17% and
21.26%, respectively. When ωp < 5.2 in the M1 solving process, the maintenance cost rate
decreases monotonically with the increase of the maintenance threshold. When ωp > 5.2,
the maintenance cost rate increases monotonically with the increase of the maintenance
threshold. When the preventive maintenance threshold ωp = 5.2, there is a minimum
average cost rate of $8.33. Similarly, when ωp = 4.4 in M2, there is a minimum average
expense rate of $13.26. When ωp = 4.6 in M3, there is a minimum average expense rate of
$10.58. It further illustrates that the method of this article can obtain better maintenance
decision results. This is because the prediction results of M2 and M3 are conservative,
which reduces the RUL value, increases the number of maintenance and maintenance
costs. The prediction model of this article can accurately predict the RUL, reducing the loss
caused by excessive maintenance.
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Figure 8. Solving process of the three methods.

4.4. Discussion

It can be seen from the above results that model in this paper dramatically improves
the accuracy of equipment life prediction and makes the maintenance decision results more
reasonable. The maintenance decision model established based on the RUL prediction
information eliminates the disadvantages of traditional preventive maintenance, reduces
maintenance costs, and improves maintenance efficiency. The following further discusses
the sensitivity of maintenance cost parameters in the maintenance decision model proposed
in this paper. Based on the controlled variable method, the single maintenance cost for each
change, other costs and conditions remain unchanged. Therefore, we studied the changes
in the maintenance strategy with the changes of various costs. Since CI < CM < CP < CS,
let CI ∈ [1, 50], CM ∈ [1, 500], CP ∈ [1, 1000], CS ∈ [1, 5000]. The relationship between
maintenance cost parameters and optimal maintenance strategy is shown in Figure 9.

Figure 9 a–d are the relationship between inspection costs CI , preventive maintenance
costs CM, preventive replacement costs CP, failure replacement costs CS, and maintenance
strategies, respectively. For the C∞, the lowest long-term expense ratio increases approx-
imately linearly with various expenses. With CI from 1 to 50, the C∞ from 5.69/day to
16.58/day, with a growth rate of 0.22. The rate of increase in the C∞ caused by CM, CP and
CS was 0.018, 0.006 and 0.0014. It can be seen that the long-term average cost rate has the
highest sensitivity to the inspection cost. This is because the inspection work is performed
more frequently in the entire maintenance activity, and the inspection cost directly affects
the total maintenance cost.

For the ωp, as CI , CP, and CS increase, ωp decreases, and as CM increases, ωp increases.
The main reason for the increase in ωp is that when CM is low, there is a lower ωp, which
can increase the maintenance frequency to ensure the stable operation of the equipment,
and CM continues to increase, a lower ωp will generate many maintenance costs, so ωp
rises. CI has a low impact on the ωp, so ωp does not change significantly with CI . However,
with the increase of CP and CS, it is necessary to increase the preventive frequency to
extend preventive replacement and failure replacement and reduce the total cost. Therefore,
the ωp decreases.
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Figure 9. The relationship between maintenance cost parameters and maintenance strategy. (a) The relationship between CI

and Optimal maintenance strategy. (b) The relationship between CM and Optimal maintenance strategy. (c) The relationship
between CP and Optimal maintenance strategy. (d) The relationship between CS and Optimal maintenance strategy.

For the ∆t, as the various costs increase, ∆t keeps increasing, and the total cost is
reduced by increasing the ∆t. The impact of the CI pair is the most significant because
when the CI is low, the operation of the equipment can be learned in time through frequent
inspections to ensure the reliable and safe operation of the equipment. When the CI in-
creases, frequent inspections will inevitably lead to increased maintenance costs, so increase
t to reduce costs. In summary, CI has the most significant impact on C∞ and ∆t, CM has
the most significant impact on ωp, and CP and CP have relatively low impacts on various
indicators of the maintenance strategy. Therefore, the actual maintenance activities should
focus on controlling CM and CM to reduce maintenance costs on the premise of ensuring
the reliable operation of the equipment.

5. Conclusions

Based on the data-driven method, this paper established the RUL prediction and
maintenance decision model of the deterioration equipment. We used the measured data
to verify the model’s accuracy. The conclusions are as follows:

(1) For stochastic deterioration equipment, the nonlinear Wiener process can represent
the true degradation process of the device more accurately than the linear Wiener
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process, which conforms to objective laws and effectively improves the accuracy of
RUL prediction.

(2) The introduction of online parameter updates can improve the accuracy and reliability
of RUL prediction.

(3) Based on the more accurate RUL prediction results, a more realistic optimal mainte-
nance strategy can be formulated, reducing maintenance costs and prolonging the
RUL of the equipment.

(4) Inspection costs and preventive maintenance costs have a significant impact on main-
tenance strategies. Therefore, it is necessary to focus on controlling inspection costs
and preventive maintenance costs to promote sustainable development in actual
maintenance activities.

Author Contributions: Conceptualization, X.C. and P.L.; methodology, P.L.; software, P.L.; validation,
P.L., S.M. and X.C.; formal analysis, P.L.; investigation, S.M. and P.L.; resources, P.L.; data curation,
P.L.; writing—original draft preparation, P.L.; writing—review and editing, X.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 51834006 and 51875451.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iheukwumere-Esotu, L.O.; Yunusa-Kaltungo, A. Knowledge Criticality Assessment and Codification Framework for Major

Maintenance Activities: A Case Study of Cement Rotary Kiln Plant. Sustainability 2021, 13, 4619. [CrossRef]
2. Pei, H.; Hu, C.; Si, X.; Zhang, J.; Pang, Z.; Zhang, P. Summary of equipment remaining life prediction methods based on machine

learning. Chin. J. Mech. Eng. 2019, 55, 1–13. [CrossRef]
3. Tichy, T.; Broz, J.; Belinova, Z.; Pirnik, R. Analysis of Predictive Maintenance for Tunnel Systems. Sustainability 2021, 13, 3977.

[CrossRef]
4. Liu, H.; Jia,W.; Zhang, D.; Tan, J. The Research Status and Challenges of Deep Learning in the Technology of Predicting the

Remaining Service Life of Equipment. Comput. Integr. Manuf. Syst. 2021, 27, 34–52.
5. Sarute, U.; Hathaikarn, M. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew. Sustain.

Energy Rev. 2015, 41, 401–412.
6. Park, S.; Hamm, S.Y.; Kim, J. Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest,

and Rotation Forest for Landslide Susceptibility Modeling. Sustainability 2019, 11, 5659. [CrossRef]
7. Kamble, S.S.; Gunasekaran, A.; Ghadge, A.; Raut, R. A performance measurement system for industry 4.0 enabled smart

manufacturing system in SMMEs—A review and empirical investigation. Int. J. Prod. Econ. 2020, 229, 107853. [CrossRef]
8. Ammar, Y.; Alqahtani, S.M.; Gupta, K.N. Warranty and maintenance analysis of sensor embedded products using internet of

things in industry 4.0. Int. J. Prod. Econ. 2019, 208, 483–499.
9. Jafari, L.; Makis, V. Joint optimal lot sizing and preventive maintenance policy for a production facility subject to condition

monitoring. Int. J. Prod. Econ. 2015, 169, 156–168. [CrossRef]
10. Lin, Y.; Li, X.; Hu, Y. Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications.

Appl. Soft. Comput. 2018, 72, 555–564. [CrossRef]
11. Rodrigues, L.R.; Yoneyama, T. A spare parts inventory control model based on Prognostics and Health monitoring data under a

fill rate constraint. Comput. Ind. Eng. 2020, 148, 106724. [CrossRef]
12. Ma, J.; Shang, P.; Zou, X.; Ma, N.; Ding, Y.; Sun, J.; Cheng, Y.; Tao, L.; Lu, C.; Su, Y.; et al. A hybrid transfer learning scheme for

remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries. Appl. Energy.
2021, 282, 116167. [CrossRef]

13. Dawn, A.; Nam, H.; Kim, J. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews.
Eng. Syst. Saf. 2015, 133, 223–236.

14. Omer, F.; Eker, F.; Ian, K. Physics-based prognostic modelling of filter clogging phenomena. Mech. Syst. Signal Proc. 2016,
75, 395–412.

15. Guo, J.; Li, Z.; Li, M. A Review on Prognostics Methods for Engineering Systems. IEEE Trans. Reliab. 2020, 69, 1110–1129.
[CrossRef]

http://doi.org/10.3390/su13094619
http://dx.doi.org/10.3901/JME.2019.08.001
http://dx.doi.org/10.3390/su13073977
http://dx.doi.org/10.3390/su11205659
http://dx.doi.org/10.1016/j.ijpe.2020.107853
http://dx.doi.org/10.1016/j.ijpe.2015.07.034
http://dx.doi.org/10.1016/j.asoc.2018.01.036
http://dx.doi.org/10.1016/j.cie.2020.106724
http://dx.doi.org/10.1016/j.apenergy.2020.116167
http://dx.doi.org/10.1109/TR.2019.2957965


Sustainability 2021, 13, 8548 18 of 19

16. Sun, H.; Cao, D.; Zhao, Z. A Hybrid Approach to Cutting Tool Remaining Useful Life Prediction Based on the Wiener Process.
IEEE Trans. Reliab. 2018, 67, 1294–1303. [CrossRef]

17. Wang, B.; Lei, Y.; Li, N. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings.
IEEE Trans. Reliab. 2020, 69, 401–412. [CrossRef]

18. Feng, Y.; Mohamed, S.; Yan, S. Remaining useful life prediction of induction motors using nonlinear degradation of health index.
Mech. Syst. Signal Proc. 2021, 148, 107183.

19. Yang, X.; Fang, Z.; Li, X. Similarity-based information fusion grey model for remaining useful life prediction of aircraft engines.
Grey Syst. Theory Appl. 2020, ahead-of-print. [CrossRef]

20. Zheng, X.; Zhang, X.; Si, C.; Lei, T.G. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-
based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [CrossRef]

21. Akhilesh, K.; Ratna, B.C.; Finn, T. An HMM and polynomial regression based approach for remaining useful life and health state
estimation of cutting tools. Comput. Ind. Eng. 2019, 128, 1008–1014.

22. Mosayeb, E.; Grall, E.; Shemehsavar, S. A dynamic auto-adaptive predictive maintenance policy for degradation with unknown
parameters. Eur. J. Oper. Res. 2020, 282, 81–92. [CrossRef]

23. Van, T.; Hong, T.; Bo-Suk, Y.; Tan, T. Machine performance degradation assessment and remaining useful life prediction using
proportional hazard model and support vector machine. Mech. Syst. Signal Proc. 2012, 32, 320–330.

24. Han, C.; Kong, X.G.; Chen, G.; Wang, Q,B.; Wang, R.B. Transferable convolutional neural network based remaining useful life
prediction of bearing under multiple failure behaviors. Measurement 2021, 168, 108286.

25. Chen, Z.; Wu, M.; Zhao, R. Machine Remaining Useful Life Prediction via an Attention Based Deep Learning Approach.
IEEE Trans. Ind. Electron. 2021, 68, 2521–2531. [CrossRef]

26. Meng, M.; Zhu, M. Deep Convolution-based LSTM Network for Remaining Useful Life Prediction. IEEE Trans. Ind. Inform. 2021,
17, 1658–1667.

27. Singpurwalla, N.D. Survival in Dynamic Environments. Stat. Sci. 1995, 10, 86–103. [CrossRef]
28. Lorton, A.; Fouladirad, M.; Grall, A. A methodology for probabilistic model-based prognosis. Eur. J. Oper. Res. 2013, 225, 443–454.

[CrossRef]
29. Zhang, M.; Ye, Z.; Xie, M. A condition-based maintenance strategy for heterogeneous populations. Comput. Ind. Eng. 2014, 77,

103–114. [CrossRef]
30. Kleijnen, J.P. Regression and Kriging metamodels with their experimental designs in simulation: A review. Eur. J. Oper. Res. 2017,

256, 1–16. [CrossRef]
31. Feng, D.; Guan, J. Planning of step-stress accelerated degradation test based on non-stationary gamma process with random

effects. Comput. Ind. Eng. 2020, 125, 467–479.
32. Cao, Y.; Liu, S.; Fang, Z.; Dong, W. Modeling ageing effects in the context of continuous degradation and random shock.

Comput. Ind. Eng. 2020, 145, 106539. [CrossRef]
33. Li, F.; Li, H.; He, Y. Adaptive stochastic model predictive control of linear systems using Gaussian process regression. IET Contr.

Theory Appl. 2020, 15, 683–693. [CrossRef]
34. Davis, C.B.; Hans, C.M.; Santner, T.J. Prediction of non-stationary response functions using a Bayesian composite Gaussian

process. Comput. Stat. Data Anal. 2021, 154, 107083. [CrossRef]
35. He, D.; Liu, L.; Cao, M. A doubly accelerated degradation model based on the inverse Gaussian process and its objective Bayesian

analysis. J. Stat. Comput. Simul. 2021, 91, 1485–1503. [CrossRef]
36. Zhai, Q.; Ye, Z. RUL Prediction of Deteriorating Products Using an Adaptive Wiener Process Model. IEEE Trans. Ind. Inform. 2017,

13, 2911–2921. [CrossRef]
37. Wen, Y.; Wu, J.; Das, D.; Tseng, T. Degradation modeling and RUL prediction using Wiener process subject to multiple change

points and unit heterogeneity. Reliab. Eng. Syst. Saf. 2018, 176, 113–124. [CrossRef]
38. Li, N.; Lei, Y.; Yan, T. A Wiener Process Model-based Method for Remaining Useful Life Prediction Considering Unit-to-Unit

Variability. IEEE Trans. Ind. Electron. 2018, 66, 2092–2101. [CrossRef]
39. Man, J.; Zhou, Q. Prediction of hard failures with stochastic degradation signals using Wiener process and proportional hazards

model. Comput. Ind. Eng. 2018, 125, 480–489. [CrossRef]
40. Wang, H.; Ma, X.; Zhao, Y. An improved Wiener process model with adaptive drift and diffusion for online remaining useful life

prediction. Mech. Syst. Signal Proc. 2018, 125, 370–387. [CrossRef]
41. Liu, D.; Wang, S. A degradation modeling and reliability estimation method based on Wiener process and evidential variable.

Reliab. Eng. Syst. Saf. 2020, 202, 106957. [CrossRef]
42. Zhang, M.; Gaudoin, O.; Xie, M. Degradation-based maintenance decision using stochastic filtering for systems under imperfect

maintenance. Eur. J. Oper. Res. 2015, 245, 531–541. [CrossRef]
43. Liu, B.; Xie, M.; Xu, Z.; Kuo, W. An imperfect maintenance policy for mission-oriented systems subject to degradation and

external shocks. Comput. Ind. Eng. 2016, 102, 21–32. [CrossRef]
44. Pei, H.; Hu, C.; Si, X.; Zhang, Z.; Du, D. Equipment maintenance decision-making model based on remaining life prediction

information under imperfect maintenance. Acta Autom. Sin. 2018, 44, 719–729.
45. Wang, Z.; Chen, Y.; Cai, Z.; Xiang, H.; Wang, L. Prediction of remaining life of imperfect maintenance equipment based on

compound inhomogeneous Poisson process. Chin. J. Mech. Eng. 2020, 56, 14–23. [CrossRef]

http://dx.doi.org/10.1109/TR.2018.2831256
http://dx.doi.org/10.1109/TR.2018.2882682
http://dx.doi.org/10.1108/GS-05-2020-0066
http://dx.doi.org/10.1016/j.ejor.2018.02.033
http://dx.doi.org/10.1016/j.ejor.2019.08.050
http://dx.doi.org/10.1109/TIE.2020.2972443
http://dx.doi.org/10.1214/ss/1177010132
http://dx.doi.org/10.1016/j.ejor.2012.10.025
http://dx.doi.org/10.1016/j.cie.2014.09.001
http://dx.doi.org/10.1016/j.ejor.2016.06.041
http://dx.doi.org/10.1016/j.cie.2020.106539
http://dx.doi.org/10.1049/cth2.12070
http://dx.doi.org/10.1016/j.csda.2020.107083
http://dx.doi.org/10.1080/00949655.2020.1858083
http://dx.doi.org/10.1109/TII.2017.2684821
http://dx.doi.org/10.1016/j.ress.2018.04.005
http://dx.doi.org/10.1109/TIE.2018.2838078
http://dx.doi.org/10.1016/j.cie.2018.09.015
http://dx.doi.org/10.1016/j.ymssp.2019.03.019
http://dx.doi.org/10.1016/j.ress.2020.106957
http://dx.doi.org/10.1016/j.ejor.2015.02.050
http://dx.doi.org/10.1016/j.cie.2016.10.008
http://dx.doi.org/10.1186/s10033-020-0435-6


Sustainability 2021, 13, 8548 19 of 19

46. Chen, Y.; Wang, Z. Optimal Maintenance Decision Based on Remaining Useful Lifetime Prediction for the Equipment Subject to
Imperfect Maintenance. IEEE Access 2020, 8, 6704–6716. [CrossRef]

47. Tang, S.; Yu, C.; Xue, W.; Guo, X.; Si, X. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process
with Measurement Error. Energies 2014, 7, 520–547. [CrossRef]

48. Gebraeel, N.Z.; Lawley, M.A.; Li, R.; Ryan, J.K. Residual-life distributions from component degradation signals: A Bayesian
approach. IIE Trans. 2005, 37, 534–557. [CrossRef]

49. Lee, M.-L.T.; Whitmore, G.A. Threshold Regression for Survival Analysis: Modeling Event Times by a Stochastic Process Reaching
a Boundary. Stat. Sci. 2006, 21, 501–513. [CrossRef]

50. Grall, A.; Dieulle, L.; Berenguer, C. Continuous-time predictive-maintenance scheduling for a deteriorating system.
IEEE Trans. Reliab. 2001, 51, 141–150. [CrossRef]

51. Wang, Y.; Pham, H. A Multi-Objective Optimization of Imperfect Preventive Maintenance Policy for Dependent Competing Risk
Systems With Hidden Failure. IEEE Trans. Reliab. 2011, 60, 770–781. [CrossRef]

52. Hu, Y.; Liu, B.; Qin, Z. Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving
Average Noises. Circuits Syst. Signal Process. 2014, 32, 655–664. [CrossRef]

53. Zio, E.; Peloni, G. Particle filtering prognostic estimation of the remaining useful life of nonlinear components. Reliab. Eng.
Syst. Saf. 2011, 96, 403–409. [CrossRef]

54. Patrick, N.; Rafael, G.; Kamal, M.; Emmanuel, R. An Experimental Platform for Bearings Accelerated Life Test. In Proceedings of
the IEEE International Conference on Prognostics and Health Management, Denver, CO, USA, 2012, June 18.

55. Saxena, A.; Celaya, J.; Saha, B. Metrics for offlineevaluation of prognostic performance. Int. J. Progn. Health Manag. 2010,
1, 2153–2648.

56. Thompson, P.A. An MSE statistic for comparing forecast accuracy across series. Int. J. Forecast. 1990, 6, 219–227. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2963765
http://dx.doi.org/10.3390/en7020520
http://dx.doi.org/10.1080/07408170590929018
http://dx.doi.org/10.1214/088342306000000330
http://dx.doi.org/10.1109/TR.2002.1011518
http://dx.doi.org/10.1109/TR.2011.2167779
http://dx.doi.org/10.1007/s00034-013-9652-x
http://dx.doi.org/10.1016/j.ress.2010.08.009
http://dx.doi.org/10.1016/0169-2070(90)90007-X

	Introduction
	Problem Description and Model Assumptions
	Problem Description
	Model Assumptions

	Model Building
	Non-Linear Drift Wiener Degradation Model
	RUL Prediction Model
	Maintenance Decision Model
	Preventive Replacement
	Failure Replacement

	Parameter Estimation
	Parameter Offline Estimation
	Real-Time Parameter Estimation 


	Case Analysis and Discussion
	Case Analysis
	RUL Prediction
	Decision Analysis
	Discussion

	Conclusions
	References

