
sustainability

Article

Does Staying at Home during the COVID-19 Pandemic Help
Reduce CO2 Emissions?

Kentaka Aruga 1,* , Md. Monirul Islam 2,3 and Arifa Jannat 3,4

����������
�������

Citation: Aruga, K.; Islam, M.M.;

Jannat, A. Does Staying at Home

during the COVID-19 Pandemic Help

Reduce CO2 Emissions? Sustainability

2021, 13, 8534. https://doi.org/

10.3390/su13158534

Academic Editor: Giovanni Leonardi

Received: 17 June 2021

Accepted: 27 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Humanities and Social Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku,
Saitama 338-8570, Japan

2 Department of Agricultural Economics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
monir.bau_96@yahoo.com

3 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
arifaecon_bau@yahoo.com

4 Institute of Agribusiness and Development Studies, Bangladesh Agricultural University,
Mymensingh 2202, Bangladesh

* Correspondence: aruga@mail.saitama-u.ac.jp

Abstract: Quarantining at home during the COVID-19 pandemic significantly restricted human
mobility such as visits to parks, grocery stores, workplaces, retail places, and transit stations. In this
research, we analyzed how the changes in human mobility during the first wave of the COVID-19
pandemic, from February to April 2020 (i.e., between 17 February and 30 April 2020), affected the
daily CO2 emissions for countries having a high number of coronavirus cases at that time. Our daily
time-series analyses indicated that when average hours spent at home increased, the amount of
daily CO2 emissions declined significantly. The findings suggest that for all three countries (the US,
India, and France), a 1% increase in the average duration spent in residential areas reduced daily
CO2 emissions by 0.17 Mt, 0.10 Mt, and 0.01 Mt, respectively, during the first wave period. Thus,
confining people into their homes contributes to cutting down CO2 emissions remarkably. However,
the study also reveals those activities such as visiting parks and going grocery shopping increase
CO2 emissions, suggesting that unnecessary human mobility is undesirable for the environment.

Keywords: COVID-19; human mobility; environmental impact; CO2 emissions; ARDL

1. Introduction

As the Intergovernmental Panel on Climate Change (IPCC) states in its Fifth Assess-
ment Report (AR5), the causes of climate change are largely related to anthropogenic
greenhouse gas emissions driven by economic growth and population increases [1]. Thus,
the simplest solution to climate change is to stop or restrict human activities. However,
this is unrealistic since every country wants to enjoy economic development, and wealth is
often related to economic growth. However, the recent spread of the COVID-19 has forced
many countries into lockdown and, for the first time after the industrial revolution, almost
the entire world is confining people at their homes, restricting human mobility.

The lockdown regulations in many countries are prohibiting people from going out
of their homes unless they need to buy necessities at grocery and pharmacy stores. Even
going to public parks was restricted in some countries where social distancing was difficult
to implement. As human mobility declined during the COVID-19 pandemic, nature
is regenerating [2], and this stagnant mobility is likely reducing global greenhouse gas
emissions. For example, the global CO2 emissions are claimed to have decreased by
17% during the first quarter of 2020 relative to the mean level of emissions in 2019 [3].
Furthermore, NASA (the National Aeronautics and Space Administration) and ESA (the
European Space Agency) reports that during the COVID-19 pandemic, NO2 emissions
decreased by up to 30% due to the lockdown restrictions [4].

Sustainability 2021, 13, 8534. https://doi.org/10.3390/su13158534 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3033-272X
https://orcid.org/0000-0003-0045-3897
https://orcid.org/0000-0002-8576-7571
https://doi.org/10.3390/su13158534
https://doi.org/10.3390/su13158534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13158534
https://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/13/15/8534?type=check_update&version=5


Sustainability 2021, 13, 8534 2 of 13

Although a significant number of studies exist concerning how the COVID-19 crisis is
affecting human mobility changes [5], tourism and hospitality [6–8], and fuel markets [9],
not much is known about how these mobility changes are related to CO2 emissions. The
effects of the COVID-19 pandemic on CO2 emissions have been investigated with respect to
emission levels [3], air quality index [10], and waste recycling [11]. Some studies examined
the effects of lockdown on environmental pollution. However, these studies use the satellite
remote sensing datasets [12,13], and no studies have investigated how changes in human
mobility during the COVID-19 pandemic are related to CO2 emissions.

Based on Quere et al., [3], which identifies a temporary reduction in daily global CO2
emissions during the COVID-19 pandemic, we hypothesized that capturing the levels of
human mobility restriction might have an impact on CO2 emissions levels. Before the
COVID-19 pandemic, no reliable data were available to capture a huge decline in human
movements where most people spend their time in their houses restricting unnecessary
and nonurgent outings and no studies have examined how mobility changes in a country
influence its CO2 emissions. Hence, this is the first study to quantitatively investigate
the effects of the reduction in human mobility on CO2 emissions. Conducting a social
experiment might be an alternative way to obtain such data, but unless a whole city
participates in the experiment, it would be very difficult to control the people’s movement
within a city. Moreover, even if some cities claimed to participate in such an experiment
it would be morally wrong to restrict the residence of the city from moving outside their
homes.

Hence, by taking advantage of this opportunity where data that seizes changes in the
human mobility under the lockdown are available, this study investigated how human
mobility changes during the first wave of COVID-19 affected CO2 emissions. We applied
the autoregressive distributed lag (ARDL) model [14] on human mobility indices obtained
for the United States (US), India, and France [15]. Since the lockdown’s effect is most
likely observable in the number of hours spent at homes, we focus on whether increased
hours of stay in residential areas impacted CO2 emissions. Furthermore, since the obtained
human mobility data also contain changes in the number of visits to parks, groceries and
pharmacies, workplaces, retail and recreational places, and transit stations, we also identify
the different impacts on the emission levels among these sectors.

2. CO2 Emissions and Changes in Human Mobility during the COVID-19 First Wave

The period investigated in this study contains data between 17 February and 30 April
2020, since this period corresponds to the time when an increasing number of COVID-19
cases began to be identified in various countries outside China (where the first new type
of coronavirus epidemic broke out in Wuhan [16]). The study considered three countries
having a large number of COVID-19 cases in North America, Asia, and Europe, namely
the US, India, and France, respectively. These countries were chosen since they are one
of the world’s highly COVID-19-affected countries, as well as the top two CO2 emitting
countries [17]. During the period investigated, the US, India, and France had near 1.1
million, 35 thousand, and 130 thousand accumulative number of coronavirus cases [18],
respectively, and as a comparison, before severe lockdown restrictions were enforced in
these countries in mid-March [19], the daily changes in the number of COVID-19 cases
were increasing drastically (Figure 1). By the end of April 2020, the daily changes in the
COVID-19 had slowed down (Figure 1) and therefore in this study, the 17 February–30
April 2020 period is defined as the first wave of COVID-19.
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Figure 2. Trends of CO2 emissions during the first wave of the COVID-19 pandemic (17 February 2020–30 April 2020). (a) 
The US and India. (b) France. The vertical axis shows the daily CO2 emissions (Mt CO2). Changes in CO2 emissions are 
accumulated from the power (±1.5%), ground transport (±9.3%), industry (±36.0%), residential (±40.0%), and domestic 
aviation (±10.2%) with an overall uncertainty of ±6.8%. 

Six human mobility indices were obtained from Google limited liability company 
(LLC) [15] for the first wave period. The indices represent changes in visits and the 
number of hours spent at homes relative to a baseline day, where the baseline day is 
defined as the median value between 3 January and 6 February 2020. The first index is the 
changes in the visits to parks and outdoor spaces (Figure 3a), and the second is hours 
spent at home (Figure 3b). The third, fourth, and fifth indices are changes in the number 
of visits to groceries and pharmacies, workplaces, and retail and recreational places, 
respectively (Figure 3c–e). Finally, the last index is the changes in the transit station visits 
(Figure 3f). Except for the residential index, all five mobility indices remained near zero 
or above zero before enforcing lockdown restrictions (Figure 3a–f). However, when all 
three countries implemented severe quarantine restrictions after mid-March 2020, all 
these indices plummeted over 50% (Figure 3a,c–f). On the other hand, time spent at home 
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Figure 1. Trends of COVID-19 during the first wave of the pandemic (17 February 2020–30 April
2020). The left vertical axis shows the percentage changes of COVID-19 cases for the US and France,
while the right shows those for India.

The daily CO2 emissions (Mt CO2) data for the US, India, and France is obtained
from the Carbon Monitor [20]. During the COVID-19 first wave (17 February 2020–
30 April 2020), the daily CO2 emissions of all three countries investigated had a declining
trend (Figure 2a,b). The main purpose of the study is to investigate if this decline in the
CO2 emissions during the COVID-19 first wave is related to lockdown restriction by testing
the effects of changes in human mobility on the emissions level.
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Figure 2. Trends of CO2 emissions during the first wave of the COVID-19 pandemic (17 February 2020–30 April 2020). (a)
The US and India. (b) France. The vertical axis shows the daily CO2 emissions (Mt CO2). Changes in CO2 emissions are
accumulated from the power (±1.5%), ground transport (±9.3%), industry (±36.0%), residential (±40.0%), and domestic
aviation (±10.2%) with an overall uncertainty of ±6.8%.

Six human mobility indices were obtained from Google limited liability company
(LLC) [15] for the first wave period. The indices represent changes in visits and the
number of hours spent at homes relative to a baseline day, where the baseline day is
defined as the median value between 3 January and 6 February 2020. The first index
is the changes in the visits to parks and outdoor spaces (Figure 3a), and the second is
hours spent at home (Figure 3b). The third, fourth, and fifth indices are changes in the
number of visits to groceries and pharmacies, workplaces, and retail and recreational
places, respectively (Figure 3c–e). Finally, the last index is the changes in the transit station
visits (Figure 3f). Except for the residential index, all five mobility indices remained near
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zero or above zero before enforcing lockdown restrictions (Figure 3a–f). However, when
all three countries implemented severe quarantine restrictions after mid-March 2020, all
these indices plummeted over 50% (Figure 3a,c–f). On the other hand, time spent at
home increased dramatically after mid-March due to the quarantine measures in all three
countries (Figure 3b).
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Figure 3. Google mobility trends during the first wave of the COVID-19 pandemic (17 February 2020–30 April 2020). The
figure presents changes in the six mobility indices: (a) Parks and outdoor spaces. (b) Time spent at home (Residential). (c)
Groceries and pharmacies. (d) Workplaces. (e) Retail and recreation. (f) Public transport stations (Transit) in the US (navy
line), India (green line), and France (blue line).
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3. Materials and Methods

The effects of changes in the human mobility during the first wave of COVID-19
pandemic on the CO2 emissions were analyzed using the following Equations:

CO2 = constant + β1Park + β2COVID (1)

CO2 = constant + β1Residential + β2COVID (2)

CO2 = constant + β1Grocery + β2COVID (3)

CO2 = constant + β1Work + β2COVID (4)

CO2 = constant + β1Retail + β2COVID (5)

CO2 = constant + β1Transit + β2COVID (6)

where CO2 is the total daily CO2 emissions, park, residential, grocery, work, retail, and
transit are the daily human mobility variables included in the Google mobility trends,
and COVID are the daily changes in the number of coronavirus cases. Each equation is
estimated using the ARDL model with unrestricted intercepts with no trends (Case III)
proposed by Pesaran et al., (2001) for the US, India, and France using data from these three
countries.

The first reason for using the ARDL model is that this model can be used on time series
data even when orders of integration of the test variables are either I (1) or I (0). Testing
the long-run relationship between variables in a time series analysis is often conducted by
cointegration tests. Many conventional cointegration tests such as the Johansen test [21]
require all the test variables to be cointegrated of the same order, but such a condition is
not required for the ARDL. The second advantage of the ARDL model is that this model
does not lose its power even when omitted variables and autocorrelation issues sustain in
the data and, thus, the model is useful for analyzing data with small sample sizes [22].

Since ARDL requires the test variables to be either I (1) or I (0), we applied the Elliott-
Rothenberg-Stock (1996) [23], Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [24] tests, and
the Lee-Strazicich (2003) [25] test with two structural breaks. Based on the results of one of
these tests, we were able to confirm that all our endogenous variables can be considered as
either I (1) or I (0) (Table 1).

Table 1. Unit root tests.

Variables
Levels First Differences

ERS KPSS LS ERS KPSS LS

US CO2 2.71 *** 0.17 * −5.09 42.15 0.19 ** −6.52 **
US park 5.69 * 0.13 * −4.61 8.58 0.14 * −7.51 ***

US residential 2.58 *** 0.16 ** −5.58 12.47 0.20 ** −6.40 **
US grocery 6.17 * 0.14 * −7.70 *** 6.47 * 0.11 −7.40 ***

US work 7.38 0.15 ** −6.07 * 26.13 0.22 *** −7.53 ***
US retail 4.92 ** 0.15 ** −7.32 *** 12.77 0.16 ** −7.01 ***

US transit 3.02 *** 0.16 ** −8.57 *** 34.02 0.21 ** −7.58 ***
India CO2 9.59 0.14 * −5.51 2.93 *** 0.09 −10.75 ***
India park 3.65 *** 0.12 −7.87 *** 1.82 *** 0.11 −7.43 ***

India residential 4.32 ** 0.13 * −9.50 *** 2.07 *** 0.14 * −10.30 ***
India grocery 2.70 *** 0.14 * −7.05 *** 8.48 0.13 * −10.56 ***

India work 9.38 0.14 * −7.85 *** 5.93 * 0.13 * −9.29 ***
India retail 4.11 *** 0.13 * −10.26 *** 1.88 *** 0.14 * −11.54 ***
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Table 1. Cont.

Variables
Levels First Differences

ERS KPSS LS ERS KPSS LS

India transit 3.99 *** 0.14 * −8.79 *** 2.77 *** 0.14 * 10.92 ***
France CO2 2.73 *** 0.11 −6.21 * 12.73 0.20 ** −6.64 **
France park 8.37 0.19 * −10.41 *** 0.48 *** 0.10 −6.81 **

France residential 3.81 *** 0.16 * −9.51 ** 2.86 *** 0.12 * −9.45 ***
France grocery 8.79 0.14 * −7.87 ** 4.75 ** 0.10 −10.53 ***

France work 7.11 0.15 ** −9.66 *** 2.10 *** 0.11 −8.91 ***
France retail 26.05 0.18 ** −11.40 *** 1.36 *** 0.13 * −8.54 ***

France transit 7.78 0.17 ** −14.95 *** 3.93 *** 0.12 * −9.97 ***

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. ERS is the Elliott-Rothenberg-Stock (1996) test, and LS is
the Lee-Strazicich (2003) test with two structural breaks. The null hypothesis of the ERS and LS tests are variables that contain unit roots,
while that for the KPSS test is stationarity of the variables.

Second, the ARDL (p, q) model estimation was conducted with the following unre-
stricted error correction model:

∆CO2t = C + β1CO2t−1 + β2mobilityt−1+

∑
p
i=0 β3i∆CO2t−i + ∑

q
i=1 β4i∆mobilityt−i + β5COVID + εt

(7)

where mobility is one of the six mobility variables investigated in the study, p and q are the
lag orders of the dynamic regressors, and εt is the white noise error term.

To test if the models contain serial correlation and heteroskedasticity issues, the
Breusch–Godfrey test for autocorrelation [26,27] and the Breusch and Pagan (1979) [28] test
for heteroskedasticity and Jarque and Bera (1980) test [29] for normality were performed.
The cumulative sum (CUSUM) and the cumulative sum of squares (CUSUMSQ) tests were
also conducted to examine the stability of the parameters estimated by the ARDL and
non-linear autoregressive distributed lag (NARDL) models.

As observable from the Breusch–Godfrey (BG) test results presented in Table 2, none
of our models contained some serial correlation issue under the 5% significance level. The
Breusch-Pagan-Godfrey (BPG) test suggested that most of our models are homoscedastic
based on the 5% significance level, but the work model for India and the grocery model for
France contained heteroscedasticity. To overcome the issues of serial correlation and het-
eroscedasticity, we used the Newey–West heteroscedasticity and autocorrelation corrected
(HAC) standard errors for estimating the ARDL model coefficients. We also investigated
the stability of the parameters estimated with the CUSUM and CUSUMQ tests. These
details of these results are provided in the supplementary file.

Table 2. Serial correlation and heteroscedasticity tests.

Models
US India France

BG BPG JB BG BPG JB BG BPG JB

Park 0.54 1.79 1.17 0.50 0.52 142.33 *** 0.10 2.42 * 4.54
Residential 0.12 1.72 0.28 0.18 1.34 102.90 *** 0.09 2.08 * 3.38

Grocery 2.19 * 1.37 1.85 0.31 0.40 59.15 *** 1.03 3.16 ** 1.34
Work 0.15 1.53 0.43 1.04 3.13 *** 30.53 *** 0.07 2.30 * 2.69
Retail 0.11 1.70 0.49 0.55 0.82 145.83 *** 0.30 1.24 6.19 **
Transit 0.08 1.62 0.38 0.16 0.70 155.65 *** 0.08 1.68 9.11 **

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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4. Results
4.1. Linear ARDL Bounds Test for Cointegration

A cointegration test was performed using the ARDL bounds test. The results indicated
that except for the US and French grocery models, our mobility models for the three
countries had cointegration relationships at the 5% significance level (Table 3). Although
cointegration relationships were not confirmed for the US and French grocery models by
the bounds test, the Johansen cointegration test performed between the CO2 and grocery for
the US and French models suggested that they are cointegrated at the 5% significance level
(see Table S1 in the Supplementary Materials). Based on this result, the ARDL unrestricted
error correction model was estimated, capturing both short-run and long-run relationships
between the CO2 emissions and human mobility indices.

4.2. Staying Home Is Cutting Down CO2 Emissions

Investigating how daily changes in the number of hours spent at residential areas
influence the daily CO2 emissions, a 1% increase in the time spent at home in the US,
India, and France resulted in a 0.1 Mt, 0.25 Mt, and 0.006 Mt reduction in CO2 emissions,
respectively (Figure 4a–c, Table 4). These results indicate that since more people were forced
to stay at their homes during the quarantine, it is probable that the use of automobiles and
aircraft in their daily lives declined, resulting in a reduction of carbon emissions [30,31].

Table 3. ARDL bounds test for cointegration.

Models
US India France

F-Stat. F-Stat. F-Stat.

Park 6.38 *** 4.74 ** 6.29 ***
Residential 11.23 *** 8.33 *** 6.67 ***

Grocery 3.74 * 4.44 ** 3.48
Work 11.23 *** 8.11 *** 5.96 ***
Retail 10.36 *** 5.87 ** 8.34 ***
Transit 11.82 *** 8.24 *** 8.10 ***

Significance level I (0) I (1)
1% level 5.16 5.96
5% level 3.78 4.33
10% level 3.13 3.62

Note: ***, **, and * denote significance at the 1%, 5% and 10% levels, respectively.4.2. Staying Home is Cutting Down CO2 Emissions.

Table 4. ARDL short-run estimations.

Models Variables
US India France

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Park
∆Park 0.0344 *** 0.0108 0.1178 *** 0.0311 0.0020 *** 0.0006

∆Park(-1) na −0.0678 ** 0.0314 na
Covid 0.6571 0.4915 −0.0491 0.0838 0.1001 0.0820

Residential

∆Residential −0.0992 *** 0.0207 −0.2482 *** 0.0528 −0.0063 *** 0.0018
∆Residential (-1) na 0.0424 0.0639 na
∆Residential (-2) na 0.0050 0.0618 na
∆Residential (-3) na 0.0886 0.0533 na

Covid 0.7707 0.4488 −0.0357 0.0800 0.0817 0.0815

Grocery

∆Grocery 0.1021 * 0.0600 0.0901 *** 0.0159 0.0019 ** 0.0009
∆Grocery (-1) na −0.0138 0.0176 na
∆Grocery (-2) na −0.0090 0.0169 na
∆Grocery (-3) na −0.0404 ** 0.0160 na

Covid 0.9264 * 0.5276 −0.0276 0.0805 0.0582 0.0836

Work

∆Work 0.0406 *** 0.0085 0.0940 *** 0.0172 0.0026 *** 0.0008
∆Work (-1) na −0.0231 0.0210 na
∆Work (-2) na −0.0063 0.0205 na
∆Work (-3) na −0.0298 * 0.0176 na

Covid 0.7187 0.4498 −0.0554 0.0787 0.0774 0.0826

Retail
∆Retail 0.0354 *** 0.0078 0.1020 *** 0.0224 0.0289 ** 0.0118

∆Retail (-1) na −0.0567 ** 0.0228 −0.0265 ** 0.0117
Covid 0.7546 0.4552 −0.0487 0.0796 0.0666 0.0789

Transit

∆Transit 0.0376 *** 0.0076 0.1072 *** 0.0215 0.0341 ** 0.0137
∆Transit (-1) na −0.0323 0.0264 −0.0302 ** 0.0136
∆Transit (-2) na 0.0018 0.0255 na
∆Transit (-3) na −0.0456 ** 0.0220 na

Covid 0.7945 * 0.4446 −0.0273 0.0769 0.0853 0.0792

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. na in the table implies that the statistically feasible
models chosen by the AIC (Akaike information criterion) did not contain the lags of the variables.
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The long-run coefficients of the ARDL model also reveal that in all three countries,
increased hours spent at home contribute to reducing CO2 emissions (Figure 5a–c, Table 5).
Our result implies that a 1% increase in the residential index reduced daily CO2 emissions
by 0.17 Mt, 0.10 Mt, and 0.01 Mt in the US, India, and France, respectively (Figure 5a–c,
Table 5). The difference in the size of the CO2 reductions from staying at home longer
among the three countries reflects the total volume of CO2 emissions. The US and India
are ranked the second and third after China while France is ranked the 19th for its annual
CO2 emissions in the world [17].

These results indicate that constraining people at their homes during the COVID-19
pandemic contributed to reducing CO2 emissions. This implies that such a policy that
restricts people to stay at their homes for hours might help decrease CO2 emissions.

Table 5. ARDL long-run estimations.

Models Variables
US India France

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Park Constant 11.3930 *** 0.4047 6.5396 *** 0.1455 0.7611 *** 0.0450
Park 0.0925 *** 0.0209 0.0475 *** 0.0035 0.0042 *** 0.0007

Residential Constant 13.2505 *** 0.4169 6.7291 *** 0.1175 0.8523 *** 0.0590
Residential −0.1741 *** 0.0214 −0.1016 *** 0.0045 −0.0126 *** 0.0024

Grocery Constant 11.1546 *** 0.5478 6.4515 *** 0.1828 0.7633 *** 0.0886
Grocery 0.0740 ** 0.0317 0.0494 *** 0.0037 0.0062 *** 0.0022

Work Constant 13.2533 *** 0.4187 6.6252 *** 0.1154 0.8567 *** 0.0731
Work 0.0699 *** 0.0085 0.0447 *** 0.0020 0.0056 *** 0.0012

Retail Constant 12.8352 *** 0.4101 6.7385 *** 0.1427 0.8748 *** 0.0400
Retail 0.0653 *** 0.0089 0.0353 *** 0.0020 0.0047 *** 0.0006

Transit Constant 13.2069 *** 0.3894 6.6675 *** 0.1266 0.8561 *** 0.0418
Transit 0.0630 *** 0.0073 0.0415 *** 0.0019 0.0047 *** 0.0007

Note: *** and ** denote significance at the 1% and 5% levels, respectively.

4.3. Parks, Groceries, and Workplace Visits Contributing to CO2 Emissions

During the lockdown restrictions, many countries did not prohibit people from going
to parks and grocery and pharmacy shopping if social distancing was possible. The park
index used in the study contained parks such as local and national parks, public beaches,
marina, dog parks, and so on, and the grocery index “includes places such as grocery
markets, food warehouses, farmers markets” [15] and so on. The short-run results for the
US, India, and France model suggests that a 1% increase in the daily park and grocery
mobility indices raised the US daily CO2 emissions by 0.03 Mt and 0.1 Mt, those for India
by 0.12 Mt and 0.09 Mt, and France for 0.002 Mt and 0.002 Mt, respectively (Figure 4a–c,
Table 4). The effects of mobility changes in parks and groceries during the entire first
wave period show that visits to groceries had the highest contribution to CO2 emissions
for India and France, and it was the second-highest for the US (Figure 5a–c). In the US,
India, and France, a 1% increase in grocery visits lead to a 0.07 Mt, 0.05 Mt, and 0.006 Mt
increase in the CO2 emissions (Figure 5a–c, Table 5). This is expected, since even the
number of visits to groceries and pharmacies declined during the quarantine (Figure 3c),
people had to continue to go shopping at grocery stores, but this activity often involves
using automobiles. The park visits also impacted largely on daily CO2 emissions for the
US and India. It had the largest influence on the emissions for the US rising 0.09 Mt, and it
had the second-largest impact on the emissions for India. For France, the increase in the
emissions from park visits was relatively small among the other five mobility indices rising
CO2 emissions (Figure 5c). We predict that this is related to French citizens using bicycles
or walking in order to visit parks, while the US citizens usually use their car [32].

Finally, although most countries promoted companies to shift to working from home,
it was impossible to stop people from going to offices entirely. Even if the number of
workers visiting their offices declined during the quarantine, if some people continued
to work at their office buildings, electricity to warm the buildings and other utilities to
run the office contributed to energy use. However, in general, it is still uncertain whether
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working at home is better than the office in terms of CO2 emissions since the total amount
of emissions varies by way of commuting and distance to the office [33].
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Figure 5. Effects of mobility changes on the daily CO2 emissions during the first wave of the COVID-19 pandemic (17
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CO2 emissions when the six mobility indices change by 1% based on the ARDL estimation. In addition, the graph shows
the long-run coefficients of the ARDL model, all significant at the 5% level.

4.4. Retail & Recreation and Transport Station Mobility Contributing to CO2 Emissions

The study found that an increase in the visits to retail and recreational places and
transit stations also positively impacted CO2 emissions. When the number of visitors to
retail and recreational places and transit stations increased by 1% during the first wave,
the CO2 emissions grew by 0.065 Mt and 0.063 Mt for the US, 0.035 Mt and 0.042 Mt for
India, and 0.005 Mt and 0.005 Mt for France, respectively (Figure 5a–c, Table 5). Since
the retail and recreational index was based on the number of visits to restaurants, cafes,
shopping centers, theme parks, museums, libraries, and movie theaters, an increase in
visits to these places will add the volume of gasoline to travel to these places and energy
to run their facilities. Hence, an increase in this mobility index will likely increase CO2
emissions. Similarly, an increase in transit station visits reflects conditions in which more
people are taking public transportation to various destinations. Thus, an increase in human
mobility in transit stations will contribute to CO2 emissions positively.

Higher human mobility in the retail and recreational places and transit stations signi-
fies a condition where more people enjoy their commercial lifestyle before the pandemic.
Hence, the results of these mobility indices showing a positive effect on CO2 emissions
means that CO2 emissions will increase as peoples’ lives return to normal without experi-
encing the effects of lockdowns.

4.5. Practical Implications

Although the restrictions imposed on human movement during COVID-19 were not
meant to reduce CO2 emissions, both the long-run and short-run results of our ARDL
estimations revealed that confining people in their homes for a longer period contributes to
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reducing CO2 emissions. Since our short-run results indicate that even a daily increase in
the hours spent at homes has a negative impact on CO2 emissions, it implies that any policy
that will keep people in their homes for a longer period can help reduce CO2 emissions.
Thus, introducing a holiday at a global level that will restrict people to stay at their homes
to reduce CO2 might be a practical way to realize the effects of our findings.

Another intriguing result is that those activities not being restricted under the lock-
down policy in most countries such as going grocery shopping and visiting parks tended to
have a larger impact on the CO2 emissions compared to those that have been more or less
restricted under the policy such as visits to retail and recreational places when analyzed
regarding the daily change in the mobility. This implies that activities that will increase
human mobility can lead to an increase in CO2 emissions and have a higher contribution
to CO2 emissions compared to the case when people are kept at their homes.

5. Conclusions

This study evaluated how changes in human mobility during the first wave of COVID-
19 affected CO2 emissions by using this opportunity where data that captures changes in
human mobility under lockdown are available. For the US, India, and France, six Google
mobility indices were used to analyze the consequences of human movement restrictions
owing to the COVID-19 pandemic. In this regard, the ARDL unconstrained error correction
model was used to predict the short and long-run relationships between CO2 emissions
and human mobility indices. Both the short-run and long-run coefficients of the ARDL
model reveal that in all three countries, staying home during the COVID-19 first wave cuts
off impacts on CO2 emissions, while even necessary outings such as grocery shopping and
going to parks contributed to increased CO2 emissions.

Hence, our study finds that restricting peoples’ activities is good for the environment,
although such a policy is not realistic to be continued forever. However, it might be possible
to have a global policy such as keeping people in their homes for a certain period of a
year to control CO2 emissions. During the pandemic, many people must have realized
how many of the activities we have been performing before the pandemic are unnecessary.
Hence, a policy that at least reduces such unnecessary activities might help decrease CO2
emissions.

The COVID-19 has reduced human mobility across the world due to lockdown regula-
tions, but we have gained a changed world with a better atmosphere. There is no question
that once the world engine begins to run after COVID-19, emissions and waste will begin
to pile up, posing threats not just to human health but also to environmental sustainability.
However, we should learn from the pandemic that reducing human activities is one way to
reduce our impact on the environment.
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