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Abstract: The rapid growth of urbanization and population has aggravated the urban heat island
(UHI) effect in urban agglomerations. However, because scholars have so far focused mainly on
the magnitude of the UHI effect, there is still a lack of research on the quantitative evaluation of the
relationship between urban expansion and the degree of the UHI effect from the urban agglomeration
perspective. This paper analyzed the spatiotemporal characteristics and the interactive mechanism
of the surface urban heat island footprint (SUHI FP) in the Yangtze River Delta urban agglomeration
(YRDUA). The summer footprints (FPs) of 27 cities were extracted using a logistics model, and the
temporal trend was estimated by a standard deviation ellipse (SDE). Furthermore, the authors used
the classical machine-learning k-means algorithm to cluster the temperature attenuation curves to
reveal development patterns in different cities. The results showed that the degree of FP expansion
during the daytime was more apparent than at night, the area of urban growth positively correlated
with a city’s population level, and from 2005 to 2018 (the period of the study), the spatial evolution
for all cities showed an overall trend from east to west. These cities were divided roughly into three
development patterns by clustering their 2018 temperature attenuation curves. These findings can
provide a scientific basis for formulating effective land-use policies by giving a deeper understanding
of the spatiotemporal changes in the SUHI FPs and their relationship with land cover in the YRDUA.

Keywords: urban heat island; footprint; logistics model; machine learning; attenuation curve;
Yangtze River Delta urban agglomeration

1. Introduction

As urbanization accelerates, natural ground surfaces are made impervious by concrete
and asphalt [1], which results in less urban evapotranspiration, enhanced absorption, and
increased thermal radiation [2]. Under the combined influence of these factors, urban
temperatures are significantly higher than in the surrounding rural areas, a phenomenon
termed the “urban heat island” (UHI) effect [3], which brings with it many problems: deteri-
orating air quality [4], increased energy consumption [5], altered regional microclimates [6],
and biodiversity loss [7]. Moreover, the UHI effect brings a greater risk of morbidity and
mortality to the urban population [8]. It was first proposed in the 19th century and related
research has increased since the 1960s with the London studies, and now it is a topic that
has received attention in many fields [9–11].

Studies on UHIs are divided into two broad categories: atmospheric UHI (AUHI) and
surface UHI (SUHI) [12]. The AUHI describes urban–rural differences in air temperature,
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including canopy and boundary layer UHIs [13]. The canopy layer UHI is usually measured
using in situ sensors installed on fixed meteorological stations or vehicles [14,15]. The
boundary layer UHI is measured from rooftops to the atmosphere and is commonly used
to study the effect at a mesoscale (i.e., 1–10,000 km2) [16,17]. Nevertheless, the measured
AUHI usually fails to provide sufficient spatial details for urban planning and climate
change research due to the limitation of monitoring stations [18,19]. Research gaps in
canopy and boundary layer UHIs are filled in by SUHIs, which measure the land surface
temperature (LST) at the ground level [20]. Convenient access and continuous coverage of
urban areas have prompted the SUHI to become the main topic of research into the heat
island effect in recent decades [21,22].

Many types of indicators have been proposed to quantify the SUHI effect, of which
the surface urban heat island intensity (SUHII) and surface heat island footprint (SUHI FP)
are widely used indicators. SUHII is defined as the difference in LST between urban and
surrounding reference areas and is mainly used to describe the magnitude of the SUHI
effect [23,24]. Unlike SUHII, the SUHI FP quantitatively describes the area affected by
SUHI by defining the degree of temperature rise relative to the rural reference area on
a spatial scale [25–27]. Many scholars have used the FP to analyze the characteristics of
spatiotemporal changes and associated factors of large cities or multiple cities [28]. For
example, Anniballe revealed the seasonal variation of the FP in Milan by employing a
Gaussian surface [29]. Santamouris estimated the FP of Athens, Greece, caused by the UHI
phenomenon over the city [30]. Considering that the conclusions drawn from single-city
research might be limited by local conditions, a few studies have attempted to investigate
the FP of multiple cities. Tran concluded that there is a strong correlation between the
population size and FPs of eight selected Asian megacities [31]. Yang estimated the FPs of
302 cities in China from 2003 to 2016 and systematically analyzed the temporal trend and
the factors that affected it [32]. Though previous studies have greatly contributed to our
understanding of FP spatial patterns and temporal trends, the relationship between FPs
and city development has not been illustrated clearly.

In recent years, some scholars have discovered that urban agglomeration can cause
great changes to the thermal environment of a large area [33]. Urban agglomeration
is a large, multicore, multilevel grouping of metropolises having a number of centrally
distributed megacities and large cities [34]. The UHI effect here is no longer a local
phenomenon: the FP of a city in an urban agglomeration can overlap and interact with
others, leading to more serious environmental problems. Large-scale observations and
quantitative calculations on this have been conducted by remote sensing [34,35]; unfortu-
nately, scholars paid too much attention to the relationship of the UHI intensity to human
activity [36,37] and natural ecology [38]. They examined ecological indicators [39] and
urban form and structure [40–42], but ignored the mechanism of FP interaction within the
urban agglomeration.

The Yangtze River Delta urban agglomeration (YRDUA), one of the largest ones in
China, experienced a significant development boom in recent decades [43,44] which caused
a significant change to its FP. Therefore, spatiotemporal analysis and machine learning
were employed to mine the FP characteristics of cities with different UHI levels.

The main purpose of this research includes:

(1) To analyze the spatiotemporal changes and influences in the YRDUA FP from 2005
to 2018.

(2) To explore the developmental characteristics of the cities according to FP temperature
attenuation curves.

(3) To reveal the spatial overlay effect of the FP between the adjacent cities.

This research is designed to deepen our understanding of urban development and
the mechanism of SUHIs to alleviate environmental problems caused by rapid urban
development and provide a scientific foundation to formulate development planning
for other urban agglomerations. The rest of the article is organized as follows. The
methodology of the article, as well as the related data and its preprocessing, is introduced
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in Section 2. Then, the result and comparison analysis are illustrated in Section 3. The
discussion follows in Section 4. Lastly, the conclusions and future work are in Section 5.

2. Materials and Methods
2.1. Study Area

The YRDUA, located in the lower reaches of the Yangtze River (Figure 1), is one of the
most densely populated urbanized areas along China’s southeast coast [45]. In addition, it
has a pivotal strategic position in the overall pattern of China’s national modernization.
The outline for the integrated regional development of the Yangtze River Delta, jointly
issued in 2019 by the Communist Party of China Central Committee and the State Council,
stated that the YRDUA is composed of 1 megacity (Shanghai), 2 megalopolises (Nanjing,
Hangzhou), and 24 other cities covering an area of 225,000 km2 [46]. The UHI effect
in the YRDUA is aggravated by diverse land surfaces, a dense population, and a close
interconnection among urban areas that threatens the health of residents, changes the
regional thermal environment by raising the temperature in a continuous area, and thus
impacts the ecological environment [5,47].
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Figure 1. The location and administrative boundary of the YRDUA.

2.2. Data

As the moderate resolution imaging Spectroradiometer (MODIS) has a fine temporal
resolution [26], the 8-day time series of 1 km MODIS LST product (MOD11A2) was selected
as the temperature data source in this study. The MOD11A2 data were synthesized by the
MOD11A1 product, which stored the average value of the surface temperature/emissivity
under fine weather. The dataset over this period included daytime and nighttime surface
temperatures and related data quality control information. The authors gained MOD11A2
data for 2005, 2010, 2015, and 2018 from NASA (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 10 January 2021), and generated average summer daytime and nighttime LST
data from June to August of each year. The data were converted from Kelvin to Celsius
and used to calculate the SUHI FP of the YRDUA.

https://ladsweb.modaps.eosdis.nasa.gov/
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The land-use data for 2005, 2010, 2015, and 2018 were derived from the Resource
and Environment Data Cloud (RESDC) platform from the Chinese Academy of Science
(http://www.resdc.cn, accessed on 13 January 2021). The datasets included six primary
classifications [40] (farmland, forest, grassland, water, build-up land, and unused land)
with a spatial resolution of 30 m. We chose the land-use data to extract the gravity center of
the built-up areas, to eliminate the effect of water on SUHI FP calculations, and to analyze
the impact of different land types on the SUHI FP.

Digital elevation model (DEM) data with a spatial resolution of about 90 m were
obtained from the Geospatial Data Cloud (http://www.gscloud.cn, accessed on 11 January
2021) and employed to eliminate the effect of terrain on LST.

Population data were collected from the China Statistical Yearbook (http://www.
mohurd.gov.cn, accessed on 13 January 2021), issued by the National Bureau of Statistics,
and the statistical yearbooks of each city. All the data and their descriptions are shown
in Table 1.

Table 1. The data source list.

Data Resolution Year URL

MOD11A2 1 km 2005, 2010, 2015, and 2018 https://ladsweb.modaps.eosdis.nasa.gov/
Land-use data 30 m 2005, 2010, 2015, and 2018 http://www.resdc.cn

DEM 90 m \ http://www.gscloud.cn
Population data \ 2005, 2010, 2015, and 2018 http://www.mohurd.gov.cn

The development level of the YRDUA cities was quite varied due to geographical,
historical, and policy factors [32,40]. To determine the FP characteristics the 27 cities
were divided by population into three levels (Table 2): Level 1 (>1,000,000), Level 2
(500,000–1,000,000), and Level 3 (<500,000).

Table 2. City levels in the YRDUA.

City Level City Name

Level 1 Shanghai, Nanjing, Hangzhou, Suzhou, Hefei, Wuxi, Ningbo, Changzhou, Wenzhou,
Yancheng, Nantong, Wuhu, Yangzhou, Taizhou (ZJ)

Level 2 Shaoxing, Taizhou (JS), Zhenjiang, Jinhua, Anqing, Ma’anshan, Huzhou, Zhoushan, Jiaxing
Level 3 Tongling, Chuzhou, Chizhou, Xuancheng

Note: JS: Jiangsu Province; ZJ: Zhejiang Province.

2.3. Method

For this study, a systemic analysis of the FP in the YRDUA was conducted and
consisted of four parts (Figure 2): the FP calculation, spatiotemporal characteristics analysis
of the FP, clustering of temperature attenuation curves, and the determination of the
overlay effect.

Based on the derived data, the summer FPs of each city in four-slice epoch coverage of
2005, 2010, 2015, and 2018 were firstly calculated based on the temperature curve fitting and
logistical model. The heterogeneity and evolution about FP of 27 cities in YRD were then
shown via the attenuation curve graphs. The shape feature of the temperature attenuation
curve is used to cluster the TAC curve. Finally, the mutual influence phenomenon which
occurred in the adjacent cities due to the development of urban agglomeration to a certain
stage was introduced.

2.3.1. Calculation of the SUHI FP

The logistics model was used to calculate the boundary of the FP by setting the LST
threshold of the reference rural area in all directions [26]. It is more accurate than the single
exponential decay [28] and Gaussian surface models [48–50] because it minimizes the
effects of a city’s shape, topography, or landscape heterogeneity. It consists of four steps.

http://www.resdc.cn
http://www.gscloud.cn
http://www.mohurd.gov.cn
http://www.mohurd.gov.cn
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.resdc.cn
http://www.gscloud.cn
http://www.mohurd.gov.cn
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Figure 2. The framework of the study.

Step 1: The main urban land in the city is selected. To reduce deviation in the FP
calculation, temperature pixels in bodies of water and land outside the average eleva-
tion of ±50 m [32] are excluded. Rural background reference points for different direc-
tions are then assumed, and the city center is set as the origin of the polar coordinates.
The LST of each pixel in any direction and the reference rural LST can be expressed as
Tpixel(θ, r), Tre f (θ, r), where the r is the radius and θ denotes the radian measure of the
central angle.

Step 2: Multiple concentric rings of equal area are drawn from the urban center to the
surrounding rural areas with the initial radius set to 5 km. To ensure that each subsequent
ring has an equal area, the radius of each was 5

√
i km, where i is the number of concentric

rings. The average LST of each ring (TS(r)) can be calculated using Equation (1). The blue
dots in Figure 3 represent the average LST values for each concentric ring.

TS(r) =
1

2π

∫ 2π

0
Tpixel(θ, r)dθ (1)

Step 3: Using the logistics model, a curve is fitted on a graph with the x axis as the
number of concentric rings and the y axis as TS(r). The curvature (K) (red line) and its
rate of change (K′) (dotted black line) for each ring (Figure 3) can be calculated by the
following equations:

K =
dβ

ds
= − b2cz(1− z)(1 + z)3

((1 + z)4 + (bcz)2)
3/2 (2)

K′ = b3cz(
3z(1− z)(1 + z)3(2(1 + z)3 + b2c2z)

((1 + z)4 + (bcz)2)
5/2 − (1 + z)2(1 + 2z− 5z2)

((1 + z)4 + (bcz)2)
3/2 ) (3)
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where z = ea+br; a and b are the parameters of the logical curve to be fitted; the sum of c
and d is the highest average LST value among the concentric circles; d is the lowest average
temperature LST value among the concentric circles; β is the angle of the unit tangent
vector at the buffer ring r along the differentiable curve; s is the unit length of the curve.
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Step 4: The fitted LST value corresponding to the last minimum point of K′ is defined
as the reference rural LST value (Tre f (θ)) for the angle θ, and pixels with a value greater
than Tre f (θ) (green point in Figure 3) are classified into the SUHI FP. If the last minimum
point of K′ does not exist, the initial radius is reduced by 1 km intervals and Steps 2–4
are repeated.

2.3.2. Standard Deviational Ellipse (SDE)

SDE is a classic method in spatial statistical methods [49], which is widely used in
spatial distribution and evolution of geographic elements [31,50–52]. This experiment
used SDE to analyze the spatial distribution characteristics of the SUHI FP of the YRDUA,
including the area, center of gravity, and direction of the ellipse. The elements of SDE are
expressed as follows:

SDEx =

√
∑n

i=1 (xi − X)

n
(4)

SDEy =

√
∑n

i=1 (yi −Y)
n

(5)

tan α =
(∑n

i=1 xi
2 −∑n

i=1 yi
2) +

√
(∑n

i=1 xi
2 −∑n

i=1 yi
2)

2
+ 4(∑n

i=1 xi yi)
2

2 ∑n
i=1 xi yi

(6)

σx =
√

2

√
∑n

i=1 (xi cos α− yi sin α)2

n
(7)

σy =
√

2

√
∑n

i=1 (xi sin α− yi cos α)2

n
(8)
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where (SDEx, SDEy) are the centroid of the ellipse, (xi, yi) are the geographic coordinates
of the ith SUHI FP pixel, (X, Y) are the arithmetic mean center, and (xi, yi) are the difference
between the mean center and coordinates of XY. σx is the length of the long axis of the
ellipse, and σy is the short axis of the ellipse. The angle α represents the ellipse directional
orientation, indicating the clockwise rotation degree from north to the ellipse long axis.

2.3.3. Clustering of UHI Attenuation Curve

Clustering analysis, an important branch in the field of machine learning, is an unsu-
pervised learning method that can reveal the inherent properties and laws of data through
the learning of untagged training samples. This paper drew the temperature attenuation
curve within the circle of the FP using the k-means algorithm to explore the relationship
between temperature attenuation and the stage of urban development. The specific process
followed three steps:

Step 1: Each city’s temperature attenuation curve was plotted. After the smallest FP-
based circle was drawn, 30 equal-area rings were generated, and the average temperature
processed by a minimum–maximum normalization for each ring was extracted.

Step 2: The characteristic indexes of the attenuation curve were extracted. The variance
(Var), coefficient of variation (CV), and sum of adjacent points’ slopes (SAPS) were used to
estimate the volatility of different curves. Their formulas are as follows:

Var =
∑N

i=1 (xi − x1+x2+x3+···+xN
N )

2

N
(9)

CV =

√
∑N

i=1 (xi−
x1+x2+x3+···+xN

N )
2

N
x1+x2+x3+···+xN

N
(10)

SAPS = ∑N
i=2

∣∣∣∣ (xi − xi−1)

∆x

∣∣∣∣ (11)

where N refers to the length of the curve sequence (30 in this experiment); xi refers to
the average temperature corresponding to the ith circle in the sequence; ∆x refers to the
increment of two adjacent points on the x-axis.

Step 3: The FP attenuation curve was clustered using the k-means algorithm, which
uses Euclidean distance as a measure of similarity among data objects and to minimize
differences in the same cluster. K was set at 3 according to the level of a city’s population.

3. Result
3.1. The Results of SUHI FP

The logistics model was employed to fit the LST change curve of each city in summer
and calculated the Tre f (θ) to determine the FP (Figure 4). Figure 5 shows the results of the
FP of typical cities in the three levels. The FPs of Heifei, Jiaxing, and Xuancheng reached 7,
5, and 11 times the urban land area, respectively, and the proportions of paddy fields in the
FPs were 63, 56, and 48%, respectively. Furthermore, the Tre f (θ) determined by the main
urban land could not be used to calculate the FP of other urban land areas if the logistics
model was applied to a city that had multiple urban land centers.

Hence, the paper referred to previous studies [25,26,28,32] to use the FP of a main
urban land to represent the FP of an entire city and employed concentric rings to constrain
the FP to reduce the impact of bare land. Pixels having a value greater than the Tre f (θ)
were first classified as the FP, and then concentric rings with an average LST higher than
the Tre f (θ) were used to make constraints when calculating the FP. The final results of the
FPs of typical cities in the three city levels are shown in Figure 6.
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3.2. Spatiotemporal Changes of SUHI FP

The total area of the FP was proportional to the city level and generally showed an
upward trend that was higher during the daytime. Figure 7 illustrates the areas of different
city levels (day and night) from 2005 to 2018. During the daytime, the SUHI FP area of
both Level 1 and Level 3 cities increased gradually, but the growth rate of Level 1 cities was
relatively stable and had a small value. However, the growth rate of Level 3 cities increased
sharply from 2005 to 2010, but dropped to the same level as that of Level 1 cities from 2015
to 2018. In short, Level 1 cities showed steady expansion while Level 3 cities experienced
large-scale expansion from 2005 to 2010, but weak expansion in the following years until
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it leveled off. This phenomenon indicated that the strategy of promoting urbanization
changed from rapid development to high-quality development. The SUHI FP area of Level
2 cities first decreased and then increased, and the growth rate of this region turned from
negative to positive. During the nighttime, both the SUHI FP area and growth rate of Level
1 and Level 2 cities continued to rise. Level 3 cities first had experienced an upward trend
and then a decline; meanwhile, the growth rate of this region continued to fall.

Moreover, the area of the YRDUA FP showed an overall spatial expansion trend from
east to west during both daytime and nighttime, as shown in Figure 8 and Table 3. In
the daytime, the center of gravity of the FPs first moved to the northwest and then to the
southeast, but the overall direction of movement was northwest. From 2010 to 2015, the
movement was the most obvious: 23,257.1 m northwest from Suzhou to Huzhou. In the
nighttime, the gravity center of the FP first moved southwest, then turned northeast, and
finally northwest. Although the moving directions were different for the three times, it
moved southwest overall. The most obvious period for movement was from 2005 to 2010,
with a maximum movement of 49,089.05 m.
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There was a large difference between the length of the major axis and the minor axis
of the ellipse, which proved that the FP distribution was directional. From 2005 to 2018, the
length of the major axis in the daytime increased, which indicated that the FP expanded
in the northeast–southwest (major axis) direction, whereas the FP contracted in the major
axis direction at nighttime because the length of the major axis decreased. In the daytime,
the area of the SDE increased by 46,076.29 km2, with a growth rate of 10.723%. At night,
the SDE increased by 19,166.97 km2, with a growth rate of 3.762%, indicating that the
expansion of the FP was more obvious in the daytime.

3.3. The Correlation between SUHI FP and Urban Development

To discover the correlation between the FP and urban development, the k-means
algorithm was used to cluster the temperature attenuation curves. All the 2018 curves were
of three types: high volatility, medium volatility, and low volatility, as shown in Figure 9.
According to their shape characteristics, the patterns of urban development for the 27 cities
were obtained. Cities with low-volatility curves showed that urban construction had
certain advantages and presented balanced development in all directions. High-volatility
curves presented the obvious directional differences in the urban development pattern.
The main reason was that these cities were mostly undergoing rapid development and
intensified human production, as a result of which living activities in local areas aggravated
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the spatial imbalance in the construction of the built-up area. Moreover, some cities had
moderate curve fluctuations because urban development was not as advanced. Therefore,
the influence of SUHI on these cities was not particularly strong.
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Table 3. Parameters of standard deviation ellipse.

Time Year

Standard
Deviation

Ellipse
Range (km2)

Major Axis
(m)

Minor Axis
(m)

Center of Gravity
Coordinates

Center of
Gravity
Moving

Distance (m)

Direction of
Movement

Day

2005 429,703.01 429,346.17 318,592.84 (120◦07′ E, 31◦01′ N)
2010 485,163.19 469,885.70 328,679.17 (120◦06′ E, 31◦05′ N) 10,044.24 northwest
2015 482,801.36 490,496.55 313,337.07 (119◦53′ E, 31◦07′ N) 23,257.10 northwest
2018 475,779.29 477,480.21 317,196.35 (120◦02′ E, 31◦05′ N) 16,559.18 southeast

Night

2005 509,465.55 3,650,919.71 461,815.62 (120◦03′ E, 31◦16′ N)
2010 563,916.79 515,661.74 348,118.94 (119◦56′ E, 30◦54′ N) 49,089.05 southwest
2015 540,783.54 502,414.05 342,640.69 (120◦00′ E, 30◦55′ N) 8815.38 northeast
2018 528,632.51 510,257.64 32,9794.37 (119◦59′ E, 31◦07′ N) 24,417.73 northwest

It can be seen from Table 4 that the clustering results of the temperature attenuation
curves corresponded strongly with population size, indicating that the shapes of the curves
had great reference significance for urban patterns. However, the matching results of a
few cities, such as Shanghai, were different because they were affected by spatial location,
which resulted in abnormal curves. The experimental results show that the shape of the
temperature attenuation curve can reflect the development stage of the urban heat island
to a certain extent. So we suppose that this curve can be considered as a “fingerprint” for
the development stage identification of the urban heat island. However, there are still some
outlier cities, which shows that this work still has a lot of room for improvement, including
the method selection of clustering, the elimination of the urban shape affection, calculation
of the standard curve, et al.

3.4. Overlay Effect of SUHI FP

The continuous expansion of the city led to the narrowing of the gap between cities
and even the connection among adjacent urban areas, resulting in an FP several times
the area of the city [25]. In theory, when one urban area of a city is close to urban areas
of other cities, there is an overlay or connection of FPs. To verify this phenomenon, the
authors drew a straight line between the gaps in the urban areas of Wuxi and Changzhou
during the summer daytime LST in 2018 and constructed an LST curve on it (Figure 10a).
In general, the LST in the adjacent suburbs should have been lower and more stable than
that of the urban land areas. However, the LST curve between the urban land areas in
Wuxi and Changzhou showed that the LST between them (red line in Figure 10b) was
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higher compared with the temperature at the start and end points. Moreover, the LST
curve which passes through the urban land areas of Changzhou and Wuxi illustrated
that the temperature in the middle of the two urban land areas (red line in Figure 10d)
was significantly higher than the temperature at both ends of the section line (green line
in Figure 10d). Noticeably, the ends of the section line were in the non-urban land area
and were not affected by the urban land areas of other cities. Obviously, the cause of this
phenomenon is the overlay of the Wuxi and Changzhou FPs.
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Table 4. Population size and development status of different cities. For population, 1, 2, and 3 represent large cities, medium
cities, and small cities, respectively. In the clustering category, 1, 2, and 3 represent a low-volatility curve, high-volatility
curve, and medium-volatility curve, respectively.

City Population Size
Category

Clustering
Category City Population Size

Category
Clustering
Category

Changzhou 1 1 Anqing 2 3
Hangzhou 1 3 Huzhou 2 2

Hefei 1 1 Jiaxing 2 3
Nanjing 1 1 Jinhua 2 1
Nantong 1 1 Ma’anshan 2 1
Ningbo 1 1 Shaoxing 2 2

Shanghai 1 3 Taizhou (JS) 2 3
Suzhou 1 1 Zhenjiang 2 2

Taizhou (ZJ) 1 1 Zhoushan 2 2
Wenzhou 1 2 Chizhou 3 3

Wuxi 1 3 Chuzhou 3 2
Wuhu 1 3 Tongling 3 3

Yancheng 1 1 Xuancheng 3 3
Yangzhou 1 1
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line in picture (c). The section line in picture (a) was drawn between the gap in the urban land of Wuxi and Changzhou, and
the section line in picture (c) passed through the urban land areas of Wuxi and Changzhou. The red line of the LST curve in
picture (b) represents the LST rise caused by the superposition effect of SUHI FP. The red and green lines on the LST curve
correspond to the temperature of the red and green lines on the section line, respectively.

As the overlay of FPs is inevitable, the effect intensifies the impact on the suburbs
around urban agglomerations, and even causes the LST to rise in large contiguous areas,
leading to more serious environmental problems. Therefore, the overlay effect of the FP
should not be ignored.

4. Discussion
4.1. Relationship between SUHI FP and Land Use

The conversion of different land-use types seriously affects the LST model and the
scale of the UHI effect [53,54]. The proportion of six land-use types within the FP at
different city levels is shown in Table 5. The built-up area and farmland are the main
components of the SUHI FP in all three city levels. For example, the largest proportion of
built-up land in Level 2 cities is 60.20%, while the corresponding proportion of farmland
is 22.30%. In addition, the former showed an increasing year-on-year trend while the
latter showed a decline. From 2005 to 2018, the proportion of farmland fell from 51.68
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to 37.59%, while the proportion of built-up areas rose from 40.67 to 55.48%. Although
the proportion of built-up area in the other two levels was no more than 50%, urban
land had clearly replaced farmland as the most important land-use type in the SUHI FP.
The phenomenon indicated that no matter the level of the city, it still underwent obvious
urbanization, including outward expansion and densification. Moreover, Level 1 cities
reached the largest proportion of built-up land, while the proportion of farmland, forest,
and grassland was higher in Level 2 and Level 3 cities, thus showing that urbanization in
these cities was incomplete. These findings can be important for assessing the degree of
urbanization in cities of different levels.

Table 5. The proportion of SUHI FP to land use type area of Level 1, Level 2, and Level 3 cities (%).

Level Type
Daytime Nighttime

2005 2010 2015 2018 2005 2010 2015 2018

Level 1

Farmland 51.676 42.715 39.884 37.592 53.413 39.689 37.148 35.025
Forest 4.547 5.386 3.589 3.66 4.985 4.662 3.971 3.75

Grassland 0.146 0.142 0.124 0.359 0.306 0.222 0.152 0.719
Water 2.946 3.355 2.096 2.85 4.395 4.031 2.726 4.398

Built-up land 40.669 48.22 54.266 55.482 36.873 51.192 55.98 55.803
Unused lands 0.018 0.095 0.041 0.058 0.028 0.076 0.021 0.304

Level 2

Farmland 60.199 50.941 47.785 47.067 49.941 44.412 46.536 45.358
Forest 7.425 10.879 7.323 4.931 6.981 5.913 6.478 3.675

Grassland 1.862 1.181 1.338 0.967 2.901 3.1 2.308 2.325
Water 5.879 6.358 3.789 4.222 10.062 11.487 6.319 9.896

Built-up land 22.99 30.632 39.724 42.761 30.11 35.083 38.318 38.689
Unused lands 0.005 0.009 0.043 0.053 0 0.004 0.039 0.059

Level 3

Farmland 56.036 52.058 47.783 53.314 49.948 45.746 46.536 45.358
Forest 9.136 9.36 12.801 8.167 9.821 8.46 12.729 8.439

Grassland 5.342 5.487 5.892 5.434 5.213 5.597 4.28 4.584
Water 7.692 5.829 2.609 4.17 8.869 7.51 5.94 8.017

Built-up land 21.795 27.177 31.870 28.375 17.927 28.473 26.716 32.44
Unused lands 0 0.089 0.044 0.539 0 0.012 0.046 0.773

4.2. Limitations

Several limitations are discussed in this section. First, this study only extracted and
analyzed the SUHI FPs of the main metropolises within the urban administrative area. This
made each city have only one center, so the area SUHI FPs calculated in this study were
actually underestimated. The solution to this problem requires finer LST data support.
Second, the authors concluded that the paddy field was the second-most common land
type when discussing the relationship between land-use type and FP; however, because
land-use data were recorded only in summer from year to year, the question of whether
paddy fields turned to bare land due to seasonal change was not considered and that may
have led to the overestimation of the proportion of paddy fields. Finally, although this
paper used buffer rings to eliminate as many large areas of bare land as possible, the results
still found a considerable proportion of bare land in the SUHI FPs. Due to the extremely
significant effect of bare land on the LST, the quantitative calculation of a SUHI FP can
be affected to a certain extent. In the future, higher resolution LST and land-use data
should be employed to explore the impact of seasonal changes on land-use types when
extracting FPs.

5. Conclusions

This study systematically analyzed the spatiotemporal changes of the FP in the YR-
DUA from 2005 to 2018. On this basis, the authors discussed not only the matching
relationship between the attenuation curves of FPs and urban development patterns but
also the overlay effect of the FP between adjacent cities. The FP was calculated using a
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logistical model, and the temporal changes were estimated by the SDE model. The relation-
ship between the FP and urban development was obtained by clustering the temperature
attenuation curves using the k-means method. The study resulted in three conclusions.
First, the growth area of the FPs positively correlated with the city levels over time, but the
expansion rate was more noticeable during the daytime. On a spatial scale, the evolution
of the FPs in the YRDUA showed an overall trend from east to west. Second, three develop-
ment patterns in the 27 cities were obtained by clustering the FP temperature attenuation
curves. These coincided with the size classifications of the urban populations, indicating
that the curve shape could become important for interpreting urban development patterns.
Third, the LST curve between Wuxi and Changzhou proved that the superposition effect of
SUHI FP can lead to an increase in LST at the fringe of the city when the urban areas of two
cities are connected or adjacent. In general, compared with the traditional classification of
cities by population size, the classification from a SUHI temperature curve is more scientific
and targeted. Nowadays, FPs are continuously expanding, and the resulting aggregation
and overlay is causing a series of environmental problems.

This research can help move the YRDUA into a period of high-quality development.
The results not only help to provide a scientific foundation for an effective response to urban
high temperature risks, but also provide suggestions for thermal environment research in
other urban agglomerations.
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Abbreviations
UHI Urban heat island
SUHI Surface urban heat island
SUHI FP Surface urban heat island footprint
YRDUA Yangtze River Delta urban agglomeration
SED Standard deviation ellipse
LST Land surface temperature
AUHI Atmospheric urban heat island
SUHII Surface urban heat island intensity
RESDC Resource and Environment Data Cloud
Var Variance
CV Coefficient of variation
SSAP Sum of slopes of adjacent points
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