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Abstract: Deep horizontal high stress and high permeability geological factors appear when coal
mines are converted to deep horizontal mining. When the roadway is damaged by the mining face,
and the supporting components are mismatched, the deep roadways necessitate extensive repair
work, which has a negative impact on the coal mining economy and sustainability. This paper carried
out a series of field tests on the roadways deformation, crack distribution, and loose rock zone of
the deep roadways. Furthermore, a numerical calculation model was established using the discrete
element method (DEM) and calibrated with laboratory tests and RQD methods. Both the stress
and crack distribution in the surrounding rock of the deep roadway were simulated. The field test
and the corrected numerical model showed consistency. A FISH function was used to document
the propagation of shear and tensile cracks around the roadway in three periods, and a damage
parameter was adopted to evaluate the failure mechanism of the deep roadways under the dynamic
stress disturbance. The matching of specifications of anchor cables, rock bolts, and anchoring agent
is the primary point in the control of deep roadways, and revealing the stress evolution, crack
propagation, and damage distribution caused by mining effects is another key point in deep roadway
controlling. The field test and DEM in this paper provide a reference for the design of surrounding
rock control of deep roadways and the sustainable development of coal mines.

Keywords: deep mine; main roadway; deformation and failure characteristics; crack and damage
analysis; filed and numerical simulation study

1. Introduction

With the progressive increase in the intensity of coal resources, shallow coal resources
are becoming rare, and most of the mines are mined in deep areas in order to improve the
sustainability of the coal industry [1–5]. The surrounding rock is shattered and loose, with
extensive damage and cracked joints, as a result of numerous variables such as geo-stress,
dynamic pressure, and geological structure [6]. Fractured roadway excavation, the com-
plicated stress environment with asymmetrical distribution, and an evident increase in
in-situ ground stress would produce strength deterioration and secondary stress concen-
tration distribution on the surrounding rock [7]. Deep roadways are plagued by a variety
of issues, such as asymmetrically high ground stress and various lithologies, making it
difficult to pinpoint the sources of structural instability and adopt effective management
techniques [8–10]. Figure 1 depicts geological data from asymmetrical structural fractures
along roadways, including sandstone and mudstone [11].
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Figure 1. The in-site deformation photograph of deep roadways [11].

Scholars conducted extensive research on the deformation and failure mechanisms of
soft rock roadways, as well as proposed and built roadway support technologies [3,5,6,12].
Yu et al. [2] systematically studied the stability of deep-buried rocks through field investiga-
tion, laboratory analysis, theoretical derivation, and engineering applications. He et al. [3]
proposed that core scientific issues arising in deep underground projects are encountered
with the conditions of “three-high and one-disturbance”, i.e., high in-situ stress, high tem-
perature, high seepage pressure, and a strong mining disturbance, which form a complex
geomechanical environment for deep engineering. Li et al. [5] carried out a large-scale
geomechanical model test to explore the surrounding rock deformation and failure mecha-
nisms of such deep roadways. Yang et al. [12] showed that shallow rock has a significant
scale of tensile failure, which causes swelling and fracture surrounding the roadway. Sig-
nificant floor heaving, side shrinkage, and roof sinking occur as a result of the primary
support being weak and when there is no support on the floor. To support the ventilation
roadway, a novel “bolt-cable-mesh-shotcrete + shell” combination support is suggested.
Wang et al. [13] demonstrated that roadway deformation is extensive with a wide damage
range. The anchor bolts are frequently found in the severely fractured surrounding rock,
the support potential is not utilized, the arch’s support strength is insufficient, and the
post-bearing capacity is low; all of these mainly lead to the failure of the roadway bearing
capacity and a concept of “high-strength, integrity, and pressure-relief” is proposed. Com-
mon supporting methods for shallow roadways are unlikely to extend to deep geological
settings; thus, Kang et al. [14] are looking at developing a new type of combined supporting
system for weak floors in difficult geological environments. Li et al. [15] provided a case
study of the deformation failure mechanism and support technology for a deep roadway
with soft rock mass and evaluates the modes, influencing factors, laws, and processes of
deformation failure in the roadway based on comprehensive field research and numerical
model analysis. Zhao et al. [16] presented a technique that involves analyzing the failure
features of roadways, as well as the microscopic fracture properties of the surrounding
rock, using a digital drilling televiewer and three-dimensional laser scanning devices.
Zuo et al. [17] systematically investigated the Macro/Meso dynamic behavior of deep rock
or coal–rock combined institutions under various loading conditions and developed a
coupled grouting control technology for the surrounding rock, standard strength assistance
in the deep roadway, and the corresponding velocity vector movement model of overlying
strata. Shi [18] proposed a systematic model of deformable block systems that represents
an important solution for large displacement, large deformation, and failure computational
methods, assuming that the forces acting on each block, whether from applied load or
interaction with other blocks, assuage the equilibrium conditions. Chen et al. [19] used
insight into mechanics to evaluate the fracture and develop principles of floor mining
fractures to reveal the coupling relationship between certain mining-induced fractures and
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theoretical stress and hydraulic pressure, and defined a model of fracture progression and
connection structure for the deep floor discoloration based on a self-developed simulation
test, especially for high floor water transients.

The DEM represents rock masses as a collection of blocks that can be stiff or de-
formable, and an explicit solution technique is used [20]. The blocks are permitted to
behave as if they were continuum media, and the block and joint interactions are rep-
resented using Newton’s equations of motion. Unlike the finite difference method, this
avoids the requirement for a huge stiffness matrix. Fairhurst et al. [21] understood the
advantages of the distinct element method for modeling non-continuous rock masses by
comparative analysis of an excavation in a jointed rock mass developed by a finite differ-
ence method and a universal distinct element code model. Bai et al. [22] utilized the discrete
element method to simulate the failure of a laminated roof, focusing on the formation
and stabilization of micro cracks and macroscopic cracks, including the growth of control
mechanism stress and deformation in the laminated roof. Hamdi et al. [23] utilized a mixed
finite-discrete element method to model the entire 3D cracking procedure during tradi-
tional laboratory testing, including Brazilian tension and uniaxial compression strength.
Srisharan et al. [24] presented stability studies on two tunnels, a horseshoe-shaped and an
inverted arch-shaped tunnel, in a deep coal mine in China using the DEM simulation model.
The calibrated models were analyzed for different supported and unsupported cases to
estimate the significance and adequacy of the current supports being used in the mine and
to suggest possible optimization. Zang et al. [8] presented a case study on the deformation
failure behavior and support design of a deep roadway in the Tangyang mine by field tests
and DEM simulations. Finally, a DEM simulation and a field experiment were conducted
to evaluate the rationality of the proposed support scheme, and the results showed that
the new support method could effectively control the surrounding rock. In a study by
Li et al. [25], DEM was carried out to further explore the deformation failure characteristics
and factors influencing deep roadways with different engineering geological conditions.

Dongpang Mine (shown in Figure 2a) in Xingtai City, Hebei Province, is currently
mining at a level of +480. The #2 coal seam has a ground burial depth of approximately
580 m. The coal and rock masses are impacted by high ground stress, high ground
temperatures, and high permeability after deep mining. The mine track roadway in the
11 mining area (TR-11MA) was severely distorted throughout the service era and has
undergone numerous repairs, but the control effect is not discernible. A large amount of
the previous literature on the mechanism of deformation and failure of deep roadways and
the research methods of control technology mainly focuses on in-site testing, theoretical
models, and numerical simulations [1,19,26]. However, few studies have focused on
matching support strength and support structure (rock bolts and anchor cables axial
force, length of anchorage agent, bolt pre-stress, and thickness of pallets). Furthermore,
few systematic investigations on the failure characteristics of the surrounding rock have
been conducted (thickness of the loose rock zone and fracture distribution characteristics
of the surrounding rock), which is the motivation of this paper. Combining the above-
mentioned site’s geological conditions, the method of field and numerical simulation is
used to systematically study the failure characteristics of deep high-stress, analyze the
stress field, crack field, and damage change characteristics of the deep high-stress main
roadways affected by mining disturbances. Finally, corresponding control technologies
were proposed for the repair and extension section of the main roadways, which reduces
roadways repair times, improves the sustainability of development, and serves as a model
for deformation control of similar deep high-stress roadways.
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Figure 2. Geological Conditions of Dongpang Coal Mine. (a) Study site location; (b) Panel map and main road layout of
the 11 # mining area at Dongpang coal mine; (c) Columnar diagram of rock layers, including rock types, sequence, and
buried depth.

Therefore, the main objectives of this paper are:

- Geological conditions and field study on the deformation and failure characteristics
of the deep high-stress main roadways;

- Numerical simulation study on deformation and failure mechanism of deep
main roadways;
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- To develop a basic control strategy of the reinforcement and repair technology of the
deep main roadway in the Dongpang coal mine.

2. Geological Conditions of the Deep High-Stress Main Roadways
2.1. Geological Conditions of the Main Roadways

The main mining area of Dongpang Mine is the 11 mining area (11MA). This mining
area is a two-wing arrangement. There are three main roadways in the 11MA. The TR-
11MA is laid out in the seam floor rock layer. The main return air roadway of the 11MA
(RR-11MA) and the main belt transportation roadway of the 11MA (BR-11MA) run along
the coal seam’s roof. The horizontal offset between the three main roadways is 25 m. The
cross-section dimensions of the three main roadways are 5.2 m and 4.2 m in width and
4.2 m, respectively. Full-height mining at one time is used on the working faces of the11MA.
The eastern wing working panels that have been mined are P21113, P21111, and P21107,
and the western wing working panels that have been mined are P21114, P21112 and P21110
(shown in Figure 2b). The above-mentioned mining panel stop line is 40 m from the main
roadways. P21105 in the east wing is the mining working panel. As shown in Figure 2c,
the immediate roof of 11MA is siltstone, while the main roof is fine sandstone. The upper
rock layers are siltstone, medium sandstone, and siltstone, in sequence. The immediate
floor is fine sandstone, the main floor is siltstone, and the lower rock layers are medium
sandstone, fine sandstone, and medium sandstone, in sequence.

Most areas of the TR-11MA showed the phenomenon of two ribs approaching, the
roof sinking, the bottom pallet bulging, and accompanied by the failure of the supporting
structures in some regions, such as the breakage of the anchor rod and the cable, the pallet
being bent, and so on, from the excavation period of the TR-11MA for the above-mentioned
mining process.

2.2. Field Study on Deformation and Failure Characteristics of the TR-11MA
2.2.1. Support Conditions of the TR-11MA

The TR-11MA is supported by the combined support of rock bolt and anchor cable,
as shown in Figure 3. The detailed support parameters are the following: In terms of
rock bolt support, the specification is a round steel bolt with a diameter of 20 mm and
a length of 2200 mm. The rod and row spacing of the rock bolt is 900 mm and 900 mm,
respectively. The pre-tightening force and the anchoring of the rock bolt are 150 Nm and
80 kN, respectively. The anchoring agent is 60 cm in length, and the size of the rock bolt
pallet is 130 mm × 130 mm × 10 mm. In terms of anchor cable support, a steel-stranded
anchor cable with a diameter of 17.8 mm and a length of 6300 mm was adopted. The anchor
cable spacing is 2250 mm/1800 mm, the roof anchor cable row distance is 900 mm, and the
“313” supporting form is adopted. The two ribs anchor cable row distance is 1800 mm, the
anchor cable design anchoring force is 200 kN, and the anchoring agent is 180 cm in length.

The TR-11MA deformation and failure process can be defined as three periods: Period
1—the main roadways excavation. Period 2—the east panels retreat; the initial stress
conditions are various, changing significantly in this period. Period 3—the west panels
retreat; the stress has a more complicated distribution. In a word, the stress environment
of the TR-11MA is quite different in the three periods. In order to obtain insight into the
deformation and failure of TR-11MA in the above three periods, two aspects of monitoring
strategies were applied in the roadway. In-site monitoring equipment, methods, monitoring
steps, and monitoring results are listed as follow:
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Figure 3. Main section diagram of rock bolt and anchor cable support parameters for TR-11MA.

2.2.2. Deformation of the TR-11MA at the Three Periods

Deformation measuring station layout: ten deformation monitoring stations were
arranged during the process of TR-11MA excavation. The distance between the stations was
50 m, and each station had four permanent points fixed on the roof, floor, and side walls of
the TR-11MA, respectively. (The eastern rib and western rib are terms used to distinguish
the asymmetric deformation characteristics of the left and right ribs in three periods.).

Monitoring and measurement method: the cross method was used to measure the
deformation of the roof, floor, and side walls (eastern and western) at the stations. A
portable telescopic rod and measuring lines were used to measure the roof and the floor
deformation. Both the western rib and the eastern rib deformation were measured using
flexible tape and measuring lines. Measurement frequency: Period 1 was monitored
once a day at the beginning of the excavation of the TR-11MA and once a week after
the deformation was stable. Periods 2 and 3 are the most severely impacted by mining
disturbances. Observations were performed once a day, and the dynamic horizontal
distance between the eastern or western rib working face and the TR-11MA was recorded.

Figure 4 shows the deformation of the TR-11MA in the three periods. The eastern
and western ribs of the roadway have relatively large deformations after the roadway is
excavated (defined as period 1). The deformations of the eastern rib, western ribs, roof,
and floor are 333 mm, 324 mm, 285 mm, and 164 mm, respectively. During the mining of
the eastern panels (defined as period 2), the deformation of the roof and the two ribs of the
roadway increased significantly. The deformation of the eastern rib, western rib, roof, and
the floor increased by 50 mm, 74 mm, 75 mm, and 40 mm, respectively. The deformation
of the TR-11MA is shown by the asymmetry of the western and eastern ribs. During the
mining of the western panels (defined as period 3), the deformation of the TR-11MA was
not obvious. The deformation of the eastern rib, western rib, roof, and the floor increased
by 20 mm, 20 mm, 15 mm, and 15 mm, respectively. Therefore, after the excavation of the
main roadway in the 11th mining area was completed, the stress disturbance caused by
the excavation of the BR-11MA and RR-11MA is also one of the reasons for the increase
in the amount of deformation during the roadway excavation. The mining of the eastern
panels caused the stress environment of the TR-11MA to change, which is the main reason
for the deformation of the TR-11MA. In addition, western panel mining has little effect on
the TR-11MA stress environment distribution and surrounding rock deformation.
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Figure 4. Deformation of the TR-11MA in the three periods.

2.2.3. Damage and Cracks of the Surrounding Rock

(i) Borehole camera exploration

In order to more reliably understand the deformation and fragmentation of the sur-
rounding rock in the deep part of the roadway, in-situ tests were carried out on the roof and
rib of the TR-11MA with a borehole spying instrument, mainly to detect the lithological
characteristics of the surrounding rock and the characteristics of the development of cracks.

The TS-C1201 drilling multi-function imaging analyzer (as shown in Figure 5) mainly
includes main components such as the main unit, probe, depth-sounding pulley, and so on.
The depth detection pulley is used to record the depth of the probe in the borehole; there is
no nickel-metal hydride battery pack in the passive probe, and the power supply is supplied
by the host. The probe has a built-in LED white light-emitting diode (with a brightness
adjustment circuit) and a camera to capture the whole wall image. The video signal, control
signal, and digital compass signal in the probe are transmitted to the host through the cable.
The host receives the probe signal, and the depth pulse signal of the depth-sounding pulley
calculates the depth position of the probe and performs image recording and matching
splicing on the video signal. Video and image matching and splicing can be carried out
simultaneously. As the probe continues to move into the hole, the entire hole wall is
automatically matched and spliced into a complete flat unfolded picture.

Figure 5. TS-C1201 borehole multi-function imaging analyzer.

Sketches of borehole surveys at different locations are shown in Figure 6. In the
shallow region of the rib walls of boreholes, there are additional crossing cracks within the
range of 0~2 m in the stable region of TR-11MA excavation deformation (period 1). At the
same time, there are several separate horizontal and longitudinal fractures in the 2~4 m
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range. The roof drilling findings reveal that the cracks interpenetrate at a depth of 0~2 m,
with a few transverse cracks and minor fractures at a depth of 2~5 m. Cracks and fractures
occurred in the shallow 0~2 m of the rib walls of boreholes at the time when mining in the
eastern panels was seriously affected (period 2), and intersecting cracks appeared in the
range of 2~4 m. In the eastern rib area, the crack growth degree includes both horizontal
and vertical cracks. It is a lot more serious than in the western ribs regions. Broken and
penetrating cracks may be seen in the range of 0~3 m on the roof, broken regions and
water-conducting cracks in the range of 3~5 m, and minor transverse and vertical cracks in
the range of 5~8 m. The two ribs of the drilling crack drawings indicated a small increase
in crack propagation during the time when the TR-11MA was badly damaged by western
panel mining (period 3), although the gain was not apparent.

(ii) Thickness range of surrounding loose rock zone

The ZBL-U510 ultrasonic detector is used to test the loose zone of the rock mass.
By testing the acoustic parameters of the broken rock mass, the mechanical properties of
the broken rock mass can be analyzed, and the plastic failure of the surrounding rock of
the roadway can be judged. The loose zone test adopts a two-hole test sensor with one
transmitter and one receiver, and the distance between the transmitter and the receiver is
0.4~0.5 m. After the test hole is drilled, the test should be carried out in time. Before the
test, the test hole should be flushed with pressure water, and the coal and rock powder in
the test hole should be washed out. The ZBL-U510 ultrasonic testing instrument is used
in the acoustic method. Through the acoustic parameters tests of broken rock mass, the
failure situation of surrounding rock is analyzed [27].

Three test sections are selected for the loose rock zone test, and a total of three test
stations are arranged, among which are located on the two ribs and roof of TR-11MA. The
first detection station is in the stable deformation area of TR-11MA. The second and third
detection stations were in the most severely deformed regions of the TR-11MA during the
period of the eastern and western panel mining, respectively. Each measuring point was
drilled at the two waistline positions of the TR-11MA. The borehole direction was required
to be perpendicular to the TR-11MA. The drill bit had a 42 mm diameter and a hole depth
of 6 m.

Figure 7 shows the thickness range results of the surrounding loose rock zone. Ac-
cording to the previous field test results, the loose rock zone selected the eastern rib as the
test object. Station 1 is the result of the loose rock zone of the eastern ribs during excavation
(period 1). The thickness of the loose rock zone has a range of 1.7 m~2.6 m; Station 2 is
the loose rock zone during the eastern panel mining (period 2). As a result of the circle,
the range of the thickness of the loose rock zone is between 2.5 m and 4.2 m; Station 3 is
the result of the thickness of the loose rock zone during the stopping period of the panel
in the western area (period 3), and the range of the loose rock zone is between 3.0 m and
4.5 m, It can be seen that during the mining process of the working face in the eastern
area, the thickness of the loose rock zone of the eastern area increased significantly, and
the surrounding rock fragmentation was severely damaged, which may be caused by the
unreasonable support parameters of rock bolts and anchor cable [28,29].
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Figure 6. Cont.
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Figure 6. A clear view of the TR-11MA drilling results at three time periods. (a) Period 1; (b) Period 2;
(c) Period 3.

Figure 7. Thickness range of surrounding loose rock zone.

2.3. Matching Test of Existing Support Structure in TR-11MA

Test purposes: (i) Study the mutual matching mechanism of the rock bolt body, an-
choring agent, nut, and pallet; (ii) The overall inspection of the rock bolt and its supporting
components so as to determine the weak link of the bolt system.

Test method and procedure: (1) Use the M-II anchor rod installation device to anchor
the anchor rod and the special steel pipe with an inner diameter of 32 mm or 28 mm with an
anchoring agent; (2) Turn on the LW-1000 horizontal tensile testing machine; (3) Enter the
sample information; (4) Install the sample, as shown in Figure 8; (5) Start the test; (6) End
the test and save the data.
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Figure 8. Pull-out test on the rock bolt performance test platform [30].

Figure 9 shows the breaking mechanical characteristic curves of different types of
anchor cables. It can be seen in Figure 9 as the following:

(1) The force process of the anchor cable is shown as a smooth curve rise. After rising to a
certain height, the force remains unchanged, and the anchor cable continues to deform.
When the deformation reaches a certain value, the steel strand gradually breaks, and
the force drops sharply. The breaking load of the Φ 17.8 mm anchor cable is about
370 kN; when the deformation of the Φ 21.8 mm anchor cable reaches a certain value,
the steel strand gradually breaks, and the unbroken steel strand continues to bear
greater tensile force, and then is broken. After the wire is completely broken, the force
of the anchor cable drops sharply. The breaking load of the Φ 21.6 mm anchor cable is
about 530 kN;

(2) The force of the rock bolt first rises linearly, then slowly rises, gradually reaches
its yield strength, and finally breaks, and the force drops sharply. The breaking
load of the Φ 20 × 2200 mm rebar rock bolt is 125 kN, and the breaking load of the
Φ 22 × 2200 mm rebar rock bolt is about 200 kN.

Figure 10 shows the relationship between the length of the anchoring agent and the
change of anchoring force. When the length of the anchoring agent is 40 cm, the peak value
of the anchoring force is only about 85 kN, which is much smaller than the breaking load of
ordinary rebar bolts and does not provide a good anchoring effect, and the anchoring force
decays quickly over time, reaching the peak value when the anchor is quickly released.
When the length of the anchoring agent is 60 cm, the anchoring force reaches about 140 kN
after the anchor enters the yield stage, and the anchoring force can maintain the anchoring
force for a period of time before reaching its peak strength of 170 kN, indicating that the
anchoring effect is relatively good, however after reaching the peak value, the anchoring
force quickly drops to 0 kN. When the length of the anchoring agent is 80 cm, the peak
value of the anchoring force is close to 200 kN, which is higher than the breaking load of
different threaded steel bolts and is equivalent to the axial force of Φ 22 mm threaded steel
rock bolt, and the anchoring force decays very slowly over time, staying above 180 kN for
a long time. Thus, the anchoring effect is better.
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Figure 9. The breaking mechanical characteristic curves. (a) Φ 18.9 mm anchor cable and Φ 21.6 mm anchor cable.
(b) Φ 20 mm round steel rock bolt and Φ 22 mm rebar rock bolt.

Figure 10. The relationship between anchoring agent length and anchoring force.

3. Numerical Simulation of Deformation and Failure Mechanism of TR-11MA
3.1. Numerical Model Set Up

In order to reveal the crack propagation process and the damage evolution of the
roadway in the deep coal mine, a DEM model was created [31]. The width and height of
the 2D model are 265 m and 82 m, respectively, as illustrated in Figure 11. To improve
efficiency in the calculation, these triangular blocks had an average edge length of 0.2 m
in the interesting region. The model took into consideration the 100 m wide eastern and
western panel, respectively, in order to simulate the extraction of the two wing coal panels
and provide accurate mining-induced stress on the surrounding rock of the roadway.
The bottom and lateral boundaries were fixed in vertical and horizontal displacement,
respectively. The model was run using an in-situ stress condition of σV = 14.60 MPa and
σH = 17.52 MPa [32]. Overburden pressure was simulated by applying vertical stress of
14.60 MPa to the boundary.
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Figure 11. Numerical model with boundary and initial stress conditions.

3.2. Input Model Parameters and Simulation Planning
Parameters Calibration Process

The mechanical behavior of the contacts is governed by micro-properties such as
normal and shear stiffness, tensile strength, cohesion, and frictional coefficient. Calibration
of these micro-properties to rock mass characteristics is frequently required [33,34]. To
determine the rock mass micro-properties in the model, the calibration technique described
below is used.

First, the laboratory unconfined compression tests on standard specimens and field
measurements were used to establish the rock mass’s uniaxial compressive strength (UCS),
deformation modulus. The Trigon logic was used to create a calibration model. The
calibration model used the same triangular block size as the field-scale model to eliminate
the influence of block size on the outcome.

Table 1 shows the intact characteristics derived from compression tests on standard
specimens. These factors, on the other hand, are unable to predict the inherent deformabil-
ity of the rock mass. RQD is still extensively used to determine the rock mass deformation
modulus, which is typically easier to obtain than RMR or Q. Zhang [35] derived a relation-
ship, Equation (1), between RQD and the modulus ratio Em/Er, based on a large amount
of field monitoring data. Em and Er represent the deformation modulus of the rock mass
and intact rock, respectively. As a result, the rock mass parameters may be calibrated using
this proposed relationship. The rock mass strength can be calculated by Equation (2)

Em/Er = 100.0186RQD−1.91 (1)

σm/σr = 100.013RQD−1.34 (2)

where Em, σm and Er, σr represent the deformation modulus (GPa) and the UCS (MPa) of
the rock mass and the intact rock, respectively.

Table 1. Intact rock properties and rock mass properties in the numerical model.

Rock Strata
Intact Rock

RQD
Rock Mass

Er(GPa) σr(MPa) Em(GPa) σm(MPa)

Siltstone 39.82 49.01 88 21.23 31.21
Coal 7.92 38.87 78 2.75 18.35

Medium sandstone 16.02 43.29 85 7.51 25.2
Fine sandstone 10.76 35.94 90 6.25 24.3
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Second, the deformation modulus should be calibrated by making the deformation
modulus of the blocks equal to the deformation modulus of the rock mass. Kn, the normal
stiffness, is derived using Equation (3). After that, the Poisson’s ratio should be calibrated
by altering Ks/Kn.

Kn = n
[

K + 4G/3
∆Zmin

]
(3)

As shown in Figure 12a, the Trigon logic calibration models were developed for
modeling the UCS with dimensions of 2.5 m wide, 5 m height. Because the models are
made up of four different types of lithology, four different contact types must be calibrated.
Equation (3) was used to compute the normal and shear stiffness of contacts, Kn and Ks,
where K and G are the bulk and shear modulus (GPa/m) of the blocks, respectively, ∆Zmin
is the lowest width (m) of the zone surrounding the contact in the normal direction, and n
is a multiplication factor.

Figure 12. (a) UCS calibration model; (b) the numerical model result.

Finally, a series of unconfined compression tests using the calibration model was run.
The strength properties provided for the contacts must be tweaked until the UCS and
deformation modulus match the parameters of the rock mass. This involves two sub-steps:
first, the contact cohesion, then the friction angle.

To match the rock mass properties shown in Table 1, the input parameters of the blocks
and contacts were calibrated using an iterative, trial-and-error process. Table 2 shows the
calibrated micro-properties in the Trigon model. These characteristics indicate the qualities
of the rock mass at the research location. Table 3 shows the calibration results.

Table 2. Calibration of the model’s mechanical behavior of coal measures.

Rock Strata
Matrix Properties Contact Properties

Density (kg/m3) E (GPa) kn (GPa/m) ks (GPa/m) Cohesion (MPa) Friction Angle (◦)

Siltstone 2500 19.69 945 190 12.0 40
Coal 1400 2.87 392 78 3.5 32

Medium sandstone 2500 7.11 521 104 7.2 36
Fine sandstone 2500 6.48 518 102 6.0 34
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Table 3. Elastic modulus and compressive strength of rock mass are compared between theoretical
and simulated values.

Rock Strata
E (GPa) Error (%) UCS (MPa) Error (%)

Target Calibrated Target Calibrated

Siltstone 21.23 19.69 7.82 31.21 30.00 −4.03
Coal 2.75 2.87 −4.18 18.35 18.90 2.91

Medium sandstone 7.51 7.11 5.63 25.2 24.65 −2.23
Fine sandstone 6.25 6.48 −3.55 24.3 23.11 −5.15

The rock bolts were represented as built-in “Cable” elements in the model, while
the steel ladder beams were represented as built-in “Liner” elements. Table 4 lists the
properties of the support components employed in this study [36,37].

Table 4. Modeling properties of the support components that were employed.

Contact Properties Value

Rock bolt/Anchor cable

Elastic Modulus (GPa) 200/200
Tensile yield strength (kN) 390/870

Stiffness of the grout (N/m/m) 2 × 109

Cohesive capacity of the grout (N/m) 4 × 105

Structure

Elastic Modulus (GPa) 200
Tensile yield strength (MPa) 500

Compressive yield strength (MPa) 500
Interface normal stiffness (GPa/m) 10
Interface shear stiffness (GPa/m) 10

3.3. Simulation Planning

In general, the simulation of the calculation of the stability of roadways in deep coal
mines is divided into four steps:

Step1: Set up the model and apply the initial stress and the boundary conditions;
Step2: Input model parameters of rock mass and contact interface;
Step3: Run the model to equilibrium and excavation of TR11-MA, BR11-MA, and RR11-MA.

The head machine excavates the roadway gradually and constantly in the field,
and the roadway border generates the static stress route. The material softening
technique is used to replicate the mechanical excavation of the roadway in order to
provide a more realistic excavation influence;

Step4: The mining of eastern panels and western panels, respectively. A progressive exca-
vation was used to represent the extraction of the panels. A 20 m advanced distance
is required for each stage. To eliminate stress, each stage had 40,000 steps to run.

3.4. The Characteristics of Crack Propagation of TR-11MA during Three Periods
3.4.1. Stress of TR-11MA Surrounding Rock

During the TR11-MA excavation process (Period 1), the stress of the roadway sur-
rounding rock was redistributed. The stress reduction zone, the stress rise zone, and the
original rock stress zone appeared in the depths of the two ribs of the TR-11MA surround-
ing rock [38–41]. There is a stress concentration region on the two ribs of the roadway. The
position of the peak stress and its distance from the roadside is shown in Figure 13. The
vertical stress peak in the eastern side area is about 21.0 MPa, the stress concentration factor
is 1.47, and the position of the vertical stress peak value is 4.3 m away from the eastern rib.
The peak value of the vertical stress in the western side area is about 22.5 MPa, and the
stress concentration factor is 1.57. The position of the vertical stress peak is 4.5 m away
from the western rib and is affected by the BR-11MA and RR-11MA on the western side.
The influence degree and range of the vertical stress rise area on the western region are
larger than those in the eastern region.
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Figure 13. Variation law of the vertical stress peak value and its position on the two ribs of the
TR-11MA in three periods.

While the mining process is on the eastern side of the panel (Period 2), due to the
influence of the movement of the overlying strata, the roadway has undergone the super-
position of mining support stress, and the area of stress rise is relatively large [41–43]. The
vertical stress concentration on the eastern side of the roadway significantly increased. The
peak vertical stress on the eastern side increased to 24.6 MPa, the stress concentration factor
is 1.72, the stress concentration factor increased by 0.25, and the position of the vertical
stress peak is 4.9 m away from the eastern rib. The peak vertical stress on the western
side of the road increased to 23.3 MPa, the stress concentration factor is 1.62, the stress
concentration coefficient increased by 0.05, and the position of the vertical stress peak is
4.6 m away from the western rib. The influence degree and scope of the vertical stress rise
area on the eastern region are larger than those on the western region.

While the western panel is in the process of mining (Period 3), the relative horizontal
distance between the western panel and TR11-MA is relatively large, and RR-11MA and
BR-11MA play the role of pressure relief roadways to a certain extent [26,44]. Therefore,
the western side panel has little effect on the vertical stress distribution of the surrounding
rock of the TR11-MA. The vertical stress peak on the eastern side increased to 25.5 MPa, the
stress concentration factor is 1.78, the stress concentration factor increased by 0.06, and the
position of the vertical stress peak is 4.95 m away from the eastern rib. The peak vertical
stress on the western side of the road increased to 24.2 MPa, the stress concentration factor
is 1.69, the stress concentration coefficient increased by 0.07, and the position of the vertical
stress peak is 4.7 m away from the western rib. The peak vertical stress of the surrounding
rock of the eastern rib increased by 0.5 MPa, and the range of influence slightly increased.
The peak vertical stress of the surrounding rock of TR-11MA increased slightly, but the
change was not obvious, and the impact was small.

3.4.2. Cracks of TR-11MA Surrounding Rock

After the excavation of the TR-11MA, the surrounding rock first undergoes plastic
deformation, resulting in a large number of tension cracks, which further penetrate and
form and cause the destruction of the rock mass. They gradually extend from the surface
of the surrounding rock to the deep part, and a large number of shear cracks appear in the
shallow part of the surrounding rock. The shearing and tensioning cracks penetrate each
other and finally form a broken zone [6,7,12].

As shown in Figure 14, during the TR11-MA excavation process (Period 1), because
the two ribs of TR11-MA were affected by the RR-11MA and BR-11MA excavation to
different degrees, the tensile cracks of the eastern and western sides were distributed
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asymmetrically. The tensile cracks on the eastern rib are up to 1.5 m deeper, and the
surrounding rock damage is more serious, and the tensile cracks on the western rib are
mainly distributed in the surrounding rock within 2.0 m. The depth of the roof shear
cracks is 2.5 m. The distribution range of shear cracks is roughly an inverted ellipse, which
is because the side pressure coefficient of the surrounding rock of TR-11MA is 1.2, and
the stress is redistributed after the TR-11MA is excavated. The horizontal stress in the
TR-11MA is greater than the vertical stress [29,45].

During the mining process on the eastern side of the panel (Period 2), the development
of tensile cracks on the eastern rib of TR-11MA is more obvious than that on the western
rib. The deepest part of the shear cracks on the western rib reached 3.5 m, and the shear
cracks in the eastern rib and the roof cracks of the roadway are more intense. The depth of
the roof shear cracks is 6.5 m, and the depth of the eastern side shear cracks is 3.7 m.

During the mining process on the western side of the panel (Period 3), the cracks on
the western rib of TR-11MA are more developed than those on the eastern rib. The depth
of the shear cracks in the western rib is 3.7 m, the depth of the shear cracks on the eastern
rib is 4.0 m, and the deepest part of the tensile roof cracks reached 3.0 m. The depth of the
shear cracks in the eastern rib can reach 6.8 m and is partially connected with the tensile
cracks on the eastern rib.

The evolution law of the number of cracks in the surrounding rock of TR-11MA is
shown in Figure 15. During the TR11-MA excavation process (Period 1), the number of
shear cracks in the roof region increased from 0 to 1664, and the number of tensile cracks
increased from 0 to 349. During the mining of the eastern side panel (Period 2), the number
of shear cracks in the roof region increased from 1664 to 1851, and the number of tensile
cracks increased from 349 to 421. During the mining of the western side panel (Period
3), the number of shear cracks in the roof region increased from 1851 to 1941, and the
number of tensile cracks increased from 421 to 458. Therefore, the mining of the eastern
side panel has a greater impact on the increase in the number of shear and tensile cracks in
the roof region.

During the TR11-MA excavation process (Period 1), the number of shear cracks on the
eastern side region increased from 0 to 1468, and the number of tensile cracks increased
from 0 to 350. During the mining of the eastern side panel (Period 2), the number of shear
cracks in the eastern side region increased from 1468 to 1856. The number of tensile cracks
increased from 350 to 427. During the mining of the western side panel (Period 3), the
number of shear cracks on the eastern side region increased from 1856 to 1980, and the
number of tensile cracks increased from 427 to 444. Therefore, the mining of the eastern
side panel has a greater impact on the increase in the number of shear and tensile cracks in
the eastern rib region.

During the TR11-MA excavation process (Period 1), the number of shear cracks in the
western side region increased from 0 to 1493, and the number of tensile cracks increased
from 0 to 348. During the mining of the eastern side panel (Period 2), the number of shear
cracks in the western side region increased from 1493 to 1741, and the number of tensile
cracks increased from 348 to 440. During the mining of the western side panel (Period 3),
the number of shear cracks in the western side region increased from 1741 to 1821, and the
number of tensile cracks increased from 440 to 464. Therefore, roadway excavation and
mining of the eastern side panel had a greater impact on the increase in the number of
shear and tensile cracks in the western side region.

Table 5 shows the cracks and degree of damage of TR-11MA’s surroundings obtained
from the numerical results.
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Table 5. The characteristics of crack propagation and degree of damage of TR-11MA.

Items
TR-11MA (Maximum Value)

Roof Western Rib Eastern Rib

The depth of the tensile cracks (red)
Period 1 2.5 m 2.0 m 1.5 m
Period 2 2.8 m 2.3 m 2.5m
Period 3 3.0 m 2.7 m 2.8 m

The depth of the shear cracks (green)
Period 1 5.2 m 3.0 m 2.8 m
Period 2 6.5 m 3.5 m 3.7 m
Period 3 6.8 m 3.7 m 4.0 m

The number of the tensile cracks (red)
Period 1 349 348 350
Period 2 421 440 427
Period 3 458 464 444

The number of the shear cracks (green)
Period 1 1664 1493 1468
Period 2 1851 1741 1856
Period 3 1941 1821 1980

Degree of damage
Period 1 33% 29% 40%
Period 2 70% 72% 64%
Period 3 76% 75% 70%

Figure 15. Cont.
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Figure 15. The evolution curve of the number of cracks in the roof region, eastern rib, and western rib
region of TR-11MA in the three periods. (a) Roof region; (b) Eastern rib region; (c) Western rib region.

3.5. Degree of Damage around TR-11MA’s Surrounding Rocks

The surrounding rock of the roadway is affected by the disturbance and is accompa-
nied by a change in the number of cracks and a change in stress. Therefore, the damage
to the rock will lead to the strength of the rock [46–48], which is an important index for
evaluating the stability characteristics of the surrounding rock. Tang et al. [46] proposed
a novel technique for predicting the depth of an excavation damage zone based on a
modified nonlinear Mohr failure criterion and modifying a standard analytical solution
using the perturbation method. In the discrete element model, to represent brittle materials,
the rock mass is considered as a set of triangular blocks connected together by internal
contact. These areas cannot fail, assuming that each triangular block is made of an elastic
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material and split into triangular finite-difference regions. Shear or tensile stress should
only produce damage along the contact surface, and the intensity of the contact surface
determines how much damage occurs. The stress–displacement relationship is thought to
be linear in the direction of vertical contact, and stiffness kn is the controlling factor:

∆σn = −kn∆un (4)

where ∆σn, MPa represents the effective normal stress increase, and ∆un m represents the
normal displacement increment.

In the shear direction, a constant shear stiffness governs the behavior. Contact micro
characteristics, cohesive properties, and friction properties all play a role in determining
shear stress,τs, MPa, thus, if:

|τs| ≤ c + σntanϕ = τmax
s (5)

Then:
∆τs = −ks∆ue

s (6)

Or else, if:
|τs| ≥ τmax

s (7)

Then:
|τs|= sign(∆us)τmax (8)

where c, ϕ, ∆ue
s, and ∆us represent the cohesion, friction angle, elastic component of the

incremental shear displacement, and total incremental shear displacement, respectively.
According to Gao’s [37] specifications, the degree of damage is posited in the

Equation (9):

D =
lshear + ltensile

ltotal
× 100% (9)

where ltotal , lshear, and ltensile represent total contact length, total shear crack length, and
total tensile crack length (m), respectively.

Figure 16 shows the change curve of the damage degree of the TR-11MA around the
roof and the two ribs of the monitoring areas in three periods.

Figure 16. Degree of damage evolution of TR-11MA at three periods.



Sustainability 2021, 13, 8507 22 of 27

(1) During the TR11-MA excavation process (Period 1), the degree of damage to TR-11MA
in the roof region, eastern region, and western region ranged from 0% to 33%, 0% to
29%, and 0% to 40%, respectively;

(2) During the mining of the eastern side panel (Period 2), the degree of damage to
TR-11MA in the roof region, eastern region, and western region ranged from 33% to
70%, 29% to 72%, and 40% to 64%, respectively;

(3) During the mining of the western side panel (Period 3), the degree of damage to
TR-11MA in the roof region, eastern region, and western region ranged from 70% to
76%, 72% to 75%, and 64% to 70%, respectively;

4. Result and Discussion
4.1. Reinforcement and Repair Technology of TR-11MA

The grouting reinforcement of the roadway surrounding the rock mainly acts on the
structural fracture plane. By injecting grout, the friction of structural planes is improved
and cemented to each other. At the same time, the grouting pressure in the grouting process
prevents the shear failure of the weak structural plane so that the physical and mechanical
parameters of surrounding rock are improved, such as the internal friction and cohesion of
rock mass will be greatly enhanced. Bolt support is used to strengthen the control of the
surrounding rocks of the roadways [49]. The bearing structure formed by the surrounding
rock of the roadway after grouting improves the stress environment of the rock bolt and
greatly enhances the anchoring ability of the rock bolt so that the rock bolt anchor ring and
the grouting reinforcement ring can bear the pressure more effectively.

(1) Reinforcement and repair section

The control process of the reinforcement repair section of TR-11MA is: Extend the
roadway to the design section size→ Initial sprayed concrete layer to ensure the integrity
of the shallow surrounding rock → Grouting to strengthen the anchor ring → “Rock
bolt + steel mesh + anchor cable” support in the full section of the roadway→ Re-sprayed
concrete to the design thickness of the roadway. (“→” represents the connection between
the sub-steps.)

(2) New excavation extension section

The control process of the new excavation extension section of TR-11MA is: Initial
sprayed concrete layer to ensure the integrity of the shallow surrounding rock→ “Rock
bolt + steel mesh + anchor cable” support in the full section of the roadway→ Grouting to
strengthen the anchor ring→ Re-sprayed concrete to the design thickness of the roadway.

The specific support parameters of the TR-11MA repair section and the extension
section are shown in Table 6, and the rock bolt and anchor cable supporting details are
shown in Figure 17:

Table 6. TR-11MA support parameters and material selection.

Parameters Requirements Remarks

Rock bolt

Size Φ 22 mm L 2400 mm
Q335 Left screw steel bolt without

longitudinal reinforcement
Spacing and row spacing 800 mm and 800 mm

Anchoring agent CK2335 + K2360
Pre-tightening torque 300 N·m

Anchor cable/Normal

Size Φ 21.8 mm L 4300 mm
1 × 19 Steel stranded mine anchor

cable
Spacing and row spacing 1500 mm and 1600 mm

Anchoring agent CK2335 + K2360
Pretension 300 kN

Anchor cable/Reinforcement

Size Φ 21.8 mm L 8300 mm
1 × 19 Steel stranded mine anchor

cable
Spacing and row spacing 1500 mm and 1600 mm

Anchoring agent CK2335 + 2K2360
Pretension 300 kN

Reinforced ladder beam Size Φ 18 × 60 × 4000 mm Round steel welding
Rock bolt pallet Size 150 mm × 150 mm × 10 mm Butterfly pallet

Anchor cable pallet Size 300 mm × 300 mm × 16 mm Butterfly pallet
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4.2. Control Effect of Reinforcement and Repair of TR-11MA

In order to study the control effect of the combined support technology on the defor-
mation of the surrounding rock of the TR-11MA, three different monitoring stations were
set up in the TR-11MA repair section and the new excavation extension section to observe
the deformation and the bolt load of the TR-11MA.

The deformation of TR-11MA is shown in Figure 18a. When the above-mentioned
roadway support parameters are adopted, the deformation of the roof-to-floor of the road-
way and the surrounding rock of the rib-to-rib is obviously controlled. The convergence
speed of the roof-to-floor is about 11.5 mm/d, and the deformation of the roadway tends
to be stable after 30 days, and the maximum convergence value of the roof-to-floor is about
370 mm after 60 days. The convergence speed of the rib-to-rib is about 9.5 mm/d, and the
convergence value of rib-to-rib is about 300 mm after 60 days.
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Figure 18. The monitoring results of TR-11MA in the station. (a) The deformation curves and drill image of TR-11MA;
(b) The curves of rock bolts and anchor cables axial force.

The rock bolts and anchor cables axial force of TR-11MA are shown in Figure 18b. The
observed initial value of the axial force of the anchor cable on the roof of TR-11MA is about
72 kN. The fluctuation of the axial force of the anchor cable on the roof increases as the
number of monitoring days increases, and the axial force of the anchor cable on the roof
of TR-11MA gradually stabilizes at around 140 kN. The initial observation value of the
axial force of the rock bolt on the roof was about 45 kN. With the increase in monitoring
days, the fluctuation of rock bolt force increases, and the axial force of the rock bolt in the
roof gradually stabilizes at about 75 kN. The initial value of the axial force of the anchor
cable in the ribs of TR-11MA is about 70 kN. With the increase in monitoring days, the
fluctuation of the axial force of the anchor cable in the ribs increases, and the axial force of
the anchor cable in the ribs of the TR-11MA gradually decreases and stabilizes at about
110 kN. The initial observed value of the axial force of the anchor cable in the ribs was
about 40 kN. With the increase in monitoring days, the axial force of the anchor cable in the
ribs gradually stabilizes at about 72 kN.
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The axial force of the rock bolt and anchor cable on the roof and ribs of the TR-11MA
then tends to be stable. When combined with TR-11MA’s monitoring deformation results,
it demonstrates that the supporting parameters of the rock bolts and anchor cables have a
significant control effect on the surrounding rock, and TR-11MA’s rock surroundings are
effectively controlled.

4.3. Implications for Theory and Practice

Deep roadways are prone to a variety of challenges, such as asymmetrical high ground
stress, making it hard to understand the reasons for structural instability and adopt effective
approaches [11]. In this paper, the deformation and failure process of deep high-stress
roadways is divided into three stages according to the different periods of experiencing
mining disturbance. This research method can compare the deformation and instability
characteristics of the deep high-stress roadways in three periods in detail, and finally invert
the roadways instability mechanism and control technologies and provide a method and
way for the control of the deep roadways. The in-site learning methods in this article are
operable and repetitive, which is convenient for in-site application and promotion [26].

5. Conclusions

This study used a combination of field investigation and numerical simulation method-
ology to reveal the mechanism of abnormal deformation and failure characteristics of deep
high-stress roadways induced by mining disturb. The following are the main conclusions:

The field study results demonstrate that the mechanism of deformation and failure of
TR-11MA in the eastern panel mining disturbance. Moreover, the matching test of the support
structure evidences the importance of the selection of supporting structure parameters.

The initiation, propagation, and coalescence of internal cracks were investigated
throughout the formation process of the TR-11MA, which showed that the stress in the ribs
wall of TR-11MA at period 2 is 23.3 MPa and 24.6 MPa, respectively.

The surrounding rock control parameters of the new extension section and the rein-
forcement repair section of TR-11MA are proposed, respectively, and the field application
effect is significant, which provides a reference for the support design of the deep roadway
and the sustainability of the development of a deep coal mine.
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