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Abstract: In recent years, ecosystem service values (ESV) have attracted much attention. However,
studies that use ecological sensitivity methods as a basis for predicting future urban expansion and
thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-
Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges
Reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of
ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological
sensitive zone has been identified in Three Gorges Reservoir area; it accounts for about 35.86% of
the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the
ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing
trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts
were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land
increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million.
Jiulongpo, Banan and Shapingba had the highest ESV losses.

Keywords: ecological sensitivity; ecosystem service values; CA-Markov model; urban expansion;
Three Gorges Reservoir area

1. Introduction

An ecosystem is a unity of the biota and the abiotic surroundings in a certain space of
nature [1]. It is also an ecological functional unit formed by the continuous exchange of
energy and materials between organisms and their abiotic environment [2–4]. Ecosystems
can provide a range of services for human production and livelihoods [5–7]. Ecosystem
services are the materials that humans need to obtain from the Earth’s ecosystems and
natural environment [8,9]. Ecosystem services are diverse, and the services are unique and
irreplaceable for different ecosystem [10–12]. For example, forests are the most essential
ecosystems for human life, providing wood, regulating air, promoting soil formation and
supporting social benefits such as spiritual, landscape and educational values [13]. The
evaluation of ESV can measure the status of a regional ecosystem.

The evaluation of ESV is a method based on ecology, economics and sociology [14–16].
It can quantitatively evaluate ecosystem services from the perspective of monetary value
and better reflect the change in ESV and provide decision makers with knowledge to make
policy adjustments [16,17]. In the early days, its evaluation methods made some progress
in emphasizing the impact of socio-environmental change on ecosystem services (supply,
regulation, support and entertainment services) [18–20]. Research scholars began to use
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RS and GIS technology to assess ESV for the region by remote sensing technology, such as
China at the national scale [9,21] and Leipzig at the municipal scale [22].

The delimitation of the ecological sensitive zone is important to improve ESV in the
region [5]. It is believed that an ecological sensitive zone is characterized by the low stability
of an ecosystem that is easily affected by external activities, ecological degradation and
difficulty with self-restoration [23]. When humans develop them unreasonably, ecological
sensitive zones are prone to environmental problems. Delineating the ecological sensitive
zone plays an important role in maintaining the health of the ecosystem [24,25]. The
ecological sensitivity evaluation method can quantitatively identify the ecological sensitive
zone. The evaluation results provide the possibility to effectively control and protect the
target zone [7]. It also provides a practical way for developing countries to realize its
regional sustainable development strategy [26]. Starting from the perspective of ecological
sensitivity, providing scientific guidance methods for realizing the sustainable development
of regional ecosystem [27].

The assessment of ESV is closely linked to land use patterns. Land use simulations can
be modelled using spatial tools such as cellular automata (CA), which are temporal, spatial
and state-discrete models that can simulate complex dynamic systems with spatial charac-
teristics [28–31]. CA model express geographic entity information to simulate and predict
complex geographic processes by constructing a systemic spatial concept system [32].
Thus, CA is commonly used to predict future land use changes through endogenous and
exogenous drivers, which have the roles of human disturbance as well as socioeconomic
and institutional factors [33,34]. Estimations of future ESVs are obtained by addressing the
interactions between drivers, land use changes and ESV changes. These interactions are
usually considered as the dependent variable component of the CA model. For example,
logistic regression is combined with a CA model, which is used by assuming that the
development probability of a location is a function of a set of independent variables [35].
The ANN-CA model is a combination of artificial neural networks (ANN) and CA models,
which combines the nonlinear processing capability of artificial neural networks and the
spatial simulation capability of CA models [36]. In the CA-Markov model, the Markov
chain process controls the temporal variation between land use types according to the tran-
sition matrix, which facilitates the use of a wider range of spatial variables and improves
the accuracy of the model [37,38].

As urbanization progresses, it is necessary to delimit ecological sensitive zones and
predict the future urban development direction of the region through the CA-Markov
model to promote sustainable urbanization development. On this basis, estimating the
dynamic change of ESV in the region will provide a full understanding of the services
provided by ecosystems for human social development, providing relevant reference for
ecological environmental protection and the comprehensive control of ecological reserves.
Therefore, this paper takes the Three Gorges Reservoir area as an example to simulate the
future development rate and direction of urban land in different districts and counties of
the Three Gorges Reservoir area under the role of the ecological sensitive zone and urban
land drivers. The quantitative estimation of change in ESV and the prediction of future
ESV losses in the region are performed by ecosystem service value equivalence tables. This
study can provide scientific reference to promote ecological civilization construction and
sustainable development in developing countries.

2. Materials and Methods
2.1. Description of the Study Area

The Three Gorges Reservoir area is located at the end of the upper reaches of the
Yangtze River Basin, with an area of approximately 68,772.93 km2 (Figure 1). It is bordered
by three provinces and a municipality, namely Hubei Province, Sichuan Province, Guizhou
Province and Chongqing City. The Three Gorges Reservoir area includes 26 districts and
counties (autonomous regions). The relative height shows a gradual increase from west to
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east. The central and western parts of the reservoir area are dominated by platforms and
hills. The eastern part is close to the Daba Mountain and has many rolling hills [39].

Figure 1. Location and elevation of the study area. (a) The map of China; (b) the Yangtze River basin; (c) the Three Gorges
Reservoir area.

There are abundant vegetation types in the Three Gorges Reservoir area, and the
overall spatial distribution of vegetation coverage shows the characteristics of high in
the east and low in the west [40]. The east is mostly broad-leaved forests, bushes and
grasslands; the central and western area are farming area with many cultivated plants
and crops [41]. The Three Gorges Reservoir area is an important ecological barrier in the
Yangtze River Basin, China’s strategic water resources reserve. Therefore, the prediction
of ESV change in the Three Gorges Reservoir area is important for China’s sustainable
development under the future urban expansion.

2.2. Materials

The two main types of data used in this study are spatial data and statistical
yearbook data.

Spatial Data. (1) Administrative boundary vector data of Three Gorges Reservoir area
(SHP format). (2) Soil dataset provided by Harmonized World Soil Database (HWSD) and
Cold Arid Regions, Available online: http://www.westdc.westgis.ac.cn (accessed on 17
April 2019), which contains the spatial coordinates and properties of the soil (GRID format).
(3) Digital elevation model (DEM), which was downloaded from the Geospatial Data Cloud
Available online: http://www.gscloud.cn/ (accessed on 26 April 2020). In the above data,
the DEM data, with a resolution of 30 m, can be extracted into slope and elevation. (4)
The highway, the primary road and railroad data procured from OpenStreetMap Available
online: http://www.openstreetmap.org (accessed on 13 July 2020). The population density
data was provided by Landscan Available online: https://landscan.ornl.gov/ (accessed
on 18 December 2020). (5) The 1000 m Normalized Difference Vegetation Index (NDVI)
data and 30 m land use and land cover change (LUCC) data were obtained from the Data

http://www.westdc.westgis.ac.cn
http://www.gscloud.cn/
http://www.openstreetmap.org
https://landscan.ornl.gov/
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Centre for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC)
Available online: http://www.resdc.cn (accessed on 26 April 2020). NDVI and LUCC data
were obtained by remote sensing image processing. NDVI data was based on inversion of
SPOT/VEGETATION and MODIS satellite remote sensing and LUCC data was generated
by manual visual interpretation based on Landsat 8 remote sensing images. (6) China
Nature Reserve, the earthquake and landslide vector data acquired from RESDC. China
Nature Reserve are surface vector data, the rest are point vector data.

Statistical data: The statistical data include average annual rainfall (2018), average
annual temperature (2018), number of days with wind and sand wind speed ≥10 m/s
(2018), annual evaporation (2018), groundwater mineralization and groundwater burial
depth. Meteorological data were mainly obtained from 22 meteorological stations around
the Three Gorges Reservoir area by the Chinese Meteorological Science Data Sharing
Service Available online: http://data.cma.cn/site/index.html (accessed on 17 January
2020). According to each weather station, the inverse distance interpolation (IDW) method
of ArcGIS was used to convert meteorological statistics into a raster image of meteorological
data in the study area. Groundwater mineralization and groundwater depth of burial data
were obtained by querying the statistical yearbooks of different districts and counties in
the Three Gorges Reservoir area.

2.3. Methods

In this paper, we use the overlay analysis function of GIS, Markov chain and cellular
automata (CA) to simulate the future urban expansion. From the scenario of ecological
conservation, predicting future urban expansion, estimating ESV during 2018–2030 and
forecasting ESV losses at 2030 in the Three Gorges Reservoir area were performed. The
research framework of this study is presented in Figure 2.

Figure 2. Research framework.

2.3.1. Ecological Comprehensive Sensitivity and Zone Identification

In this research, the comprehensive ecological sensitivity was calculated from three
sensitivities of soil erosion, land desertification and soil salinization. The calculation
formula is shown below:

EES = ωa ∗ SSi +ωb ∗ Zi +ωc ∗ Si (1)

where EES denotes the comprehensive ecological sensitivity, and SSi, Zi and Si are the
weight values of soil erosion, land desertification and soil salinization, respectively. The

http://www.resdc.cn
http://data.cma.cn/site/index.html
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coefficient of variation method was used to calculate ωa, ωb and ωc as 49.63%, 32.00% and
18.37%, respectively [42].

Ri, SGi, LSi and Ci were selected for the evaluation of SSi. The ecological sensitivity
factors were classified into five classes named insensitive, mildly sensitive, moderately
sensitive, highly sensitive and extremely sensitive, which were categorized into classes 1, 2,
3, 4 and 5, respectively (Table 1). The four indicators are calculated as follows:

SSi = 4
√

Ri ∗ SGi ∗ LSi ∗Ci (2)

where SSi denotes the soil erosion sensitivity; Ri is the rainfall erosivity factor; SGi is
the soil type factor; LSi is the relative height factor; and Ci is the normalized difference
vegetation index factor. The ecological sensitivity factors were divided into five classes
named insensitive, mildly sensitive, moderately sensitive, highly sensitive and extremely
sensitive, which were categorized into classes 1, 2, 3, 4 and 5 (Table 1).

Table 1. Criteria for the soil erosion sensitivity.

Sensitivity Degree Ri SGi LSi Ci

Insensitive (1) <25 Paddy soil, urban area, rock and river <20 >0.49
Mildly sensitive (2) 25–100 Limestone soil, rock-soil and mountain meadow soil 20–50 0.39–0.49

Moderately sensitive (3) 100–400 Dark brown soil and yellow-cinnamon soil 50–100 0.28–0.39
Highly sensitive (4) 400–600 Yellow loam, yellow-brown soil and skeleton soil 100–300 0.16–0.28

Extremely sensitive (5) >600 Purple soil >300 <0.16

The evaluation of the Zi required the Ii, Wi and SLi. Its classification and assignment
methods were the same as those of SSi (Table 2). The formula of Zi was as follows:

Zi = 3
√

Ii ∗Wi ∗ SLi (3)

where Zi denotes the land desertification sensitivity; Ii is the dryness index factor; Wi is the
number of days on which wind-blown sand speeds are 6m/s; SLi is the slope factor.

Table 2. Criteria for the land desertification sensitivity.

Sensitivity Degree Ii Wi SLi

Insensitive (1) <0.96 <2 ≤5
Mildly sensitive (2) 0.96–1.01 2–4 5–8

Moderately sensitive (3) 1.01–1.08 4–6 8–15
Highly sensitive (4) 1.08–1.17 6–8 15–25

Extremely sensitive (5) >1.17 >8 >25

The evaluation of the Si required the Ei, GSi, GDi and LUCCi. Its classification and
assignment methods were the same as those of SSi (Table 3). The formula of Si is as follows:

Si = 4
√

Ei ∗GSi ∗GDi ∗ LUCCi (4)

where Si is the salinization sensitivity; Ei is the evaporation index factor; GSi is the degree
of mineralization of ground water factor; GDi is the groundwater depth factor; LUCCi is
the land use and land cover change factor.
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Table 3. Criteria for the salinization sensitivity.

Sensitivity Degree Ei GSi GDi LUCCi

Insensitive (1) <0.6 <0.1 >20 Water body
Mildly sensitive (2) 0.6–0.7 0.1–0.2 18–20 Impervious surface

Moderately sensitive (3) 0.7–0.8 0.2–0.3 16–18 Forest and grassland
Highly sensitive (4) 0.8–0.9 0.3–0.4 14–16 Farmland

Extremely sensitive (5) >0.9 >0.4 <14 Unused land

The assessment results of ecological sensitivity were divided into 5 degrees, namely,
insensitive, mildly sensitive, moderately sensitive, highly sensitive and extremely sensitive.
The eleven factors required to calculate the spatial distributions of SSi, Zi and Si were
presented in Figure 3.

Figure 3. The spatial distribution of ecological sensitivity of 11 indicators in 2018: (a) rainfall erosion sensitivity; (b) soil type
sensitivity; (c) relief of topography sensitivity; (d) vegetation cover sensitivity; (e) dryness sensitivity; (f) wind-blown sand
sensitivity; (g) slope sensitivity; (h) evaporation sensitivity; (i) mineralization of ground water sensitivity; (j) groundwater
depth sensitivity; (k) land use and land cover change sensitivity.

Based on the results of the SSi, Zi, Si and EES (Figure 4), using the natural breakpoint
method in ArcGIS, the high sensitivity zone in the EES is proposed to determine the
location of ecological sensitive zone.
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Figure 4. The spatial distribution of SSi, Zi, Si and EES: (a) soil erosion sensitivity; (b) land desertifi-
cation sensitivity; (c) salinization sensitivity; (d) comprehensive ecological sensitivity.

2.3.2. CA-Markov Model

The CA-Markov model is composed of CA model, Markov chain and multi-criteria
evaluation (MCE) [29]. The CA model is a discrete, finite state composition of the meta-cell
model. It can simulate complex dynamic systems with spatial-temporal characteristics ac-
cording to certain local rules [43]. Markov chains create the transfer matrix and probability
between land use types for multiple time periods in the past through spatial comparison
analysis, which are the basic data for predicting future land use patterns. MCE refers to the
selection of expansion factors to construct a land use transition suitability image collection.
CA-Markov model can effectively predict future land use dynamics [44]. The prediction
process equation of the CA-Markov model is shown below [45]:

Ctj + 1 = F[Ctj, N] (5)

where C(tj) and C(tj+1) are the states of the cell at time tj and tj+1, respectively; F is the
transition rule; N is the domain of the cellular. In this study, elevation, slope, earthquake,
landslide, highway, main road, railroad and population density were selected as the driving
factors affecting urban expansion. Among them, elevation, slope, earthquake and landslide
are negative indicators, and the rest are positive indicators. The suitability evaluation maps
for earthquakes, landslides, highways, main roads and railroads were calculated by the
kernel density tool, and finally, the normalized driver maps were obtained (Figure 5).

The Kappa coefficient was applied to check the accuracy of the CA-Markov model
simulation results [46]. The formula for calculating the Kappa coefficient is shown below:

Kappa =
pa − pc
1− pc

(6)

pa =
s
n

(7)

pc =
a1∗b1 + a2∗b2

n ∗ n
(8)

where n is the total number of cell sizes in the raster; a1 is the number of cell sizes in the
real raster of the urban land; a2 is the number of cell sizes in the non-urban land; b1 is the
number of cell sizes in the simulated raster of the urban land; b2 is the number of cell sizes
in the non-urban land; s is the number of cell sizes in the real raster and the simulated
raster that correspond to each other.
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Figure 5. The spatial distribution of driving factors of urban expansion in Three Gorges Reservoir area: (a) elevation drive
factor; (b) slope drive factor; (c) earthquake drive factor; (d) landslide drive factor; (e) motorway drive factor; (f) primary
road drive factor; (g) railway drive factor; (h) population drive factor.

2.3.3. Evaluation of ESV

Ecosystems provide the ecological products and services that humans need [47].
In order to estimate the value of ecosystems, basic value transfer, expert modified value
transfer and spatial explicit function modeling were used [5,14,47]. Costanza et al. proposed
to divide ecosystem services into 17 services and established a global value equivalence
factor system to calculate the global ESV. This method has been widely accepted and used,
but it cannot be directly applied to evaluate ESV in China [48]. This paper will be based on
the recent research results of Xie et al. in Table 4, classify 6 types of ecosystems into the
4 following types of ecosystem services: provisioning services, regulating services, habitat
services and entertainment services. A VPUA-based work has published that in China,
and unit equivalent coefficients were estimated as USD 503.2 of ESV per ha [19]. For each
ESV category, the calculation formula of ESVk is as follows:

ESVk =
n

∑
i=1

ESVi (9)

ESVk =
m

∑
j=1

ECi,j ∗
Areaj

Areau
(10)

where ESVk is total value of ecosystem services; ESVi is the ESV for a particular primary
service class (i); ECi,j is the equivalent coefficients of the secondary service class (j) in a
particular primary service class (i); n is the four kinds of primary service class that include
provisioning services, regulating services, habitat services and entertainment services; m is
the total number of the secondary service class; Areaj is the area of class (j) in a land type of
a hectare and Areau is a hectare. Table 4 shows the equivalent coefficients table for ESV per
unit area in China.



Sustainability 2021, 13, 8490 9 of 23

Table 4. The equivalent coefficients table for ESV per unit area in China.

Primary Service Secondary Service
Farmland Forest Grassland Water Body Unused Land

Dry Land Paddy Field Coniferous
Forest Mixed Forest Broadleaved

Forest Bush Meadow Wetland Lake and
River Barren

Provisioning
services

Food 0.85 1.36 0.22 0.31 0.29 0.19 0.22 0.51 0.80 0.00
Materials 0.40 0.09 0.52 0.71 0.66 0.43 0.33 0.50 0.23 0.00

Water 0.02 −2.63 0.27 0.37 0.34 0.22 0.18 2.59 8.29 0.00

Regulating
services

Air quality
regulation 0.67 1.11 1.70 2.35 2.17 1.41 1.14 1.90 0.77 0.02

Climate regulation 0.36 0.57 5.07 7.03 6.50 4.23 3.02 3.60 2.29 0.00
Waste treatment 0.10 0.17 1.49 1.99 1.93 1.28 1.00 3.60 5.55 0.10

Water flow
regulation 0.27 2.72 3.34 3.51 4.74 3.35 2.21 24.23 102.24 0.03

Erosion prevention 1.03 0.01 2.06 2.86 2.65 1.72 1.39 2.31 0.93 0.02
Maintenance of soil

fertility 0.12 0.19 0.16 0.22 0.20 0.13 0.11 0.18 0.07 0.00

Habitat services 0.13 0.21 1.88 2.60 2.41 1.57 1.27 7.87 2.55 0.02
Entertainment

services 0.06 0.09 0.82 1.14 1.06 0.69 0.56 4.73 1.89 0.01

Total 4.01 3.89 17.53 23.09 22.95 15.22 11.43 52.02 125.61 0.2
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3. Results
3.1. Ecological Sensitivity Zone Identification
3.1.1. The Evaluation of Soil Erosion Sensitivity

Soil erosion is the serious damage to natural resources of water, soil and land produc-
tivity [49].The soil erosion sensitivity result was calculated by formula (2), as shown in
Table 5 and Figure 4a. It shows a lower sensitivity at both ends and a higher sensitivity
in the middle. The percentages of mildly sensitive zones and moderately sensitive zones
are 30.00% and 22.99%, respectively. Next, the highly sensitive and insensitive zones ac-
counted for 19.88% and 15.85%, respectively. Finally, the least percentage of the extremely
sensitive zone is 11.28%, and it is mainly concentrated in Yunyang, Zigui, Fengjie, Kaizhou
and Wanzhou.

Table 5. The comprehensive assessment on ecological sensitivity.

Sensitivity
Classification

Soil Erosion Land Desertification Soil Salinization The Comprehensive
Evaluation

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Extremely
sensitive 6494.08 11.28 10,587.74 18.40 5145.91 8.94 6279.62 10.91

Highly sensitive 11,442.09 19.88 10,246.66 17.80 16,129.51 28.02 14,360.09 24.95
Moderately

sensitive 13,232.75 22.99 13,845.73 24.06 16,224.49 28.19 17,261.63 29.99

Mildly sensitive 17,265.48 30.00 13,213.63 22.96 14,444.79 25.10 15,234.81 26.47
Insensitive 9120.03 15.85 9660.65 16.79 5609.71 9.75 4418.26 7.68

3.1.2. The Evaluation of Land Desertification Sensitivity

Land desertification is generally defined as the loss of surface soil due to soil erosion,
a reduction of agricultural land use value and ecological degradation [50]. In the spatial
distribution of land desertification sensitivity (Figure 4b), extremely and highly sensitive
zones occur mainly in Fengjie County, Wuxi County, Yunyang County and the upper part of
Xingshan County. From the amount of land desertification sensitivity, as shown in Table 5,
the moderately sensitive zone and the mildly sensitive zone accounted for the highest
percentages of 24.06% and 22.96%, respectively. The extremely sensitive zone, highly
sensitive zone and insensitive zone accounted for 18.40%, 17.80% and 16.79%, respectively.

3.1.3. The Evaluation of Soil Salinization Sensitivity

Soil salinization is a process in which salts from the soil substrate or groundwater rise
to the surface, causing salts to accumulate in the surface soil after the water evaporates [51].
The spatial heterogeneity of the distribution of soil salinity sensitivity in the study area is
shown in Figure 4c. The characteristics of the spatial distribution showed a gradual decrease
from northeast to southwest. The higher sensitivity zones are mainly in Fengjie County,
Wuxi County and Xingshan County. In the evaluation table of soil salinity sensitivity
(Table 5), the highest percentages of the moderately and highly sensitive zones are 28.19%
and 28.02%, respectively. The mildly sensitive and insensitive zones accounted for 25.10%
and 9.75%, respectively. The least percentage was observed in the extremely sensitive zone
at 8.94%.

3.1.4. The Comprehensive Evaluation and Zone Identification of Ecological Sensitivity

The comprehensive sensitivity of the ecological environment was calculated by for-
mula (1), as shown in Table 5 and Figure 4d. In general, the highly sensitive zone is
mainly concentrated in Wuxi, Yunyang and Fengjie. It is close to the Daba Mountain
Nature Reserve and belongs to high forest cover areas with high terrain elevation [52]. The
moderately sensitive zone is mainly concentrated in Zhong, Fengdu, Badong and Zigui.
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The following zone of low sensitivity is mainly concentrated in the nine central urban areas
of Chongqing, Fuling and Jiangjin. As shown in the comprehensive sensitivity evaluation
table of the ecological environment (Table 5), the study area mainly showed moderate
sensitivity (about 29.99%). The proportions of extremely sensitive, highly sensitive, low
sensitive and insensitive zone are 10.91%, 24.95%, 26.47% and 7.68%, respectively.

In the identification of ecological sensitive zone, we use the spatial analyst tool in
ArcGIS to extract the extremely and highly sensitive zone in the comprehensive ecological
sensitivity, the vector data of Chinese nature reserves were converted into raster grid
data, and then both were mosaicked. Finally, we obtained the spatial distribution map
of the ecological key zone and the ecological core zone in the Three Gorges Reservoir
area (Figure 6).

Figure 6. The spatial distribution of ecological key zone and ecological core zone.

3.2. The Urban Expansion Simulation
3.2.1. The Model Validation and Assessment

Using the 2000 and 2010 actual map as the base data and the 2010 land use data
as the initial state and driving factors of urban expansion, we predicted the 2018 urban
development pattern (Figure 7d). The accuracy of the model was verified by using the
2018 actual pattern with the 2018 simulated pattern to judge the accuracy of the model.
By comparing with the actual 2018 urban pattern (Figure 7c), using the Kappa coefficient
formula to verify the accuracy, the Kappa coefficients for the three land types and the whole
were calculated in Figure 8. The Kappa coefficients for nonurban, urban and water bodies
are 86.73%, 83.14% and 92.19%, respectively, while the accuracy of the overall pattern was
86.74%, which indicated that the overall simulation accuracy was better [53], it can provide
a basis for further simulation.
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Figure 7. Urban patterns for 2000, 2010 and 2018, simulated scenarios for 2018, 2030 and adjusted scenario for 2030 in three
classes: (a) urban pattern in 2000; (b) urban pattern in 2010; (c) urban pattern in 2018; (d) simulated urban pattern in 2018;
(e) simulated urban pattern in 2030; (f) adjusted urban pattern in 2030.

Figure 8. Kappa coefficient of three classes and overall pattern.

3.2.2. The Simulation of Urban Expansion Based on Ecological Sensitivity

This study will use the trained sample to predict the state of urban expansion in the
Three Gorges Reservoir area in 2030, the urban expansion simulation map of the study
area in 2030 (Figure 7e) and the area of urban land is about 226,594.43 ha. The focus is on
the protection of ecological core zone and ecological key zone in the context of “Ecological
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Priority and Green Development” so that the urban expansion can be effectively adjusted.
Using spatial overlay and analysis tools, the adjusted land use is shown in Figure 7f.
Excluding the part of urban land that overlaps with the ecological core zone and ecological
key zone, the area of this part of land is about 15,181.92 ha, and finally, the area of urban
land is adjusted to 211,412.51 ha in 2030.

3.2.3. The Analysis of the Urban Expansion Simulation

The results of the 2030 urban land expansion were simulated based on ecological
sensitivity in the Three Gorges Reservoir area, and we identified the development direction
and area change of urban expansion in different districts in the study area. A map of the
urban expansion change in the study area from 2018–2030 is shown in Figure 9, the faster
growth in urban land is mainly occurring around the main urban areas of Chongqing.
The statistical analysis yields a statistical map of the urban expansion area as shown in
Figure 10, the northwestern part of Banan shows the most growth in urban land, about
9903.69 ha; followed by the northwestern part of Yubei, with an increase of 9400.41 ha;
the growth area of Jiulongpo, Shapingba and Beibei are about 7448.76 ha, 7308.09 ha and
6133.68 ha, respectively; Yuzhong growth area is only 100.80 ha in urban land, and it is
the only city-wide urban functional core area in Chongqing and past large-scale urban
expansion has resulted in less available land for development and construction. Next, the
smallest areas of urban land growth are in Xingshan, Zigui and Wushan. These areas are
constrained by natural conditions, economic development and policy regulation, making
them unsuitable for future urban expansion.

3.3. Estimation of ESV Change
3.3.1. ESV Change from 2000 to 2018

The ESV was calculated by Formulas (9) and (10) and land use data as shown in
Table 6, Figures 11 and 12.

Figure 9. Modeled urban expansion from 2018 to 2030.
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Figure 10. The urban growth area of various districts from 2018 to 2030 in the Three Gorges
Reservoir area.

Table 6. The ESV of different land use types in the study area from 2000 to 2018.

Land Use Type

2000 2010 2018

ESV (Million
USD) Percentage (%) ESV (Million

USD) Percentage (%) ESV (Million
USD) Percentage (%)

Dry land 3188.74 8.32 3135.26 7.75 3105.17 7.40
Paddy field 1229.56 3.21 1196.58 2.96 1139.29 2.71
Coniferous

forest 7960.03 20.77 7959.81 19.68 7171.30 17.09

Mixed forest 719.17 1.88 883.25 2.18 876.58 2.09
Broadleaved

forest 10,893.48 28.43 11,314.77 27.97 16,575.17 39.50

Bush 5923.07 15.46 6150.63 15.20 3372.12 8.04
Meadow 4252.15 11.10 3578.59 8.85 3413.38 8.13
Wetland 537.39 1.40 459.82 1.14 515.56 1.23

Lake and river 3616.79 9.44 5775.83 14.28 5796.12 13.81
Barren 0.10 0.00 0.05 0.00 0.05 0.00
Total 38,320.49 — 40,454.61 — 41,964.75 —

From Table 6, it can be found that the total ESV of the study area is USD 38.32 billion
(2000), USD 40.45 billion (2010) and USD 41.96 billion (2018), respectively. In 18 years, the
total ESV of the study area increased by USD 3644.26 million. The ecosystem services of
the broadleaved forests, the coniferous forests, the bush, the meadows, the lakes and the
rivers provide the main systems in various ecosystem services, and their value accounted
for 85.20% (2000), 85.98% (2010) and 86.57% (2018) of the total value. The broadleaved
forests had the highest ESV, about 1 USD 0.89 billion (2000), USD 11.31 billion (2010) and
USD 16.58 billion (2018); the coniferous forests have the second highest value, about USD
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7.96 billion (2000), USD 7.96 billion (2010) and USD 7.17 billion (2018), respectively. From
2000 to 2018, the value of broadleaved forests has increased most significantly, while the
value of the dry land and paddy fields has been decreasing. The results indicate that
although the Three Gorges Reservoir area has been affected by urban expansion to some
extent, the overall value has maintained an increasing trend, mainly due to the increasing
area of broadleaved forests, which provide a large amount of ESV.

Figure 11. The change in unit ESV from 2000 to 2018.

At the district scale, nine districts and counties had increasing unit ESVs from 2000
to 2010 (Figure 11a), this growth is partially concentrated in the middle section of the
Three Gorges Reservoir area, with the highest gain in Shizhu (4052.54 USD/ha). How-
ever, the decrease in unit ESV is mainly concentrated in the vicinity of the main city of
Chongqing: Dadukou had the largest decrease, about 5058.49 USD/ha. The total value
showed an increasing trend in the Three Gorges Reservoir area between 2010 and 2018, but
there are still 17 districts that declined in unit ESV (Figure 11b), and the most significant
decrease was found in Jiangbei (5190.16 USD/ha). The increase was concentrated in the
key protective areas of the Three Gorges Reservoir area, such as Wushan and Wuxi, and
the highest increase was found in Wuxi County (14,530.61 USD/ha). Overall, the increase
in unit ESV during the 18 years was concentrated in the central part of the Three Gorges
Reservoir area (Figure 11c), with Wuxi, Wushan and Shizhu growing faster than 8000
USD/ha, and Dadukou and Jiangbei showing the most significant decrease, both exceeding
5000 USD/ha.
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Figure 12. The ESV of four ecosystem classifications from 2000 to 2018.

As shown in Figure 12, the four types of value in the study area showed an increasing
trend from 2000 to 2018. We found that regulating services accounted for the highest
proportion of overall ESV, about 79.88% (2000), 80.40% (2010) and 80.29% (2018), respec-
tively. The proportion of each type of ecosystem service function had the following order
of magnitude: regulating services > habitat services > provisioning services > cultural and
amenity services.

3.3.2. Prediction of ESV Losses from 2018 to 2030

The CA-Markov model predicts the urban expansion pattern of the study area in
2030, and the results show that there will be a certain degree of outward urban expansion,
mainly in the vicinity of the main city of Chongqing. The urban expansion will lead
to a decrease in the value of ecosystem services. Our model suggests that the newer
urban area is 80,026.02 ha from 2018 to 2030. In the ten land use types (Figure 13a), The
most transferred land to urban areas is dry land and paddy field, about 33,903.54 ha and
28,381.23 ha, respectively, while the least transferred area is wetland, lake and river, about
6.48 ha and 61.38 ha, respectively.

Table 7 shows the significant differences in the losses of other ecological land under
urban expansion in different districts from 2018 to 2030. Dry land losses in Banan and
Yubei comprised an area of 5083.38 ha and 4681.71 ha, respectively, the sum of which
accounted for 28.80% of the total area. The area of paddy field losses in Yubei, Banan,
Shapingba and Jiulongpo accounted for 45.69% of the total area. The largest coniferous
and mixed forest area losses were in Wulong, Beibei and Kaizhou with areas of about
293.22 ha and 268.65 ha lost, respectively. The losses of broadleaved forest mainly occurred
in Jiulongpo (1177.83 ha) and Shapingba (1130.31 ha). The losses of meadows mainly
occurred in Fuling (509.67 ha). The largest losses occurred in Zhong (4.05 ha) and Beibei
(45.90 ha), respectively. In barren land, Jiangbei and Banan lost the largest area of 376.65 ha
and 285.48 ha, respectively.
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Figure 13. The losses area of land-use area and ESV from 2018 to 2030.

Table 7. The land-use losses in different districts from 2018–2030.

Region
(ha)

Farmland Forest Grassland Water
Body

Unused
Land

Dry Land Paddy
Field

Coniferous
Forest

Mixed
Forest

Broadleaved
Forest Bush Meadow Wetland Lake and

River Barren

Badong 138.6 143.19 216.81 76.05 54.36 1.89 6.21 0 0 43.2
Xingshan 47.79 61.29 42.93 73.89 15.66 13.95 1.26 0 0 51.12

Yiling 209.88 767.88 318.69 71.82 402.21 271.26 4.14 0 0 95.58
Zigui 22.41 108.09 201.87 13.23 45.72 21.15 2.79 0 0 24.75
Banan 5083.38 3623.40 302.04 83.79 434.88 29.25 55.44 0 6.03 285.48
Beibei 3111.93 2213.37 113.49 293.22 139.5 64.17 0.18 0 45.9 151.92

Changshou 679.77 1546.38 45 0 87.12 20.07 27.09 0.99 0 18.54
Dadukou 1135.71 679.86 175.32 26.64 232.47 0 0 0 0 48.87

Fuling 1281.42 1466.01 337.32 14.4 153.36 1.71 509.67 0 0 160.47
Jiangbei 1221.75 840.24 168.93 214.2 38.43 0 0 0 0 376.65
Jiangjin 2434.32 986.67 321.3 57.42 134.91 304.02 176.49 0 0 73.8

Jiulongpo 3026.34 2533.14 327.24 116.19 1177.83 152.01 49.95 0 0 66.06
Nanan 1906.20 1587.96 227.7 8.64 125.19 9.36 0 0 0 171

Shapingba 2778.84 2978.82 225.63 1.35 1130.31 8.01 6.3 0 0 178.83
Wanzhou 1035.72 1462.14 191.88 109.26 14.31 34.56 313.65 0 0 161.91

Yubei 4681.71 3830.94 282.87 49.05 347.04 11.25 64.8 1.44 9.45 121.86
Yuzhong 0 0 0 9.18 0 0 0 0 0 91.62
Fengdu 663.21 533.97 77.49 6.93 59.67 39.87 57.78 0 0 58.68
Fengjie 196.56 235.71 86.85 0.54 51.93 8.19 96.03 0 0 98.91

Kaizhou 1342.89 1261.80 78.3 268.65 10.44 1.98 203.85 0 0 62.28
Shizhu 234.36 266.4 40.05 0 20.43 3.24 73.35 0 0 30.87

Wushan 231.75 78.03 4.23 1.89 119.43 5.58 16.29 0 0 54.18
Wuxi 232.38 101.07 13.41 0 22.5 2.34 133.83 0 0 14.85

Wulong 1284.03 434.97 484.38 0 207.63 174.96 156.69 0 0 95.22
Yunyang 377.01 245.79 193.05 14.49 11.16 16.74 250.47 0 0 271.8

Zhong 545.58 394.11 276.21 57.42 0.18 15.48 39.87 4.05 0 49.86
Total 33,903.54 28,381.23 4752.99 1568.25 5036.67 1211.04 2246.13 6.48 61.38 2858.31

The increasing urbanization will encroach on other ecological lands and directly lead
to the losses of ESV by the equivalent coefficients. We found that the total ESV losses is
USD 268.81 million in the Three Gorges Reservoir area (Figure 13b). The highest values
of dry land and broadleaved forest were lost with USD 68.41 million (25.45%) and USD
58.17 million (21.64%), respectively. The variation of the overall ESV losses was explored
from the district scales (Figure 14a). Jiulongpo, Banan, Shapingba and Yubei have higher
losses (more than USD 25 million). This result indicates that these areas are at risk of ecolog-
ical degradation. Yuzhong, Xingshan and Wuxi have the lowest losses, mainly due to the
highest level of urbanization in Yuzhong, resulting in limited land for urban development.
In addition, Xingshan and Wuxi are as important ecological reserves in China, which limit
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the large-scale expansion of urban land use. On average, Dadukou, Jiulongpo, Shapingba
and Nanan have the highest unit ESV losses (more than 400 USD/ha) (Figure 14b).

Figure 14. The losses in the total and unit ESV from 2018 to 2030.

Figure 15 summarizes the amount of loss of the four primary services in different
districts. In Figure 15a, we find that Banan, Jiulongpo and Jiangjin have the largest loss
of provisioning services values (more than USD 1.2 million). There are 13 districts and
counties with a loss of less than USD 0.3 million, mainly concentrated in the upper half
of the Three Gorges Reservoir area of Wushan, Badong and Zigui, etc. The losses of
regulation services values are the largest among the four types of services. Four districts
lost more than USD 20 million: Jiulongpo, Banan, Shapingba and Yubei (Figure 15b). These
districts are important places for future urban expansion and their ecological regulating
services functions will decline from 2018 to 2030. Among the habitat services values
and entertainment services values (Figure 15c,d), Jiulongpo and Shapingba have the
largest losses.

Figure 15. The ESV losses in primary services from 2018 to 2030.
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4. Discussion
4.1. The Rationality of Delimiting Ecological Sensitive Areas

First, because of the limitation of collecting data and the need to delimit ecological
sensitive areas, according to the actual situation of the Three Gorges Reservoir area, this
study selects relevant indicators from 2018 to identify the ecological sensitive areas in the
study area in terms of three sensitivities (i.e., soil erosion sensitivity, land desertification
sensitivity and soil salinity sensitivity) so as to identify the scope and number of ecological
sensitive areas and provide a basis for achieving green development in the region [54].
As of now, the indicators and data will be further updated, which is a hot topic for
future research.

Second, the grid size used to identify ecological sensitive areas is 30 m × 30 m in this
paper. However, some of the raw data (NDVI, soil type, groundwater mineralization and
groundwater depth) are of higher resolution, but still can accurately identify the extent of
ecological sensitive zone. We believe that higher resolution data will be used in the future
to improve the accuracy of delimiting ecological sensitive zones.

Third, in the comprehensive ecological sensitivity evaluation, the areas with high
sensitivity or above account for 35.86% of the study area, with an area of 20,639.71 km2,
mainly in Wushan, Fengjie and Yunyang. This part is a forest reserve with mainly moun-
tainous terrain and high elevation, and its ecosystem types are diversified and spatially
heterogeneous, which are vulnerable to some natural disasters and human factors. The
harm to the ecological sensitive zone should be reduced. Meanwhile, a corresponding
ecological compensation mechanism is established [55], the ecological advantages will be
transformed into economic advantages, the ecological and economic benefits of the study
area will be improved, and the green development concept of “making all-out efforts to
protect it, and forbidding large-scale development” will be fully implemented.

4.2. The Accuracy of Simulated Urban Expansion

This study combines the ecological sensitivity, CA and Markov models in the context
of green development to simulate and predict the future urban spatial patterns in the
Three Gorges Reservoir area. The urban construction land area is predicted to increase by
80,026.02ha between 2018 and 2030, while the main expansion areas are in the northwestern
part of Banan, the northwestern part of Yubei, Jiulongpo, Shapingba and Beibei. The
analysis revealed that the future urban expansion in the study area is mainly occupying
paddy fields and drylands, occupying an area of 33,903.54ha and 28,381.23ha, respectively.

The driving factors affecting urban expansion were mainly selected as elevation, slope,
earthquake, landslide, highway, main road, railroad and population density. These factors
performed relatively well in simulating urban expansion in 2018, with an overall kappa
coefficient of 86.74% compared to the actual 2018 urban sites, but urban expansion is a
complex dynamic system [56]. It is not enough to consider only the above eight driving
factors. In the future, more socioeconomic and ecological data should be obtained to
provide a basis for improving the accuracy of urban expansion simulation. At the same
time, different prediction scenarios [57–59] and different grids sizes [33,60] play different
roles in the simulation of urban expansion.

4.3. Estimation of ESV Dynamics and Prediction of Future ESV Losses as an Effective Tool for
Ecological Safety Management

The estimation of ESV can provide a basis for the region to achieve sustainable
development [61]. The ESV change in the study area were calculated by using the land
use data from 2000–2018 and the ESV value equivalent table. The results show that the
ESV in the Three Gorges Reservoir area increased from USD 38,320.49 million in 2000 to
USD 41,964.75 million in 2018, and the overall ESV change showed an increasing trend.
This may be due to the continuous increase in the area of forest land (especially broadleaf
forest) due to the implementation of the reforestation project, which also brings an increase
in the value of different ecosystem service functions [62,63]. However, it is noteworthy



Sustainability 2021, 13, 8490 20 of 23

that between 2000 and 2018, there are 16 districts and counties with decreasing ESV per
unit. The most significant decreases (more than 5000 USD/ha) were observed in Dadukou
and Jiangbei. With increasing urbanization, we see that ESV will show a decreasing trend
and ecosystems will face increasing pressure in the region. In the four different ecosystem
services, regulating services provide the highest value, followed by habitat services, and
finally provisioning services and entertainment services.

As urbanization continues, it may cause degradation of the ecosystem [64,65]. This
study uses the CA-Markov model to predict the trend of urban expansion in 2030, and the
study finds that the growth of urban land in the study area is mainly through the occupation
of dry land and paddy fields. From 2018 to 2030, the overall ESV of the Three Gorges
Reservoir area will be reduced by about USD 268.81 million. At the district and county
scales, the ESV of Jiulongpo, Banan and Shapingba will be reduced most significantly, and
the ecological pressure in the area will be further increased. In starting from the perspective
of the four ESV, we found that regulating services values decreased the most. Therefore, it
is necessary to combine the ecological sensitivity method and ESV evaluation results to
achieve a more reasonable and targeted implementation of ecological spatial management
and steadily realize the green development strategy.

This study provides insights into ecological conservation under sustainable urbaniza-
tion by predicting change in urban land expansion and calculating ESV, using the Three
Gorges Reservoir area as an example, which can be of guidance to other countries. Espe-
cially, developing countries are facing different problems caused by rapid urbanization,
such as India [66], Sri Lanka [53] and Egypt [67]. Each country faces different ecological
problems. We should consider geohazard sensitivity and select suitable indicators for
the region where geohazards occur frequently. In ESV evaluation, there are differences
in different countries’ ecosystem value, and the equivalent coefficients table should be
changed appropriately according to the regional characteristics. Although there are dif-
ferences between the spatial scales of different countries, it is necessary to identify the
ecological sensitive zones and to predict the future development direction of urban land
and the dynamic change of ESV through scientific and rational identification. This quan-
titative evaluation provides a reference basis for ecological spatial control and effective
macro-control.

5. Conclusions and Outlook

In the context of economic globalization, the urbanization process of human beings
has become irreversible. Handling the relationship between environmental protection and
economic development has become particularly critical. In this study, we simulate the
future urban expansion and ESV change in the study area based on ecological sensitivity.
Under the guidance of green development concept, the socioeconomic maximization is
achieved, and the relationship between ecological protection and urban expansion is
coordinated. This study shows that:

1. In the comprehensive ecological sensitivity assessment, we found that the ecological
sensitive zone is about 20,639.71 km2 in the Three Gorges Reservoir area, account-
ing for 35.86% of the total study area. This part of the area is in Wushan, Fengjie
and Yunyang.

2. The results of the study show that the overall ESV in the Three Gorges Reservoir
area showed an increasing trend from 2000 to 2018. The growth was about USD
3644.26 million. From the perspective of ESV change in districts and counties, we
found that 16 districts and counties were decreasing in unit ESV, Dadukou and
Jiangbei decreased most significantly. In four ecosystem services, regulating services
provided the highest ESV.

3. In the context of ecological priority and green development, the 2030 urban land was
predicted and simulated. In 2018–2030, about 80,026.02 ha of new construction land
will be added to the Three Gorges Reservoir area, and the overall ESV will lose USD
268.75 million. The largest losses are in Jiulongpo, Banan and Shapingba.
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Although, this method can better delimit ecologically sensitive zones and estimate
the dynamic changes of ESV in the Three Gorges Reservoir area, there is still much room
for improvement. We will use high-resolution land use data and remote sensing inversion
data (FVC, WET, NDBSI, LST and NPP) in the future work. This allows us to better identify
zones of ecological sensitivity. Meanwhile, we should also make different simulations of
urban expansion for different scenarios, such as developmental orientation or ecological
orientation. It can provide better prediction and estimation of ESV changes for future urban
expansion in the Three Gorges Reservoir area.
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