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Abstract: Co-composting is an effective approach to biowaste management. The co-composting
potential of banana pseudostem (BPS) and mushroom media waste (MMW) with chicken manure
(CM) has not been explored, let alone their suitable ratios of co-composting being determined. Mean-
while, the imbalance ratios of the feedstocks used in the process severely restrict the physicochemical
properties and quality of the finished product. For this reason, six different ratios of BPS, MMW, and
CM, viz. 1:1:1, 1:2:1, 1:3:1, 2:1:1, 2:2:1, and 2:3:1, respectively (T1–T6), were composted together in
aerobic conditions to identify the suitable ratio by evaluating the changes in the physicochemical
properties in the composting process. According to the ratio of treatments, the feedstocks were mixed
on fresh weight basis. The turning process of co-composting piles was repeated at seven-day intervals
to maintain the uniform aeration throughout the composting period. The piles having BPS, MMW,
and CM at ratios of 1:2:1, 1:3:1, and 2:3:1, respectively, demonstrated a longer thermophilic phase,
indicating more complete decomposition and earlier maturity compared to piles with higher amount
of BPS. Of the ratios, BPS:MMW:CM at 1:2:1 ratio (T2) resulted in the highest total nitrogen (1.53%),
lowest C:N ratio (12.4), organic matter loss (54.5%), and increased CEC (41.3 cmol/kg). The highest
germination index (129%) was also recorded in the T2 compost, indicating that it was toxic-free and
safe for seed germination. The nutrient-rich compost with high alkaline pH (≥10) can effectively
ameliorate soils of an acidic nature, for example, the acidity of Ultisols and Oxisols.

Keywords: banana pseudostem; mushroom media waste; chicken manure; chemical properties;
co-compost

1. Introduction

Agricultural waste can potentially be recycled through composting processes (com-
posting and co-composting) that convert it into useful resources for plant nutrition and
soil health (through adding humus-like materials) [1]. One of the key considerations
of composting and co-composting is the sources and types of organic materials used.
Mainly, co-composting involves mixing nitrogen-rich organic wastes such as nutshells,
sewage sludge, and animal manure with carbon-rich organic wastes (bulking agent) such
as saw-dust, crop residue, biochar [2,3], and mushroom spent substrate [4]. On the other
hand, banana pseudostem has huge potential as a co-composting material [5]. The global
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production of pseudostem currently amounts to approximately 336 million tonnes [6] at
the rate of 60–70 tonnes ha−1 as post-harvest waste. It mostly remains unused and is
simply creating more pollution. Yet, it can be a vital source of nutrients that will regulate
and assist plant growth [7]. Similarly, mushroom production has risen worldwide resulting
in an estimated 53 million tons of mushroom media waste (MMW) (1 kg mushroom is
produced from 5 kg mushroom media substrate). Carbon (C)-rich mushroom media waste
has immense promise for composting [8] because of its large surface area and contains
carbohydrates, protein, fat, and many kinds of enzymes as well as fungus mycelium and
residual nutrients [9,10]. The demand for livestock and the production of poultry has
increased significantly with the rising human population, which has resulted in producing
large quantities of manure [11,12]. With comparatively high nitrogen (N), co-composting
with chicken manure helps turn various organic solid wastes into suitable composts by
controlling the activity of microorganisms [11].

Silva and Bras [13] showed that chicken manure is usually rich in N but poor in C,
leading to a low C:N ratio, which restricts the composting process. Apart from these,
chicken manure enhanced the microbial growth and activity for efficient composting by
shortening the composting period [10]. Being rich in C, the addition of mushroom media
waste can act as an adsorbent of readily available N and allows the microbial population to
multiply and immobilize N present in chicken manure. Conversely, banana pseudostem
may help check N loss through the formation of struvite with ammonium-N (NH4

+-N).
Moreover, 80–90% water by weight [14] may ensure the best possible moisture content in
the process. Considering the above individual properties, these materials have the potential
to produce quality compost.

Previous research has studied the quality of composts produced by the co-composting
method and generally proved that the method of composting, combinations between them,
and the ratio at which the co-composting materials are used, determine the quality of the fi-
nal compost. Accordingly, the rate of degradation and mineralization process was enhanced
through the co-composting of banana peels with poultry manure [15]. Soto-Paz et al. [16]
evaluated the potential of biowaste and sugarcane filter cake for composting. They recorded
that the composting of biowaste and sugarcane filter cake at the 4:1 ratio showed faster
maturity and stability of the final compost. Similarly, the composting of poultry manure,
cellulosic sludge, and wood chips together showed faster decomposition with the incre-
ment of nutrients and organic matter (OM), while also maintaining the C:N ratio below
20 as quality compost [13]. Meunchang et al. [17] observed the rapid loss of OM from
the composting of (2:1) sugarcane filter cake with its bagasse. Moreover, the co-composting
of 25% wood chips and 25% green waste resulted in a quality compost with optimum
pH, electrical conductivity (EC), cation exchange capacity (CEC), and germination index
(GI > 80%) value [18]. As the C:N ratio of chicken manure is comparatively low, it tends to
emit more ammonia than from other organic sources [19]. To deal with this problem, other
materials can be used at different ratios to suppress the emissions by adjusting the ma-
terial’s C:N ratio. Studying the effects of initial mixtures on the characteristics of organic
matter in composts, Francou et al. [20] found little stabilization of organic matter during
composting of green wastes with their large lignin content. Chicken manure compost
with 42.5% (w/w) bark in the feedstock had the best quality as a soil improver in terms of
organic matter content, C:P ratio, C:N ratio, and stability [21].

Likewise, research on the composting of animal manure with bulking materials such
as cereal crop residues [22,23], cotton crop waste [24], and wood shavings, leaves, and
sawdust [25,26] have been undertaken throughout the world. Several analyses have
explored co-composting of chicken manure with farmyard manure, pig manure, animal
dung, garden waste, green waste material, sawdust, animal farm litter, and bedding
material [27–30]. Kalemelawa et al. [15] evaluated the aerobic and anaerobic composting
of banana peels treated with inoculums. He et al. [29] used pig manure, wheat straw, and
rice straw biochar in composting. Kumar et al. [30] executed simultaneous composting of
sugarcane waste with mushroom substrate and wheat straw to improve compost quality.
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Similarly, Czekała et al. [31] also investigated biochar with poultry manure and wheat
straw in the aerobic co-composting process in their study.

However, not enough research has been published on co-composting using banana
wastes and the subsequent physicochemical changes that occur during composting. Most
research has been done in the laboratory, but here, the nutrient parameters are limited.
Such studies’ results did not truly reflect the utility of crop demand in agriculture. Banana
pseudostem is a highly alkaline organic waste that contains cellulose and lignin with
75–85% moisture [32]. The addition of excessive moisture and inappropriate ratios of
a mixture may lead to delaying the process through the poor window, which does not
favor microbe and quality compost [33].

The inherent moisture in the banana pseudostem along with a suitable ratio of MMW
and frequent turning would create a congenial condition for faster decomposition in
the process. Composting of these materials together may alleviate the negative impacts of
individual waste on crops and might turn the compost into a balanced organic fertilizer
able to synchronize the release of nutrients with the demand of crops in acidic soil. To
the best of our knowledge, no research has investigated the decomposition of banana
pseudostem and mushroom media waste with chicken manure to utilize them as organic
fertilizer through co-composting. Therefore, in order to make effective compost, the ratio of
the substrate mixture must first be determined. The objective of the study was to identify
the suitable ratio of banana pseudostem to mushroom media waste in co-composting with
chicken manure.

2. Materials and Methods
2.1. Materials Collection, Preparation, and Pile Management

The required amounts of semi-humified chicken manure (CM), mushroom media
waste (MMW), and banana pseudostem (BPS) samples were collected from QL Ansan
Poultry Farm Sdn Bhd, Rawang (3◦27′31.97” N and 101◦35′21.23” E), Nas Agro Farm,
Sepang (2◦50′52.64” N and 101◦44′38.23” E), and Banting, (2◦48′16.1” N and 101◦30′10.99”
E), Malaysia, respectively. The collected CM and MMW were properly cleaned, sieved, and
preserved separately in an open polyshade house at ambient temperature (25 ◦C to 28 ◦C).
The day before composting, fresh banana pseudostems were chopped down into desirable
sizes then crushed with a 14 HP, woodchipper machine (Model: Ohashi-GS122GB, Obashi
Ecological technology, Sakimura Chiyoda Kanzaki Saga, Japan). Banana pseudostem sap
was collected through the outlet pipe during the crushing of banana pseudostem. The sap
was subjected to the addition of an extra 250 g urea and maintained moisture (at 60–70%)
in the composting piles. In each pile, the 250 g of urea was evenly sprinkled in each layer
of feedstock mixtures with pseudostem sap and water. It was uniformly spattered in
different layers in the final mixture during pile preparation to promote decomposition.
The piles were protected with a rainproof, non-transparent and thick plastic canvas from
any unexpected weather disturbance. Turning and mixing (manually by shovel) were
done weekly to allow uniform airflow throughout the composting period. The initial
chemical properties of individual materials were measured prior to the co-composting
process (Table 1).

Table 1. Physicochemical characteristics of the raw materials used in the co-composting process.

Properties Banana Pseudostem (BPS) Chicken Manure (CK) Mushroom Media Waste (MMW)

Moisture (%) 59.23 ± 4.74 14.52 ± 0.59 28.50 ± 0.35
pH 10.41 ± 0.18 9.53 ± 0.33 6.19 ± 0.13

EC (dSm−1) 4.74 ± 0.14 4.66 ± 0.13 0.70 ± 0.02
Total C (%) 35.14 ± 1.23 23.57 ± 1.08 40.12 ± 1.42

OM (%) 77.78 ± 2.10 50.0 ± 1.95 94.94 ± 3.03
C:N ratio 73.20 ± 1.56 8.93 ± 0.26 16.05 ± 0.51

Total N (%) 0.48 ± 0.07 2.64 ± 0.06 2.50 ± 0.06
CEC (cmol (+)/kg−1) 30.00 ± 1.25 24.85 ± 1.14 24.35 ± 0.88
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Table 1. Cont.

Properties Banana Pseudostem (BPS) Chicken Manure (CK) Mushroom Media Waste (MMW)

Potassium (K, g kg−1) 14.06 ± 0.57 12.59 ± 0.47 3.24 ± 0.16
Calcium (Ca, g kg−1) 9.60 ± 0.35 12.36 ± 0.43 12.27 ± 0.55

Magnesium (Mg, g kg−1) 2.52 ± 0.09 3.60 ± 0.14 2.41 ± 0.08
Sodium (Na, g kg−1) 0.87 ± 0.04 2.48 ± 0.09 0.55 ± 0.04

Total P (g kg−1) 7.40 ± 0.31 6.20 ± 0.24 8.02 ± 0.37
Copper (mg kg−1) 35.40 ± 1.70 41.60 ± 1.66 14.10 ± 0.59

Manganese (Mn, mg kg−1) 160.3 ± 6.25 360.2 ± 13.69 101.2 ± 5.06
Zinc (Zn, mg kg−1) 60.2 ± 2.40 32.72 ± 0.98 163.8 ± 7.17

Mean ± Standard deviation are the average of three replicated samples (dry basis).

2.2. Research Design

The raw materials of BPS, MMW, and CM were mixed manually with six ratios,
viz., T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, respectively,
before the compost piles were prepared for each treatment. The compost pile was 2 m
length × 1.2 m width × 1.0 m height in size volume. According to the treatment ratio,
each compost pile received in total 500 kg of three feed stocks as fresh weight basis where
the initial moistures of CM, MMW, and BPS were 14.5%, 8.5%, and 59.2%, respectively. Each
pile had two replications and samples were replicated three times following Randomized
Complete Block design.

2.3. Collection and Preparation of Compost Samples for Physicochemical Analysis

A 300 g of bulk sample was randomly collected from different places (6) of two
compost pile in each round of turning and mixture and divided into two parts. The first
part of these samples was air-dried and passed through the 0.25- and 0.1-mm sieves and
sample repeated three times for physicochemical analysis. Each sub-sample was considered
as replication. The second part of the compost samples was immediately preserved in
a refrigerator at 4–5 ◦C for seed germination test.

2.4. Monitoring of Temperature Profile (◦C) and Moisture in the Composting Process

The temperature was recorded daily in the morning (before 8 am) and evening (after
5 pm) from the three places of the piles (central, mid-peripheral, and lower-peripheral posi-
tions) by portable Mercury thermometer (Alchl Thrmter, Labworld, India). In that case, half
portion of the thermometer was dipped into the pile from the top centre while the whole
portion was dipped from the mid and lower-peripheral position to get the actual average
temperature [16]. The ambient temperature was also recorded by the same thermometer at
the same times. The daily six readings per compost pile recorded in the morning (3) and
evening (3) were averaged.The compost moisture was measured by the gravimetric method
where sample was dried at 105 ◦C until reaching the constant weight [34]. The moisture
(%) was calculated following the equation: moisture (%) = (W1−W2)

W1
× 100, where weight

of compost before oven drying (W1) and weight of compost after oven drying (W2).

2.5. Chemical Analysis of the Compost Samples

The pH was measured from the compost samples by a digital pH meter (HI 2211 pH
meter, Hanna instrument, Woonsocket, RI, USA) at the ratio of 1:10 (w/v) water-soluble
extract, whereas 1:20 (w/v) ratio of the sample with water was used to determine EC by
digital EC meter (Hanna 2300) as described by Gaind [35]. The total C, N, and sulfur (S)
were determined by Leco TruMac CNS analyzer. The C:N ratio was calculated from the to-
tal C and total N values. The TOC and OM contents of compost samples were estimated
by loss on ignition method [36]). The CEC was determined by the ammonium acetate
(pH 7.0) leaching method [37]. Inorganic N was determined using the method of Keeney
and Nelson [38]. The total contents of K, Ca, Mg, Na, Mn, Cu, and Zn were determined by
atomic absorption spectrophotometer (A Analyst 800, PerkinElmer Corporation, Norwalk,
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CT, USA) followed by dry ashing method, based on Cottenie [37], and the amount of P was
determined by auto-analyzer (Yellow method) from the same sample.

2.6. Compost Toxicity Test

The germination index of radish seeds was tested via the water extraction procedure as
suggested by Guo et al. [39]. Briefly, the compost samples and deionized water at the ratio
of 1:10 (w/v) was centrifuged for 15 min at 4000 rpm and filtered through 0.45 µm filter
paper. A 5 mL of filtrate was pipetted in to 20 mm × 100 mm triplicate sterilizer Petri dish
after placing double filter papers on it. Thirty randomly selected radish seeds were placed
evenly on filter paper, sealed, and kept on the Petri dish in a dark place for 72 h at room
temperature. The total number of germinated seeds were counted in the Petri dish and
recorded as a percentage. Root length of the germinated seeds was measured by image J.
software [40]. The germination index (GI) was calculated by the following equation:

GI (%) = [SG (%) of treatment× RL]/[SG of control (%)× RL of control]× 100,

where SG = seed germination of treatments, RL = root length of the treatments (cm).

2.7. Statistical Analysis

Data were subjected to analysis by PROC ANOVA in the RCBD design (SAS, 9.4).
The treatment means were compared by protected Least Significant Difference Test (LSD)
at the 5% probability level [41].

3. Results
3.1. Monitoring Temperature Profile during the Composting Period

Irrespective of treatments, the temperature rise from the first day and reached the peak
at 4–5 days. The use of BPS, MMW, and CM at different ratios had varied temperatures over
the co-composting period (Figure 1a,b). The temperature reaching the thermophilic phase
for piles T2 (1:2:1 BPS:MMW:CM), T3 (1:3:1 BPS:MMW:CM), and T6 (2:3:1 BPS:MMW:CM)
lasted up to 29 days, while for T1 pile (1:1:1 BPS:MMW:CM), the phase lasted for 4–19 days
(Figure 1a,b). However, T5 pile (2:2:1 BPS:MMW:CM) took 13–19 days to reach the same
phase (52.7 ◦C to 55.0 ◦C). Elsewhere, the temperature ranged from 45.4 ◦C to 48.8 ◦C in
T4 pile (2:1:1 BPS:MMW:CM) and it consistently remained below the thermophilic stage
(<50 ◦C) throughout the composting period. After a longer mesophilic phase (40–50 ◦C),
the temperature in all the piles (except T4 pile) started falling and reached cooling stage
(<40 ◦C) after 58, 49, 52, 58, and 55 days, respectively.
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3.2. Changes in pH and EC during the Co-Composting

During the composting period, the pH levels in the piles were consistently varied.
An increase in the pH and EC levels was observed in each co-compost pile (treatment)
(Figures 2 and 3). In the primary stage of composting, pH values revealed a slight decline
or remained unchanged up to 7 days in the T2 pile having increased the amount of MMW
followed by the T3 pile, where the T4 pile, with a larger amount of BPS, showed a sharp
increase in pH value. In the secondary stage, the pH increased gradually up to the final
compost. Generally, pH varied from 7.69–8.74 in the initial stage and from 10.0–10.6 in
the final stage. However, in the final compost, the lowest pH level (10.0) was recorded in
the T2 pile having an increased amount of MMW (1:2:1 of banana pseudostem, mushroom
media waste, and chicken manure) followed by the T3 (1:3:1 BPS:MMW:CM) pile, while
the highest pH (10.6) was recorded in the T4 (2:1:1) pile where BPS was used in an increased
ratio. The EC increase was accompanied by the rising temperature in the co-compost
under process (Figure 1a,b). In the final compost, EC ranged from 2.38 to 3.71 dS m−1 in
the compost piles, while the T2 pile mixed with the increased amount of MMW displayed
the lowest EC value (2.38 dS m−1), followed by T3 (2.68 dS m−1) treatment. In the last stage
of the co-composting process, the highest EC (3.71 dS m−1) was recorded in the T4 pile,
which was mixed with increased BPS substrate.
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Figure 3. Changes of EC during the composting. Each marker point represents mean (n = 3), and
the vertical bars indicate Standard Error of Means (S.E.M). Legends: BPS, MMW, and CM mixed at
T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, respectively.
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3.3. Organic Matter Degradation

The mixing of BPS, MMW, and CM in different ratios significantly influenced the OM
degradation in the process (Figure 4). Throughout the composting period, the rapid
reduction of OM was recorded in the T2 pile with 1:2:1 BPS:MMW:CM (79.4% to 36.13%),
which was followed by the T3 pile, while the slowest decomposition was recorded in the T4
pile having a larger amount of BPS used (2:1:1 BPS:MMW:CM). The decomposition of
the initial substrate biomass fell from 66.8% to 49.29% in the T4 pile. However, the highest
(54.5%) relative loss of OM was calculated from the initial to the final stage of the T2 pile of
co-compost with double the MMW used compared to the T4 pile.
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Figure 4. Degradation of organic matter during the composting period. The vertical bars indicate
Standard Error of Means (S.E.M). Legends: BPS, MMW, and CM mixed at T1 = 1:1:1, T2 = 1:2:1,
T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, respectively.

3.4. Changes of Total N, NH4-N, and NO3-N

Changes of N were influenced by different ratios of feedstocks used in co-composting.
The highest total N was recorded in T2 having 1:2:1 of BPS, MMW, and CM (1.53%) along
with T5 having 2:2:1 of BPS, MMW, and CM (1.48%) piles, while the lowest N (1.10%) was
recorded in the T4 pile (2:2:1 BPS:MMW:CM) (Table 2). In all piles, the total N loss varied
from 11.1% to 23.6% from the initial to the end of the composting, which was recorded in
the T2 and T1 piles with an equal amount of feedstocks, respectively. NH4-N ranged from
452–738 mg kg−1 in the first two weeks and decreased gradually to 120–179 mg kg−1 at
the end of composting (Figure 5). However, T2, having a higher amount of MMW, had
the largest amount of NH4-N (179 mg kg−1) while the pile having higher BPS (T4 pile) had
the lowest (120 mg kg−1) at the final stage (Figure 5). The trend of NO3-N increased with
the decline of NH4-N in all compost piles, and finally, significantly higher values of NO3-N
were recorded in the T2 (51.9 mg kg−1) pile, followed by the T3 pile (48.5 mg kg−1), and
the lowest (35.55 mg kg−1) in the T4 pile (Figure 6).
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Table 2. Changes of moisture, C:N ratio, total N, and cation exchange capacity of different compost by co-composting.

Parameters Time T1 T2 T3 T4 T5 T6

Moisture content (%) Initial
Final

72.12 ± 2.35 ab
45.24 ± 1.10 b

68.52 ± 1.96 b
38.55 ± 0.94 d

70.6 ± 1.73 ab
36.25 ± 0.74 d

79.32 ± 2.91 a
50.10 ± 1.43 a

75.1 ± 1.53 ab
43.41 ± 0.71 bc

73.39 ± 1.19 ab
40.21 ± 0.70 cd

Total Organic C (%) Initial
Final

35.25 ± 1.00 ab
24.08 ± 0.59 ab

40.96 ± 1.01 a
18.90 ± 0.55 d

42.56 ± 0.97 a
20.09 ± 0.57 cd

34.55 ± 1.13 c
25.61 ± 0.52 a

37.98 ± 0.93 abc
22.25 ± 0.40 bc

39.80 ± 1.13 ab
21.28 ± 0.69 cd

Total N (%) Initial
Final

1.91 ± 0.04 a
1.46 ± 0.03 a

1.70 ± 0.03 b
1.53 ± 0.04 a

1.68 ± 0.04 b
1.45 ± 0.04 a

1.42 ± 0.03 c
1.10 ± 0.02 b

1.76 ± 0.04 ab
1.48 ± 0.03 a

1.70 ± 0.03 b
1.42 ± 0.02 a

C:N Initial
Final

18.44 ± 0.60 c
16.49 ± 0.40 b

24.09 ± 0.58 ab
12.35 ± 0.25 d

25.33 ± 0.82 a
13.76 ± 0.22 cd

24.33 ± 0.39 ab
23.28 ± 0.52 a

21.57 ± 0.70 b
15.03 ± 0.42 bc

23.14 ± 0.42 ab
14.98 ± 0.30 bc

CEC (cmol kg−1)
Initial
Final

24.85 ± 0.81 ab
38.00 ± 0.50 bc

27.48 ± 0.63 ab
41.28 ± 0.98 a

27.77 ± 0.56 a
40.14 ± 0.90 a

24.00 ± 0.81 b
32.14 ± 0.55 c

25.42 ± 0.71 ab
38.50 ± 0.68 abc

25.21 ± 0.90 ab
40.07 ± 0.88 ab

Here, compost piles, viz. T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, indicates mixture ratio of banana pseudostem
(BPS), mushroom media waste (MMW), and chicken manure (CM) respectively. Mean ± standard error within the row followed by
the same letter are not statistically significant at p ≥ 0.05 by LSD Test.
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Figure 5. Changes of NH4-N during the composting. Each marker point represents mean (n = 3),
and the vertical bars indicate Standard Error of Means (S.E.M). Legends: BPS, MMW, and CM mixed
at T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, respectively.
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Figure 6. Changes of NO3-N during the composting. Each marker point represents mean (n = 3), and
the vertical bars indicate Standard Error of Means (S.E.M). Legends: BPS, MMW, and CM mixed at
T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, respectively.
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3.5. Changes in Moisture

Among the treatments, the moisture content, total C, total N, and the C:N ratio fell from
the initial to final stage whereas the CEC was increased significantly (p ≤ 0.05) (Table 2).
The moisture content varied from 68.5% to 79.3% in the initial stage and 36.3% to 50.1% in
the final stage. The minimum moisture (36.3%) was observed in the final compost at T3
pile, which was statistically similar to the T2 (38.6%) pile, while the maximum moisture of
50.1% was recorded from T4 compost (50% banana pseudostem, 25% mushroom media
waste, and 25% chicken manure).

3.6. Changes in Total C

A remarkable decrease in TOC was found from the beginning to the final compost and
it ranged from 25.9–53.9% in the piles where 31.7%, 53.9%, 52.8%, 25.9%, 41.4%, and 46.5%
were recorded in the T1, T2, T3, T4, T5, and T6 piles, respectively. The highest reduction of
53.9% appeared in the T2 (1:2:1 ratio) pile and 25.9% in the T4 (2:1:1 ratio) pile. Of the six
compost mixtures, however, the lowest content (18.9%) of organic C was recorded in T2,
and the highest was 25.6% in T4, followed by the T1 (24.1%) co-compost pile.

3.7. Changes in C:N Ratio

All the compost samples had a C:N ratio below 20 except for T4 (23.3), while the lowest
C:N ratio (12.4) in T2 was statistically identical to (1:3:1) the T3 (13.8) pile at the end of
composting (Table 2). Moreover, the C:N ratio of the compost significantly decreased by
10.6%, 48.7%, 45.7%, 4.31%, 30.3%, and 35.3% in the T1–T6 treatments, respectively. Among
the treatments, the highest C:N ratio decreased (48.7%) in T2 and the lowest (4.31%) was in
T4 from initial to final compost.

3.8. Changes in CEC

The CEC for all treatments has shown a significant increase in the final compost
(Table 2). The piles T2 (1:2:1 BPS:MMW:CM), T3 (1:3:1 BPS:MMW:CM), and T5 (2:2:1
BPS:MMW:CM) showed statistically identical results of CEC where the numerically higher
value was obtained from T2 treatment (41.3 cmol kg−1) and a lower value was found in
the T4 treatment (32.1 cmol kg−1). In the final compost, CEC was higher by 45% than that
of the initial condition.

3.9. Changes in Macro- and Micro-Nutrients

Co-composting of BPS, MMW, and CM in different ratios had varied nutrient con-
centrations in the final compost (Table 3). In the final compost, the highest values of P
(9.84 g kg−1), Ca (14.8 g kg−1), Zn (456 mg kg−1), Cu (60.7 mg kg−1), and Mn (784 mg kg−1)
were recorded from the T2 pile having BPS, MMW, and CM at a 1:2:1 ratio but the highest
values of K (12.1 g kg−1), Mg (5.94 g kg−1), Na (2.70 g kg−1), and S (300 g kg−1) were
recorded in the T1 pile. This was comparable to the lowest value of all nutrients observed in
the T4 compost, having a higher amount of BPS added (50%). However, the concentrations
of P, K, Ca, Na, and Zn were increased by 79.2%, 73.3%, 44.7%, 41.2%, and 86.1%, respec-
tively, in the T2 pile. In contrast, the amounts of K, Mg, and Na in the T4 pile, having more
BPS (50%), fell by 7.08%, 8.56%, and 1.87%, respectively, compared to their corresponding
initial value.

Table 3. Changes of total macro- and micronutrients of different treatments (T1–T6) during the composting period.

Treatments
P (g kg−1) K (g kg−1) Ca (g kg−1)

Initial Final % Increase Initial Final % Increase Initial Final % Increase

T1 4.14 ± 0.13 bc 6.76 ± 0.27 b 63.29 7.47 ± 0.18 b 12.1 ± 0.47 a 61.98 6.64 ± 0.26 b 8.97 ± 0.19 c 35.09

T2 5.49 ± 0.20 a 9.84 ± 0.35 a 79.23 5.28 ± 0.11 c 9.15 ± 0.46 b 73.30 10.23 ± 0.23 a 14.8 ± 0.17 a 44.67

T3 6.20 ± 0.15 a 10.4 ± 0.16 a 67.74 4.84 ± 0.22 c 8.04 ± 0.42 b 66.12 9.88 ± 0.09 a 14.2 ± 0.26 ab 43.72

T4 3.45 ± 0.10 c 4.39 ± 0.12 c 27.25 10.6 ± 0.12 a 9.85 ± 0.35 ab −7.08 5.97 ± 0.14 c 5.08 ± 0.17 d −14.90

T5 3.69 ± 0.13 bc 6.64 ± 0.26 b 79.95 6.04 ± 0.14 c 9.26 ± 0.25 b 53.31 6.43 ± 0.17 b 8.46 ± 0.20 c 31.57
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Table 3. Cont.

Treatments
P (g kg−1) K (g kg−1) Ca (g kg−1)

Initial Final % Increase Initial Final % Increase Initial Final % Increase

T6 4.39 ± 0.17 b 7.50 ± 0.20 b 70.84 5.81 ± 0.17 c 7.55 ± 0.22 b 29.95 9.18 ± 0.19 a 12.8 ± 0.26 b 39.43

LSD (0.05) 0.84 1.19 - 1.32 2.41 - 1.28 1.65 -

Treatments
Mg (g kg−1) Na (g kg−1) S (mg kg−1)

Initial Final % Increase Initial Final % Increase Initial Final % Increase

T1 3.77 ± 0.11 bc 5.94 ± 0.03 a 57.56 2.05 ± 0.02 b 2.70 ± 0.04 a 31.71 270 ± 8.15 a 300 ± 6.12 a 11.11

T2 3.45 ± 0.02 c 4.81 ± 0.04 b 39.42 1.70 ± 0.02 d 2.40 ± 0.02 b 41.18 200 ± 4.89 d 250 ± 4.08 c 25.00

T3 3.38 ± 0.07 c 4.62 ± 0.03 c 36.69 1.81 ± 0.01 c 2.31 ± 0.03 c 27.62 190 ± 3.67 d 270 ± 8.16 bc 42.11

T4 4.51 ± 0.16 a 4.12 ± 0.04 d −8.65 2.14 ± 0.02 a 2.10 ± 0.02 d −1.87 230 ± 5.30 bc 290 ± 3.26 ab 26.09

T5 3.91 ± 0.04 b 4.86 ± 0.03 b 24.30 1.81 ± 0.03 c 2.30 ± 0.03 c 27.07 250 ± 4.89 ab 260 ± 4.48 c 4.00

T6 3.40 ± 0.08 c 4.59 ± 0.03 c 35.00 1.59 ± 0.02 e 2.14 ± 0.05 d 34.59 210 ± 4.08 cd 250 ± 2.85 c 19.05

LSD (0.05) 0.44 0.13 - 0.04 0.08 - 23.73 21.19 -

Treatments
Zn (mg kg−1) Cu (mg kg−1) Mn (mg kg−1)

Initial Final % Increase Initial Final % Increase Initial Final % Increase

T1 170 ± 3.26 d 230 ± 6.12 d 35.3 31.3 ± 1.02 ab 49.0 ± 1.33 b 56.5 270 ± 11.02
cd 470 ± 8.16 d 74.1

T2 245 ± 4.08 a 456 ± 6.53 a 86.1 28.7 ± 0.81 b 60.7 ± 1.17 a 111 319 ± 11.71
ab 784 ± 13.88 a 145.8

T3 241 ± 4.10 ab 426 ± 6.53
ab 76.8 21.4 ± 0.57 c 59.6 ± 1.06 a 178 255 ± 6.12 d 670 ± 12.24 b 162.7

T4 150 ± 4.08 e 170 ± 2.04 e 13.3 33.4 ± 0.73 a 34.0 ± 0.74 c 1.8 342 ± 8.97 a 370 ± 6.12 e 8.2

T5 193 ± 2.86 c 310 ± 8.16 c 60.6 29.3 ± 0.53 b 51.3 ± 0.69 b 75.1 292 ± 4.89 bc 583 ± 8.87 c 99.7

T6 224 ± 4.49 b 419 ± 7.75 b 87.1 22.3 ± 0.93 c 47.7 ± 0.37 b 113.9 244 ± 5.71 d 602 ± 12.23 c 146.7

LSD (0.05) 18.82 31.11 - 3.53 6.61 - 35.50 50.09 -

Here, piles, viz., T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and T6 = 2:3:1, indicate mixture ratio of BPS, MMW, and CM
respectively. Mean ±standard error within the column followed by the same letter are not statistically significant at p ≥ 0.05 by LSD Test.

3.10. Germination Index (%) under the Compost

The germination index showed a parallel or straight trend up to the 14th day in all
piles except the T4 pile (with a higher amount of BPS), which experienced a slight decline
up to the 19th day. In the study, the GI (%) started to increase from 14–19 days in all piles
(T1–T6) towards the end of composting (Figure 7). The order of the GI values was 129, 125,
115, 93.4, 87.5, and 72.4% in T2, T3, T6, T5, T1, and T4 piles, respectively. The maximum
germination index (129%) was recorded in T2 pile having a higher amount of MMW used,
which was statistically similar to T3 (125%), while the T4 pile showed the lowest 72.4%
from the final compost.
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Figure 7. Changes of germination index in different treatments over the composting period. Each
marker point represents mean (n = 3), and the vertical bars indicate Standard Error of Means (S.E.M).
Legends: BPS, MMW, and CM mixed at T1 = 1:1:1, T2 = 1:2:1, T3 = 1:3:1, T4 = 2:1:1, T5 = 2:2:1, and
T6 = 2:3:1, respectively.

4. Discussion

The final composts, which had banana pseudostem (BPS), mushroom media waste
(MMW), and chicken manure (CM) at the ratios of 1:2:1 and 1:3:1, did better in compost
production and germination of sweet corn seeds. Based on the physical and chemical
changes recorded during the co-composting, it emerged that the compost piles having
more MMW was transformed into a compost of good quality. These composts showed
better maturity and stability based on the temperature, C:N ratio, CEC, weight loss (CO2
evolution), nutrient concentration, and seed germination. These features are discussed in
more detail below.

4.1. Monitoring Temperature during the Composting

Temperature during composting is an important indicator of its maturity and qual-
ity [42]. An ideal composting process consists of three phases of temperature, namely,
the thermophilic (>50 ◦C), mesophilic (40–50 ◦C), and cooling phases (<40 ◦C), where
the thermophilic stage represents the rapid decomposition of organic matter through
microbial activity and the mesophilic and cooling phases may cause increased nitrous
oxide emission [43]. The decline of the temperature below 40 ◦C expressed the maturity
of compost [44]. In our study, the T2 pile showed a faster rise in temperature and longer
thermophilic phase lasting up to 30 days followed by T3 due to the incorporation of 50%
mushroom media waste (MMW) as a C source. The microbial degradation of added OM
materials that released CO2 led to an increase in the compost temperature [45]. Some
researchers even showed that two stage co-composting has double thermophilic stages
indicating even faster decomposition and maturity of compost [44]. Throughout the whole
process, T4 treatment did not reach the thermophilic stage due to the addition of a higher
amount (50%) of BPS while excess moisture was evident in BPS. However, the early drop
in temperature by the 49th day to cooling phase (<40 ◦C) indicated 13 days earlier maturity
of the T2 compost compared to T4. The declining temperature also meant that the small
portion of the easily degradable composting materials remained in the cooling phase [46].

4.2. Changes in pH and EC during the Co-Composting

The pH and EC are important parameters in composting, and they indicate the rate
of decomposition of compost as well as the suitability of its application in soil. Over-
all, the compost piles resulted in an alkaline pH (≥10) and a higher EC value from
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2.38–3.71 dS m−1 due to the use of alkaline materials rich in K and Ca (Table 1, Figure 3).
During the initial stage (1–21 days), the pH showed an unchanged or slightly increasing
trend. After 21 days of co-composting, the pH significantly increased with the decrease in
the temperature, the mineralization of organic N, and the release of NH4 ions. A similar
trend was detected by Jolanun and Towprayoon [47]. In the present study, T2 (1:2:1) had
the lowest value of pH (10.0) followed by the T3 (1:3:1) pile, which received 25% BPS, 50%
MMW, and 25% CM in the process (Figure 2). This outcome was consistent with the pH
(9.3–9.7) of banana peel compost as studied by Kalemelawa et al. [15], who reported that
high K concentrations in banana waste forms a strong base (KOH) that increases the pH
value. However, the T2 compost with moderately alkaline pH could be effective in di-
minishing the acidity of acidic soil. In addition, T1 (33.33% BPS) and T4 (50% BPS) piles
were BPS-dominated composts which recorded higher EC values. The added BPS and/or
CM contained a higher amount of K and Ca salts (Table 1), which increased the EC of
the composts. The release of mineral salts due to volume loss via decomposition, increased
the EC values studied by Silva and Brás [13]. Considering the individual EC of the piles,
T2 resulted in the most suitable value of 2.38 dS m−1, followed by the acceptable limit of
EC < 3 dS m−1 [48]. Thus, the T2 compost having 25% BPS, 50% MMW, and 25% CM is
suitable as an organic fertilizer.

4.3. Changes in OM, TOC, C:N, and CEC during the Co-Composting

Due to the long-term persistence of thermophilic temperatures, more organic matter
is lost in the T2 pile (1:2:1 BPS:MMW:CM), resulting in a lower OM (36.1%) content in
the final compost (Figure 4). In this study, the T2 pile having a higher proportion (50%) of
MMW contained the various type of enzymes (results are included in another manuscript
under review), and fungus mycelium [9], thereby resulting in 54.5% of OM loss. This
amount of reduction in OM in the present study is consistent with the reduction of OM
(47–52%) in the study conducted by Kulcu et al. [49]. A more than 42% reduction in OM
was considered able to stabilize the process [16]. Fang et al. [9] also recorded the reduction
of OM in the mushroom substrate composting material. Moreover, the addition of a higher
proportion of MMW with lower BPS may create a favorable microbial environment through
better aeration in the composting and facilitate the faster degradation of OM [42]. On
the other hand, the T1 (33.3% BPS, 33.3% MMW, and 33.3% CM) and T4 (50% BPS, 25%
MMW, and 25% CM) piles were recorded with the higher OM content in the final compost
than the T2 pile. It strongly suggests that those piles were partially decomposed due
to a limitation in microbial activity or higher moisture content (72 to 79%). In addition,
the existing lignin and cellulose in banana pseudostem [32] were slowly degraded and
persisted for a longer period of time, thus confirming higher OM contents in the T1 and
T4 piles.

In the composting process, the C content promotes the degradation of OM. A low C
concentration can restrict biomass formation and compromise degradation [16]. The greater
reduction of total organic carbon (TOC) content in T2 (53.8%) and T3 (52.8%) piles (Table 2)
indicated the higher bio-oxidation of OM maintained by the thermophilic temperature
(Figure 1a). In this study, the reduction of the C:N ratio is mainly due to the decomposition
of organic matter (loss of C as CO2 via transformation). In the course of decomposition
during composting, the increase of the total N% was associated with the volume reduc-
tion. The increase in inorganic N in the T2 co-compost pile (having higher MMW) may
contribute to the total N increase as well as the low C:N ratio. The strong sorption capac-
ity of the added MMW bulk material may also help adsorb N on its large surface area.
The highest reduction of C (53.8%) through OM decomposition was also associated with
the low C:N ratio (12.4) (Table 2). These outcomes reflect the result of composting of wood
chips with green waste as documented elsewhere [18]. The compost with a < 20 C:N ratio
is more acceptable as noted by Gaind [35].

On the other hand, as the BPS had lower C content, even under high moisture (79.3%)
content in it, the OM decomposition and loss of C did slow down (Figure 4 and Table 2).
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The higher C:N ratio (23.3) in the T4 compost (2:1:1 BPS:MMW:CM) is associated with these.
The N loss through volatilization might also affect the low C:N ratio obtained in the final
compost. The results are consistent with Mohee et al. [48] who discovered that microbial
consumption of C decreased the C:N ratio of the compost. In the present study, the CEC
was increased in all treatments from the initial to final compost (Table 2), and it varied from
treatment to treatment and with the amount of added banana pseudostem and mushroom
media waste. The CEC was greater of those treatments due to higher decomposition of
added banana pseudostem and mushroom media waste, particularly in the T2 compost.
This may explain the high content of exchangeable cations in BPS and MMW (Table 1).

Zhang and Sun [18] obtained a 45% increase in CEC from the co-composting of
wood chips and green waste compared to green waste that was similar to the T2 compost.
Bahtiar et al. [7] studied banana waste as a vital source of Na, K, Ca, and Mg as possibly
increasing the CEC in compost. Moreover, the carboxyl and phenolic functional groups
may emerge from the humification of organic materials which can increase the CEC in T2
compost. This finding appeared to agree with what Steiner et al. [50] found. The greater
CEC value also represents the higher decomposition rate and nutrient retention capacity of
compost [50]. Although the T4 (2:1:1 of BPS, MMW, and CM) compost contained BPS in
greater amounts, the CEC was comparatively lower than that of T1 (1:1:1) and T2 (1:2:1)
compost. However, at the initial stage, the addition of 50% BPS in the T4 treatment may
lead to having excess moisture that ultimately leached down some cations and lowered
the CEC value (Table 3).

4.4. Changes in TN and Inorganic N during the Co-Composting

The stimulated microbial activity under high temperature and alkaline pH degrades
the organic compounds and might induce ammonia volatilization and reduced TN in
the pile having an increased amount of MMW (T2 pile). The loss of TN 11.1% was much
lower than that of TN loss 21–40% from the co-composting of biowaste and sugarcane filter
cake [16]. Composts with 1–2% N have minimal effect on N fertilizer requirements for
crop production [51]. However, TN in T2 (1.53%) compost remained within this range for
agricultural use. In addition, the T2 pile receiving a higher proportion of MMW, which
could assimilate NH3 on its large surface and in turn contribute NO3-N [18] as well as
TN. A similar finding was noted by Guo et al. [39]. Most of the inorganic N remained in
the form of NH4-N and low levels of NO3-N were detected in the compost.

During the composting, a reverse trend of NH4-N and NO3-N production was evident
in all the piles followed by a typical composting process [52]. A similar trend was ob-
served by Kalemelawa et al. [15] from banana peel compost. In the final stage, T2 showed
a significantly (p < 0.05) higher value (179 mg kg−1) of NH4-N over the other piles, which
increased NH4-N by 28.5% from the initial value (140 mg kg−1) due to the decomposition
of organic compounds (Figure 5). This increase in NH4-N was due to the degradation
of protein and amino acid by NH4

+ ions [53]. After 14 days, NH4-N decreased with
the volatilization of NH3 due to high temperature (>40 ◦C) and high alkaline pH (10) as
mentioned by Meng et al. [46]. Furthermore, the fall in temperature may have activated
the nitrifying bacteria for nitrification [54], which might be attributed to the highest NO3-N
(51.9 mg kg−1) in the T2 compost at the final stage. On the other hand, excess moisture
from BPS may inactivate nitrifying bacteria that can affect the NO3-N production in the T4
pile where increasing use of BPS was evident.

4.5. Changes in Nutrients Density during the Co-Composting

The content of macronutrients is a very important variable of compost [51]. Macro and
micronutrients in the final compost were significantly (p < 0.05) influenced by the amount of
BPS and MMW in the composting process (Table 3). Results indicated that the T2 (25% BPS
with 50% MMW) compost increased the highest percentages of nutrient concentrations (P
79.23%, K 73.30%, Ca 44.67%, Na 41.18%, and Zn 86.10%) followed by T3 from the initial to
final compost (Table 3) compared to other piles. It was due to the complete decomposition
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of OM through a longer thermophilic phase [55] (Figure 1a,b). These results agreed with
the findings of Kalemelawa et al. [15], who observed the increase in P (86%) and K (34%) in
banana peel with cow dung compost. Ultra et al. [56] detected extremely large amounts of
K, Ca Mg, and Na in banana waste compost. Moreover, the T2 and T3 composts resulted
in extremely large amounts of Zn, Cu, and Mn through the humification of the added
BPS and MMW. These outcomes were similar to Chimuka and Manungufala [57], who
suggested that Cu and Zn have a strong affinity to adsorb with organic and carbonate
fractions in compost. In another study, Hsu and Lo [58] indicated that decomposition of
OM increased the amount of Cu, Mn, Zn in compost by almost two- to threefold, which
resulted in a greatly improved compost product. On the other hand, the T4 pile, which
received 50% BPS, showed the incomplete decomposition of OM due to the limitation of
C (34.55%) and excess moisture (Table 2). The excess moisture (79%) from BPS created
a poor window system and microbial inactivity for OM degradation [39]. Moreover, excess
moisture in T4 (50% BPS) compost influenced leaching loss of K (7.08%), Ca (14.90%), Mg
(8.56%), and Na (1.87%), so the value of the final content was lower than that of the initial
one. This is despite the banana pseudostem being rich in cations [59]. Thus, the T1 and
T5 piles showed a higher increment of K, Mg, and Na in the final product. However, all
the nutrients in the T2 compost (1:2:1 i.e., 25% BPS, 50% MMW, and 25% CM) can be
potential sources of organic fertilizer for crop production and especially for low pH soil.

4.6. Changes in Germination Index during the Co-Composting

The seed germination test is the most sensitive indicator for evaluating the phytotoxi-
city and maturity of compost [60]. This study showed that the GI declined or remained
unchanged in the initial stage, and it may have been due to the formation of organic acids
or salts at a high temperature, prevailing up to 19 days in the compost pile. This result is
consistent with the findings of Guo et al. [39]. After 19 days, GI started to increase in all
piles mainly due to the degradation of toxic substances [61] throughout the study period.
In the final stage of composting, all the compost piles with varied feedstock ratios (T1–T3)
and (T5–T6) showed a GI value above 80%, except T4, which documented higher BPS. T2
and T3 resulted in higher GI values of 129% and 125%, respectively, with the addition of
20–25% of BPS in the composting. The higher GI might be attributed to their maturity and
being free of toxic substances or less toxic to germination of seedlings, as found by Zorpas
and Loizidou [62]. The GI value showed <80% in the T4 pile, which means that the BPS
might not have been decomposed properly, excessive salts were present in it, and/or
toxic substances were added from the higher amount of BPS (2:1:1 of BPS:MMW:CM) to
the process. In short, 20–25% of BPS with 50–60% MMW had higher seed germination that
can be safe for application in agricultural soil.

5. Conclusions

The present study examined the optimal ratio of banana pseudostem, mushroom
media waste, and chicken manure for the composting process, which was monitored
in connections with temperature, pH, EC, OM, TOC, C:N ratio, CEC, TN, and other
nutrients as a function of time. Around half the proportion of BPS to MMW enhanced
composting process by extending the duration of thermophilic phase; improved the pH,
EC, CEC values; and increased the macro- and micronutrient concentrations. Of the six
combinations of feedstocks, the addition of BPS, MMW, and CM at a 1:2:1 ratio (25% BPS,
50% MMW, 25% CM) decomposed earlier and performed better in terms of acceptable pH
value (10), suitable C:N ratio (<15), nutrients content and showed no toxicity to crops. That
is why the optimal seed germination was associated with the improved compost properties.
The highly alkaline pH of the compost samples suggests that it could be employed for
the upgradation of acidic soils. However, the effectiveness of these alkaline composts has
yet not been tested in the field level. Thus, the next research would be forwarded to using
this compost in a soil–plant system in acidic soil, especially Ultisols and Oxisols.
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