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Abstract: Water resources are the key factors affecting the sustainable development of inland river
irrigation districts. The establishment of a water resources management model is helpful to realize
the coordinated development of water, society, and ecology. Aiming at the contradiction of water use
and ecological vulnerability, this study was based on the method of complex adaptive system (CAS)
theory, and an agent-based modeling (ABM) method was adopted. Taking Huaitoutala irrigation
district as the research object, a water resource management model considering ecological balance
was established, with the water resources potentially tapping in the source area as an effective
constraint. This study took 2016 as the datum year; the water consumption and comprehensive
benefits of four water-saving irrigation scenarios in different characteristic years were simulated
and optimized under the conditions of the current water supply and 10% and 15% potential water
resources tapping. The results showed that the model considering the behavior and adaptability of the
agent can well optimize and simulate the water use in the irrigation district. Under the application of
water resources potential tapping and high-efficiency water-saving technology; the water utilization
efficiency (WUE) of the irrigation area has been significantly improved. The comprehensive benefits
of the irrigation district increased the proportion of ecological water, which was conducive to the
sustainable development of the irrigation district and the ecological protection of inland rivers.

Keywords: complex adaptive system; inland river irrigation district; water resources allocation;
adaptive agent; ecological development

1. Introduction

In recent years, with the increase in economic development and population, the contra-
diction between the supply and demand of water resources in inland river source irrigation
districts has become increasingly prominent [1], and the sustainable development of re-
gional agricultural production and economic society has been seriously impeded [2]. Water
resources management is the main instrument to improve water use efficiency and alleviate
the pressure on water resources [3]. Because of the complexity and uncertainty of water-
shed systems, effective sustainable water resources management often needs to be based
on adaptive management [4]. Adaptability refers to the ability of the agent to adapt to the
environment. The concept of adaptive management was originally used in ecosystem the-
ory and practice to address uncertainties in natural resources under dynamic conditions [5].
Adaptive water resource management considers the complexities and uncertainties of the
water resource system and continuously optimizes its management objectives through
the dynamic learning feedback process of each agent within the system [6,7]. Complex
adaptive systems (CAS) theory combines macro-level systems and micro-level agents to
describe the adaptability of the complex system. It describes the interaction between agents
and the interaction between agents and the environment, making the whole system in the
process of continuous evolution [5]. CAS emphasizes the adaptability and co-evolution of
agents within the system, provides a theoretical basis for the adaptive theory of environ-
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mental resource allocation and management, and gradually applies the management of
natural resources, especially the adaptive management of water resources [8].

Paying attention to the research on water resource allocation from the angle of com-
plexity science, it is necessary to combine CAS theory with the basic characteristics of
water resource systems [9]. Zhao et al. applied CAS theory to build a new water resources
allocation system analysis model, and the dynamic connection of all agents in the system
was established, which integrated hydrological simulation with economic optimization
and was applied in water resource allocation of the Yellow River Basin in China. The study
preliminarily proved the applicability of the model in the water resource allocation of
river basins [10]. The theory is based on self-organization theory and synergetics, and it
divides the system into individual adaptive agents. The agents have learning ability and
adaptability and can continuously learn to accumulate experience and improve themselves
according to the influence of the external environment [11]. This long-term dynamic evo-
lution mechanism forms the evolution and adaptability of the system. The cooperation
between agents enhances the stability of the water resource system and the adaptability
of the agent accelerates the evolution of the system [11,12]. Vervoort et al. used adaptive
action to provide decision-makers with food security decisions in response to different
climate conditions [13], providing a new approach for the adaptive management of water
resources. Meek and Marshall defined the elasticity range of water resources management
in Southern California from the theory of CAS, proving the importance of stakeholders’
participation and action in the water governance system for elasticity recovery [9]. CAS
theory can be used not only to evaluate water policies and design water management
strategies but also to simulate the competitive process of water resources [14,15]. Liu
et al. proposed a general framework for the analysis of agent water conservation behavior
response model under external stimulation. The study took Beijing as an example to con-
struct water conservation regulation scenarios and corresponding agent water conservation
behavior rules, systematically simulated the process of individual water use change from
the aspects of water price setting, water information, and water-saving education [16].
Such studies typically simulate the behavior of different water users/stakeholders and
their responses to different management scenarios. The cooperation between the agents is
realized by providing incentives, penalties, and new laws, which can provide a reference
for regional sustainable water resources management strategy.

The water resources system is a complex adaptive system, and it is also a coupling
human and natural systems [17]. Utilizing water rights trading, raising water-saving
awareness, and water-saving reconstruction engineering, human beings improve their
water use efficiency while pursuing the maximum benefits. These behaviors change the
natural changes of river runoff and the groundwater level so that human beings affect
the water resource system as an internal factor [18,19]. The agent-based model (ABM) is
widely considered as an important tool to study the human–nature coupling system, which
can be used to model the complex adaptive system [20]. The agent-based water resources
management model fully considers the heterogeneity of the internal composition of the
water resources system and is widely used in the optimal allocation of water resources in the
basin, the management of urban residents’ water use, and the water resources management
in the irrigation district [11,14,17,21–24]. The operational mechanism of the ABM includes
the agent-level distributed decision-making process and the coordination mechanism of
the system-level organizational decision-making process [11]. ABM technology provides
a clear concept and regulations for the construction of distributed systems to support
stakeholder-driven, bottom-up management [24]. Yang et al. described the agent-level
distributed decision-making process and the coordination mechanism of the system-level
organization decision-making process and also proposed a multi-agent-based distributed
optimization algorithm for watershed management. The local interest factor was used to
measure the importance of the agent goals compared with the constraints [25]. Zhao et al.
proposed a decentralized algorithm of water resources system based on ABM, studied the
allocation of water resources through indicators under the market system such as economic
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benefits, water rights, and water prices, found the optimal water rights allocation scheme
for the water market through reasonable initial water rights, and revealed the overall water
consumption and trading behavior of water users in the basin under the condition of water
trading [10].

After the large scale complex problem is decomposed into several relatively simple
local objective problems by using the distributed control theory and distributed to several
agents in the network, the ABM should also be combined with the continuous watershed
simulation model, to dynamically consider the effects of the actions taken by the agents on
the quality and quantity of water resources and water demand, and establish rules that
correspond to changing water demand and environmental issues [24,26,27]. Akhbari et al.
studied to encourage cooperation by providing incentives, penalties, and new regulations,
dynamically considered the impact of actions taken by the agent on water quality, quantity,
and water demand, and established the framework of water resource conflict management
model based on the ABM [11]. In irrigation districts, the research applies the ABM to
simulate and analyze the grain yield, crop planting pattern, and water quality and to
optimize water demand and restore underground aquifers. Nouri et al. established a crop
model and a water management policy evaluation model based on the agent to restore the
aquifer and simulated the behavior of agricultural agents through fuzzy inference system
(FIS) [28]. Ghazali et al. proposed a hybrid framework based on TOPSIS-agent, which
considered the influence of neighbors, training, punishment, incentives, and other factors;
used TOPSIS to determine the dynamic balance coefficient; and proposed the best crop
model for different regions under different climatic conditions [29]. Ng et al. established
the ABM coupling model of water resources allocation and hydrological cycle to simulate
and analyze the grain yield and water quality in the irrigation district [24].

In the irrigation district, previous studies about water resources management mainly
focus on the economic benefits and groundwater problems, and less on the ecological
relationship between the irrigation district and the surrounding environment [4,30,31].
Moreover, the traditional water resources allocation does not describe the dynamic changes
of the water resources system enough and ignores the heterogeneity of irrigation water
users and the water competition among them [32]. Such simulation results usually do
not conform to the actual water use situation of irrigation districts [28]. According to
the characteristics of water resources system in the irrigation district, based on the com-
plex adaptive system, this study constructed the dynamic management model of water
resources in irrigation district based on agent and applied it to Huaitoutala’s irrigation,
which provided the basis for the decision making of water resources management in the
sustainable development of inland river irrigation district.

The paper is divided into five sections. Section 2 introduces the structure of the
CAS of water resources in the irrigation district, describes the agent behavior, and forms
the dynamic communication mechanism of water resources allocation by establishing
the interaction mechanism between the agents. Section 3 introduces the nested genetic
algorithm to solve the model. Section 4 carries out a case study on a typical inland river
irrigation district in China and analyzes the agent water use behavior under different
scenarios. Section 5 summarizes conclusions of the study.

2. Model Building
2.1. CAS of Water Resources in Irrigation District

There are diverse agents in the system. The agent at the bottom level has formed a
department-level agent through aggregation [5,12]. The agent with the same or similar
behavior has formed a high-level agent through complementary advantages and resource
sharing [18]. The new agent has stronger adaptability so that the original agent can enhance
its ability to adapt to the changes of the external environment [22]. Secondly, because the
agent has adaptive and learning mechanisms, there are many non-linear correlations
within the system. For example, under the influence of different water use structures and
modes, the relationship between the total amount of water resources and the total output is
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nonlinear [33]. The connection of nonlinear relations is based on flow. Flow is the link of the
system, which mainly refers to substances, funds, and information exchange between the
agents or an exchange of substances between the agents and the external environment [21].
Substances flow refers to the distribution and transportation of water quantity. Fund flow
refers to the investment in agricultural water-saving transformation and water conservancy
engineering projects. Information flow refers to the water supply and demand information
of different agents [10].

The characteristics of CAS indicate that the system has dynamic conditions for con-
tinuous learning, and the mechanisms are the basis for continuous evolution [8]. The
internal models are formed by the interaction of the internal mechanisms of the agents and
mechanisms of different levels [11]. For example, according to the feedback of water supply
and demand information and substances flow, the agricultural production agent should
change the irrigation methods to improve the water utilization efficiency and optimize
their own planting structure. Building blocks affect the complexity of the system [5,10].
For example, the resource allocation ratio between ecological agents and agricultural pro-
duction agents affects whether the irrigation district is biased toward economic benefit
or ecological benefit. Tagging is the basis for agents to identify water and land resources
information [4]. By identifying the information and processing the internal model, the
agents interact with simple building blocks in various ways and combinations and, finally,
forms the co-evolution of CAS in the irrigation district.

The water resources system of the irrigation district can be divided into three levels.
The top management agent is responsible for the overall coordination of the whole irriga-
tion district to achieve sustainable development [34]. The management agent forms the
initial water resources allocation scheme according to the social and economic develop-
ment goals and ecological planning development goals [22]. The lower level of agricultural
production departments, ecological departments, and water supply departments, to max-
imize their profits, reallocate resources within the departments under the policies and
programs formulated by the management agent [12,22,35]. The bottom users are the basis
of the whole irrigation district’s water resources system. According to the experience of
continuous learning and accumulation, they use the allocated resources for production and
evaluate benefits after production, and the evaluation results are fed back to the department
agents. The department agents adjust the water use behavior through behavior decision
making, and the user agents execute a new round of production. Finally, the department
agents feed the water use information back to the management agent, and the management
agent generates a new water resources allocation scheme [24,28,29]. Therefore, different
levels of water resource systems in the irrigation district cooperate to maximize the benefits
of the irrigation district. The mutual feedback mechanism of CAS in the irrigation district
is shown in Figure 1.

2.2. Agent Classification and Model Framework

In traditional water resources management, multi-stage stochastic programming,
uncertain programming, and interval programming models are used to solve the impact
of climate change on water resource management, irrigation water resource management,
and other important issues in future water resource management research [31,36]. These
traditional centralized models cannot be used to solve the optimization problem of multi-
agent systems. Firstly, this is because of the disaster dimension. Secondly, when all
subsystems are running at the same time, it is difficult to obtain the optimal solution from
the perspective of central control [7,26,30]. ABM can decompose a large-scale complex
problem into several relatively simple local objective problems and assign them to multiple
agents in the network. Each agent processes the local objective problem and interacts with
its neighbor agents to find the global optimal solution [25].
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Figure 1. The mutual feedback mechanism of CAS in the irrigation district.

The adaptive agents are selected based on the comprehensive analysis of the hy-
drologic, economic, and ecological conditions in the irrigation district [11]. According
to the hierarchical structure of the water resources system, the agent of water resources
management is generalized into the management agent at the system level, the agricultural
production agent, and the ecology agent at the department level. There are often lower-
level user agents whose internal models are described by a fixed empirical formula or who
are mathematical in practical application [10].

Through the analysis of the behavior goals of the selected adaptive agents, the func-
tions of the agents are obtained, and the interaction mechanism between the agents is
established. The dynamic feedback mechanism of the irrigation district water resources
management model is established through the interaction between the agents [21]. The
internal elements of the model include input data and output data, and the input data
includes the parameter data which describe the characteristics of the agent and the variable
data which are connected by the feedback relationship of other agents. The output data
of the model is the performance of the adaptability of the agent [10,13]. As the input of
other agents, the dynamic communication mechanism of the whole irrigation district is
established to ensure the adaptive learning process of each level of the agent. The model
block diagram is shown in Figure 2.
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2.3. Management Agent Model
2.3.1. Water Resource Allocation System

The water resource allocation of the management agent is based on the water balance
of the irrigation district [37]. Under the boundary conditions of water resources constraints,
the water resource allocation mechanism of the management agent simulates the water
resources circulation and allocation and realizes the allocation and scheduling of water
resources in various departments [21], according to the following equation:

Q = Qs + QG ≥WA + WE (1)

where Q is the water quantity available in the irrigation district (m3), Qs is the surface
water quantity (m3), QG is the available groundwater resources quantity (m3), WA, WE is
water consumption of agricultural production agent and ecology agent (m3).

2.3.2. Land Management

The irrigation management department needs to determine the annual crop planting
area and allocate the ecological area according to the ecological planning objective. This
constraint can be expressed as:

I

∑
i=1

a(i, Y) +
J

∑
j=1

a(j, Y) ≤ S (2)

where a (i, Y) is the area of the ecological user agent i in the Y year (hm2); a(j, Y) is the
planting area of the agricultural user agent j in the Y year (hm2); S is the total area of
available land in the irrigation district (hm2).

2.3.3. Ecological Management

The ecological management behavior calculates the ecological water demand satisfac-
tion, which is calculated as:

EWDSD =

{
d EW

EWDL (EW < EWDL)
d + (1− d) EW−EWDL

EWDU−EWDL (EW ≥ EWDL)
(3)
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where EWDSD is the satisfaction degree of ecological water demand; EW is the total
ecological water resource allocated to the irrigation district (m3); EWDU and EWDL
are the upper and lower limit of ecological water demand, respectively (m3); d refers to
the satisfaction degree when ecological water is at the lower limit of ecological water
demand (the value of d is 0.5 in this study). Ecological water consumption includes natural
ecosystem water consumption and artificial ecosystem water consumption.

2.3.4. Social Statistics

The state information of the irrigation district management department needs to
be obtained through social statistical behavior. Social statistical behavior collects crop
yield, crop annual value, ecological water shortage, and other information to serve the
government’s optimal decision-making [38].

2.3.5. Adaptability Description

In this model, the adaptability of the government is shown as the largest compre-
hensive benefit including agricultural benefit and ecological benefit [33]. The agricultural
benefit is the result of the balance between crop yield and annual value, and the ecological
benefit is the satisfaction degree of ecological water demand [39]. The functions of the
benefits are as follows:

AWEL = f (YS, MS) (4)

and
SWEL = f (AWEL, ECOB) (5)

where YS is the standard value of agricultural yield; MS is the standard value of agricultural
annual value; AWEL stands for agricultural benefits; ECOB stands for ecological benefits;
SWEL is the comprehensive benefit; and f is the utility function.

2.4. Department-Level Agent Model
2.4.1. Ecological Agent Model

The main constraints of the irrigation district include water constraints and land
constraints. The constraint is expressed as:

a(i, Y) ≤ ME(i, Y) (6)

I

∑
i=1

WE(i, Y) ≤WE(Y) (7)

where a(i, Y) is the area of the ecological agent i in the Y year (hm2); ME(i, Y) is the
maximum area of the i in the Y year (hm2); WE(i, Y) is the ecological water consumption of
the i in the Y year (m3); WE(Y) is the maximum ecological water consumption in the Y
year (m3).

Accounting of ecological water shortage is performed according to the following
equation:

EWS = DE−
I

∑
i=1

WEi (8)

where DE is the regional ecological water demand (m3), and WEi is the amount of water
allocated to each ecology agent (m3).

The comprehensive index of ecological evaluation is added to describe the adaptability
of the ecology agent. Model comprehensively considers the ecological factors include
climate quality indicators, vegetation quality indicators, and hydrological quality indicators
closely related to water resources management and land utilization [40]. Five indicators
closely related to water resource utilization were selected, including precipitation in the
climate index, woodland coverage and grassland area ratio of vegetation factors, water
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area, and the runoff of hydrological factors [2,41,42]. The weight values of each index are
shown in Table 1.

Table 1. Weight of ecological indicators.

Evaluating Indicator Weight

Precipitation (mm) 0.4
Woodland coverage (%) 0.2
Grassland area ratio (%) 0.2

Water area ratio (%) 0.1
Runoff (108 m3) 0.1

The obtained data are standardized to avoid the influence of different dimensions or
properties of data indicators on the accuracy of the results. The formula for standardization
is as follows:

Xi
′ =

Xi − Xmin
Xmax − Xmin

× 100% (9)

where Xmax, Xmin represent the maximum value and minimum value in the data; respec-
tively, and Xi is the raw data.

The formula of the comprehensive index of ecological evaluation is as follows:

P =
n

∑
i=1

wixi (10)

where P is the comprehensive index of ecological evaluation, wi is the weight of the ith
factor, whose value is between (0, 1). the Activity-Based Classification is used to determine
the weight value of each ecological indicator. All the factors in the index system were
classified and queued according to their importance, and then different weights were given
to various factors. xi is the dimensionless value of the ith factor.

2.4.2. Agricultural Production Model Agent

The main behavior of the agricultural production agent includes redistribution of wa-
ter and land allocated by irrigation management agent, forming a water supply strategy for
the user-level agent, and making statistics on the actual amount of resource benefits of the
user-level agent. The adaptability of the agent is the biggest agricultural benefit [14,21,29].

The model optimizes the planting area of all kinds of users according to the optimiza-
tion objectives of department-level agents. The main constraints are as follows:

a(j, Y) ≤ TA(j, Y) (11)

CIA(j, Y) ≤ IA(j, Y) (12)

J

∑
j=1

WA(j, Y) ≤WA(Y) (13)

where a(j, Y) is the planting area of the agricultural user agent j in the Y year; TA(j, Y) is
the maximum allowable planting area of j in the Y year; CIA(j, Y) is the irrigation area of j
in the Y year; IA(j, Y) is the effective irrigation area in Y year; WA(j, Y) is the agricultural
water consumption in the Y year; WA(Y) is the maximum allowable water consumption
for agricultural production in Y year.

The benefit statistic is the statistics of crop yield and annual value. The crop production
function can be expressed as [43]:

Yj = a(WI + PA)2 + b(WI + PA) + c (14)
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where Yj is the yield of each crop; WI is the irrigation water quantity; PA is the effective
precipitation; a, b, and c are coefficients, which are determined by the research data of the
irrigation district [1,44].

PA = P− ET (15)

ET = Kc×ET0 (16)

where P is the precipitation in the crop growth period; ET is the evaporative capacity of
the irrigation district. Kc is the crop water consumption coefficient; ET0 is calculated by
FAO Penman–Monteith equation. The calculation formula is as follows:

ET0 =
0.408∆(Rn − G) +

900γu2(es −ea)
T+273

∆+γ(1 + 0.34U2)
(17)

where ET0 is the reference crop evapotranspiration (mm day−1); T is the average tempera-
ture (◦C) at the height of 2 m; u2 is the wind speed at a height of 2 m (m s−1); ∆ is the slope
of the vapor pressure curve (kPA ◦C−1); Rn is the net radiation at the crop surface (MJ m−2

day−1); G is the soil heat-flux density (MJ m−2 day−1); es is the saturation vapor pressure
(kPA). ea is the actual vapor pressure (kPA); γ is the psychrometric constant (kPA ◦C−1).

The total crop yield can be calculated as follows:

Y = yj·sj (18)

where Y is the total crop yield (kg); yj is the yield per unit area of the jth crop (kg hm−2); sj

is the planting area of the jth crop (hm2).

XA(Y) = YA(Y)− PA·WI(Y) (19)

XA(Y) is the agricultural income in Y year (yuan); YA(Y) is the agricultural annual
value in Y year (yuan); PA is the price of irrigation water; WI(Y) is the water consumption
in Y year (yuan).

3. Model Solving
3.1. Model Algorithm

Aiming at the ABM of water resources management in the irrigation district, the
improved evolutionary theory based on non-dominated sorting genetic algorithm II is
used to establish the learning model of the agent. The genetic algorithm, which has
self-organizing and self-adaptive characteristics, can be used to simulate and solve the
intelligence of agents, the intelligence including self-organizing, self-adapting, and self-
learning [28].

Because the model is based on the framework of agent and hierarchy, different levels
of the model can be combined with the corresponding genetic algorithm to form a nested
solution to the whole model. An independent genetic algorithm is used to solve the problem
of the department-level agent, and the optimization results are used as the input of the
genetic algorithm of the management agent, which provides support for the individual
fitness evaluation of the genetic algorithm at the highest level of the model [10].

3.2. Model Operation Rules

Through sorting and inputting the basic data, the management agent allocates the
initial water quantity and area to the agricultural production agent and the ecology agent.
The department-level agent redistributes resources within the department. After the bot-
tom user-level agents produce according to their behavior, they feed the results back to the
department-level agent. The department-level agent makes statistics of the feedback infor-
mation and forms a new water supply strategy and land allocation schemes according to
the department’s internal goals. The user-level agents carry out a new round of production,
The production results are fed back to the department-level agent again until the maximum
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benefit is achieved within the department. The agent of each department feeds back the
optimal results to the management agent. The management agent makes statistics of the
feedback information and redistributes the resources of each department according to the
maximization of the comprehensive benefits of the irrigation district. In this bottom-up
dynamic feedback, the comprehensive benefits of the irrigation district are maximized. The
learning and adaptation processes of agents are simulated by genetic algorithm.

4. Case Study
4.1. General Situation of Irrigation District

The Huaitoutala irrigation district is located in the southwest of Delingha City, Haixi
Prefecture, Qinghai Province (Figure 3). Huaitoutala is a typical inland river irrigation
district with little rain and large evaporation. The annual average precipitation (1956–2016)
is 176.54 mm, and the proportion of precipitation in the four seasons is 18.97%, 61.5%,
14.78%, and 4.75% of the annual value, respectively. The distribution of precipitation is
uneven throughout the year, mainly in spring and summer, and the evaporation is large
in the irrigation district. The average annual evaporation is 2071 mm. The structure
of water supply and use in the irrigation district is singular. Agriculture is the main
water user in this area, and the water mainly comes from the Huaitoutala reservoir in
the north of the irrigation district. The average annual water resource is 24.386 million
m3 and the total annual water supply is 14.485 million m3. Wheat and rape are the
main crops in the irrigation district. In recent years, the Huaitoutala irrigation district
began to adjust the planting structure under the guidance of the government, planting
characteristic economic crop wolfberry in the irrigation district, increasing the proportion
of wolfberry planting, and exploiting groundwater for irrigation. Woodland and grassland
are distributed around the irrigation district as ecological barriers. Therefore, the ecology
agent of the irrigation district is generalized into the woodland agent and grassland agent;
the agent of agricultural production can be generalized into wolfberry, wheat, and rape.
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4.2. Boundary Condition Calibration

In this study, 25%, 50%, and 75% rainfall frequency were selected as wet year, normal
year, and dry year, and the corresponding precipitation was 211.9 mm, 166.5 mm, and
129.8 mm, respectively. The data series of the Huaitoutala reservoir is short. Only data
from 2009 to 2016 are available. The wet, normal, and dry years of the reservoir inflow
were determined by determining the wet, normal, and dry years of precipitation. The
available amount of surface water resources is the sum of the available water supply of
the reservoir, and the water resources potential tapping. Furthermore, 85% of reservoir
inflow was taken as irrigation water supply. The water resources increased by tapping
the potential of precipitation is 10% and 15% of the average total amount of surface water
resources available for many years. Combined with the construction of pumping wells in
the irrigation district, the exploitable amount of groundwater is between 1 million m3 and
1.2 million m3.

According to the natural conditions, topographical conditions, and current planting
structure of the irrigation district, the threshold of crop sown area was set as 50~150% of the
actual area, and the threshold of ecological land occupation area was set as 100~600% of the
actual area. In this study, the irrigation district should not only meet the water demand of
the artificial ecosystem, but also supply water resources to the natural ecosystem. Therefore,
the upper limit of ecological water demand was set as 50% of the total water diversion,
and the lower limit was the water consumption of woodland and grassland irrigation.
According to the Qinghai provincial local standard DB63/T 1429–2015, the quota index
of agricultural and forestry water is used as the basis of water resources management.
The meteorological data and precipitation data are from Delingha weather station, and
the daily data time series is from 1956 to 2016. This study took the statistical data of the
Huaitoutala irrigation district in 2016 as the initial data, and the initial area and water
consumption of each agent are shown in Table 2.

Table 2. Initial data of agents.

Type Wolfberry Wheat Rape Woodland Grassland

Area
(

hm2
)

1923 506 143 16 73

Water consumption
(

m3/hm2
)

4500 5775 4125 5400 3600

Four different water-saving scenarios (Table 3) were set up to apply the improved
irrigation technology and agronomic technology from the field scale to the irrigation district
scale to form the optimal management scheme of water resources. The model solving
process is shown in Figure 4.

Table 3. Four irrigation scenarios in this study.

Scenario Irrigation Scheme

1 FN + FI
2 RM + DI
3 RM + MC + DI
4 RM + MC + CI

A traditional flat no-mulching (FN) planting pattern is adopted in the irrigation
district, and the present situation of irrigation is mainly flood irrigation (FI). The agronomic
technologies to be popularized in the irrigation district include ridge-furrow mulching (RM)
and the technology of soil magnistorge compatibilization (MC). The irrigation technologies
include drip irrigation (DI) and subsurface irrigation with microporous ceramic (CI), which
will also be applied to the irrigation district’s agriculture [1]. Ridge-furrow mulching can
effectively reduce soil evaporation and improve soil water storage, which can provide a
better hydrothermal environment for crops than flat no-mulching [1,45,46]. The technology
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of soil magnistorge compatibilization refers to enlarging the capacity of the soil reservoir,
increasing the infiltration capacity of soil, and improving the utilization rate of rainfall
through protective tillage, water and soil conservation engineering measures, and soil
improvers [47]. Subsurface irrigation with microporous ceramic uses a microcellular
ceramic emitter to transport irrigation water to crop root zone soil at a certain depth
underground; it can reduce soil evaporation and effectively improve irrigation water use
efficiency [48,49].
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4.3. Results and Discussion
4.3.1. Water Utilization Behavior of Agents

The construction of the model takes the agent as the basic unit, while the users in the
system have different ways of utilizing resources. The interaction between these ways
emerges as the behavioral characteristics of higher-level sectoral water–land resources
utilization. For example, the agricultural production agent seeks the maximum compre-
hensive benefit of agriculture, i.e., the maximum yield and output value. The interaction
between resource behaviors at the departmental level emerges as the behavioral characteris-
tics of higher-level management departments. The management agent seeks the maximum
benefits, which include both the maximum of agricultural comprehensive benefits and the
maximum of ecological benefits.

The self-organizing process of agent requires different water users to select appropriate
water consumption and cooperate with other agents to seek the maximum benefit under
the restriction of system setting rules. In this study, the agricultural production agent and
the ecological agent firstly allocated resources between the departments and then fed the
water use information and benefit value back to the management agent. The management
agent balanced the benefits of agricultural and ecological departments to redistribute
water resources. Different departments also worked together to increase or decrease water
consumption to achieve the optimal target.

Taking scenario 4 in wet year (10% potential tapping) as an example, as shown
in Figure 5, the adaptation process of the agent can be divided into three stages: the
trial period in prophase, the adaptation stage in metaphase, and the stability stage in
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anaphase. In prophase, each department agent seeks the optimal value of the target
according to the initial water allocation, modifies the behavior rules, and recognizes the
external environment. The water consumption is relatively stable in prophase, and the
water consumption of the agricultural production agent is much greater than that of the
ecology agent. This is because when the competition between agents is not considered,
the benefit value of agricultural water use is more significant than that of ecological water
use, and the agricultural production agent will be given priority in the water supply. In
metaphase, the interaction between the agents is deepening, and the mutual transformation
of water resources is frequent. The agents constantly change their water consumption to
adapt to the environment through cooperation and competition. With the development of
the model evolution process, the interaction between the adaptive agents tends to be stable,
and water resources allocation also enters the late stage of stable development. Driven
by the comprehensive benefits of the irrigation district, the ecological water consumption
increases, and the agricultural production water consumption reduces. Three stages are
consistent with the agent adaptive evolution characteristics, which proves the applicability
of the CAS theory in the allocation of water resources in irrigation districts.
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4.3.2. Analysis of Water Resources Allocation Results

The irrigation district is planning to tap the potential of water resources to increase the
available amount of water resources. The water consumption and comprehensive benefits
of four water-saving irrigation scenarios in different characteristic years were simulated
and optimized under the condition of the current water supply and 10% and 15% tapping
of the potential water resources.

For the agricultural production agent, because of its high economic benefits, wolfberry
occupies a large proportion of water consumption. As can be seen from Table 4, compared
with scenario 1, without water resources potential tapping, the water consumption of
wolfberry decreased by 12.8%, 11.2%, and 10.8% in wet, normal and dry years, respectively;
when 10% of the water resources are tapped, the water consumption of wolfberry decreased
by 1%, 11.5%, and 10.0% in the wet, normal, and dry years, respectively; when 15% of
water resources are tapped, the water consumption of wolfberry decreased by 17.6%, 15.0%
and 12.8% in the wet, normal, and dry years, respectively. Compared with scenario 1, the
yield, annual value, and water use efficiency of wolfberry increased by 63.3%, 85.3%, and
108.4%, respectively.

Under the collaborative application of high-efficiency water-saving irrigation and
agronomic technology, the water use efficiency of the irrigation district was significantly
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improved, and crop yield was significantly increased. According to Table 5, the water use
efficiency of wolfberry in scenario 2 increased by 62.6% compared with that in scenario
1 when the water resources potential tapping was 10%; Scenario 3 increased by 18.9%
compared with scenario 2; Scenario 4 increased by 10.7% compared with scenario 3. Ac-
cording to the analysis in Table 6, with the improvement of agronomic technology and
the change of irrigation methods, the water consumption of the agricultural production
agent gradually decreased, the total agricultural annual value steadily increased, the water
allocated to the ecology agent continuously increased, and the ecological water demand
satisfaction increased by 22.5% from scenario 1 to scenario 4. At the same time, it is more
conducive to the sustainable development of the inland river irrigation district and the
stability of the inland river and lake ecosystem.

Table 4. Water use efficiency of wolfberry in scenario I and scenario IV.

Scenario Characteristic
Year

Water Consumption
(104 m3) Area (hm2)

Yield
(kg/hm2)

Annual Value
(104 RMB)

WUE
(kg·hm−2·mm−1)

I

Wet 895.2 2646.2 1051.4 28,839.861 2.956
Normal 834 2467.5 1049.9 26,892.469 2.959

Dry 691.8 2097.1 998.3 22,860.101 3.031

Wet (15%) 1 1080 2940.2 1165.4 32,018.303 2.722
Normal (15%) 1006 2786.2 1146.6 30,346.245 2.771

Dry (15%) 873.6 2531.5 1086.1 27,584.809 2.898

IV

Wet 780.9 4719.0 1731.4 51,674.545 6.043
Normal 740.8 4513.6 1674.0 49,427.864 6.093

Dry 617 3809.2 1555.8 41,716.241 6.173

Wet (15%) 889.8 5301.0 1815.8 58,043.576 5.958
Normal (15%) 855.4 5116.3 1793.8 56,023.058 5.981

Dry (15%) 762.1 4648.9 1664.5 50,909.410 6.100
1 15% are water resources potential tapping.

Table 5. Water use efficiency of wolfberry in wet year (10% potential tapping).

Scenario Area (hm2) Yield (kg/hm2)
Water Consumption

(mm)
WUE

(kg·hm−2·mm−1)
WUE Relative
Increase (%)

1 2499.615 1131.2 403.0 2.807 0
2 2947.855 1582.4 346.8 4.563 62.55
3 2942.268 1740.5 320.9 5.424 93.22
4 2927.564 1773.2 295.4 6.003 113.85

Table 6. Comprehensive benefits of irrigation district in wet year (10% potential tapping).

Scenario
Agriculture Water

Consumption
(104 m3)

Ecology Water
Consumption

(104 m3)
Total (104 m3) Yield (t) Annual Value

(104 RMB)

Ecological
Water Demand

Satisfaction

1 1361.268 113.499 1474.767 7467.282 32,308.879 0.520
2 1343.263 151.467 1494.730 6857.540 52,402.373 0.538
3 1289.784 203.750 1493.534 7265.197 57,521.468 0.579
4 1196.063 276.208 1472.271 7152.435 58,295.182 0.637

It can be seen from Figure 6 that under the four scenarios of dry year, the yield and
annual value of wolfberry steadily increased and gradually stabilized, and the water
consumption of wolfberry decreased significantly. Without water resources potential
tapping, compared with flood irrigation and flat no-mulching, the total agricultural annual
value increased by 78.6% in scenario 4 (Figure 6c). When water resources are increased by
15%, the total annual value will increase by 80.5% in scenario 4 (Figure 6d). In dry year,
through the application of subsurface irrigation with microporous ceramic and technology
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of soil magnistorge compatibilization, the irrigation district can still maintain stability and
achieve higher economic and ecological benefits. When water resources are increased by
15% in the dry year, the ecological water use in the irrigation district is increased from
6% in scenario 1 to 16% in scenario 4 (Figure 7d), which indicates that the water resource
potential tapping has a significant role in relieving the pressure of groundwater exploitation
and maintaining the sustainable development of the irrigation district. Figure 7 shows
the water consumption of each agent under four scenarios. It can be seen that, with the
improvement of agronomic technique and irrigation technique, the total annual value has
increased significantly and has the trend to be smooth (Figure 8a), while the ecological
satisfaction still has a potential for a lasting increase (Figure 8b). It shows that, with the
increase of available water resources and the improvement of water resource utilization
efficiency, the economic benefits will gradually become stable, and the ecological benefits
of the irrigation district will be steadily improved. More water resources can be used in the
ecological protection of the source area.
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Figure 6. Without water resources potential tapping, wolfberry yield and water consumption in dry year (a); 15% water
resources potential tapping, wolfberry yield and water consumption in dry year (b); without water resources potential
tapping, water consumption of agricultural production agent and total agricultural annual value in dry year (c); 15% water
resources potential tapping, water consumption of agricultural production agent and total agricultural annual value in dry
year (d).
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Figure 7. Water consumption of each department-level agent under four scenarios. (a–d) correspond to the four scenarios,
respectively.
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5. Conclusions

Based on the theory of CAS, this paper described the internal model and adaptabil-
ity of each agent, analyzed the interaction and feedback mechanism between each agent
in detail, and used the multi-objective method to evaluate the state of the system. In
Huaitoutala irrigation district, runoff flows into the downstream lake through dissipation.
The uncontrolled increase of agricultural irrigation water will directly lead to the lake
shrinking and drying up. The ecological balance of the irrigation district can be maintained
by increasing ecological water demand and increasing water supply to rivers, lakes, and
other ecological users. In the study of ecological water demand, without considering
the social and economic benefits, the results are usually not accepted by other stakehold-
ers and are difficult to be applied in the actual water resources management. Therefore,
comprehensive consideration of agricultural water demand and ecological water demand
becomes a reliable way to manage water resources. By coupling water resources potential
tapping with irrigation and agronomic techniques, the agent-based irrigation water re-
sources management model was constructed and optimized. In the dry year without water
resources potential tapping, the total agricultural annual value increased by 78.6%, and the
satisfaction degree of ecological water demand increased by 15.6%. When water resources
are increased by 15%, the total annual value can be increased by 80.5%, and the satisfaction
degree of ecological water demand can be increased by 17.5%, which is more conducive
to the sustainable development of inland river irrigation district and the stability of the
upstream and downstream inland river lake ecosystem. The model has been applied to
water resources management in irrigation district, and it has good application prospects in
the detection of sustainable development.
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