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Abstract: The occupancy of residential energy consumers is an important subject to be studied to
account for the changes on the load curve shape caused by paradigm shifts to consumer-centric
energy markets or by significant energy demand variations due to pandemics, such as COVID-19.
For non-intrusive occupancy analysis, multiple types of sensors can be installed to collect data based
on which the consumer occupancy can be learned. However, the overall system cost will be increased
as a result. Therefore, this research proposes a cheap and lightweight machine learning approach
to predict the energy consumer occupancy based solely on their electricity consumption data. The
proposed approach employs a support vector machine (SVM), in which different kernels are used
and compared, including positive semi-definite and conditionally positive definite kernels. Efficiency
of the proposed approach is depicted by different performance indexes calculated on simulation
results with a realistic, publicly available dataset. Among SVM models with different kernels, those
with Gaussian (rbf) and sigmoid kernels have the highest performance indexes, hence they may be
most suitable to be used for residential energy consumer occupancy prediction.

Keywords: energy consumer occupancy; consumer-centric energy systems and approaches; support
vector machine; machine learning; artificial intelligence

1. Introduction

In residence and office buildings there is a strong correlation between the energy con-
sumption and the occupancy of consumers. In particular, energy consumption peaks usually
occur at time intervals during which consumers stay at their homes or offices [1–3]. Hence,
consumer occupancy is one of important factors that has useful social implications. Examples
include the establishment of more efficient energy management systems (EMSs) by means of
better demand response (DR) programs [2], more economic operation of HVAC systems [4],
energy saving buildings [5], of upgrading suggestions for energy systems [6], etc.

In the emerging paradigm shift to consumer-centric energy systems, consumer oc-
cupancy will be a critical index to be taken into account. In another context when a
pandemic occurs, e.g., COVID-19, many people have to work from home, hence their
energy consumption patterns will be significantly changed. This will definitely lead to
variations on the load curve [7–11], which energy utilities have to reschedule their outputs
in order to adapt to the changing demand. Therefore, occupancy analysis and prediction
is a meaningful and practical area worth studying. Despite this, the occupancy of energy
consumers is not directly known to utility companies, instead only the energy consumption
data (electricity, gas, water, etc.) might be available.

Hitherto, existing methods for non-intrusive occupancy analysis and prediction are based
on, either, data from various sensors deployed on-site [12–15], outputs of smart meters [1,16],
artificial neural network (ANN) and machine learning (ML) approaches [13,14,17–20], or
multivariate methods [21]. In [12], three CO2 sensors were deployed in a large-volume
single-zone space to measure the flow of CO2 concentration in and out of the room, based
on which prediction error minimization, ANN, and support vector machine (SVM) mod-
els were developed to count the number of occupants. Results of those models were also
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compared with a developed physical model, showing that their performances were better.
Other types of sensors, e.g., low-resolution thermal imaging sensors [13], temperature and
motion sensors [14,15], were employed to infer the occupancy information using different ML
techniques, such as SVM, K-nearest neighbors, random forest, Bayes classification, and deci-
sion tree. Other ML methods were also utilized, e.g., long short-term memory (LSTM) [19],
feed-forward neural network (FNN), extreme learning machine (ELM) [17], and hidden
Markov model (HMD) [18]. For more details on the state of the art on both data-driven and
analytical methods of occupancy detection and prediction, several existing review works are
recommended, e.g., [3,20].

Power usage information provided from smart meters is another efficient way to de-
duce the energy consumer occupancy. A review on existing non-intrusive load monitoring
datasets was performed in [22]. Binary occupancy, i.e., presence (1) and absence (0 or −1),
can be detected from the outputs of smart meters [1,16] using several learning methods [16].
Similarly, water usage information can also be used for analysis and prediction of binary
occupancy [23].

Although deploying many sensors for measurement of different factors (e.g., tempera-
ture, CO2 concentration, etc.) can provide more information about the presence of energy
consumers, it will certainly increase the system capital cost, as well as the computational
cost needed to process sensors’ data. Bearing that in mind, this research aims to derive
a cheap and lightweight approach for analysis and prediction of consumers’ occupancy
using only their energy consumption data for preservation of their private information
and for saving system costs. These data can be collected from smart meters which are
anticipated to be widely deployed at residential households in the near future along with
other smart grid technologies.

Our proposed approach is based on the support vector machine (SVM), a supervised
machine learning method, to obtain the binary classification of residential energy consumer
occupancy. Distinct kernels (linear, polynomial, rbf, and sigmoid) and different time
periods are investigated and compared to verify their performances in predicting the
energy consumer occupancy. Accordingly, the contributions of this work are summarized
below.

• Electricity consumption is used as the only feature for binary occupancy classification
in SVM. This saves system costs since no additional sensors are deployed to collect
other measurements on energy consumers. Additionally, the computational workload
is reduced since fewer data need to be processed;

• A divide-and-average method to reduce the dimension of the data inputted to SVM,
hence save computational time and cost. In this method, a high-dimension feature
vector is divided into low-dimension vectors which are then summed up and averaged
to attain the final feature vector for SVM;

• The proposed approach gives better performances compared to the existing result in
the literature on the same dataset.

The rest of this paper is organized as follows. A brief introduction of SVM is given
in Section 2. Then our SVM-based approach for occupancy analysis and prediction is
presented and tested on a realistic dataset in Section 3. The paper is summarized and a few
directions for future research are provided in Section 4.

2. Background on SVM

The purpose of SVM is to obtain a model for classification of data samples by learning
from a given dataset. Conventionally, the learning goal of SVM is to derive separating
hyperplanes to classify a given data set into different disjoint subsets and each of those
subsets is assigned with a label. This is based on an assumption that the considering
dataset is linearly separable, however this assumption does not hold for many realistic data
sets. Hence, a technique called “kernel trick” was proposed to transform the considering
dataset into another feature space in which it can be linearly separable. This gives rise
to the use of kernel functions in non-linear SVM methods. Note that the conventional
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linear classification SVM models are a special case of kernel SVM models with the inner
product being the linear kernel function. Therefore, in the following we will introduce
backgrounds of kernel SVM methods for conciseness. Furthermore, we stick with the
binary classification SVM since multi-class SVM methods can be generalized in a similar
manner.

To begin, let {(xi, yi)}i=1,...,m denote the dataset for training a SVM model, where
xi ∈ X ⊂ Rn are the feature vectors, and yi ∈ {1,−1} are the labels associated with
those feature vectors. Suppose that a feature map φ(·) : X → Rp is selected for the
data classification. Our aim then is to derive the parameters w ∈ Rp and b ∈ R for the
SVM model so that the considering dataset can be linearly separated by hyperplanes
wTφ(xi) + b = 1, such that those xi with yi = 1 lie on or above it, and wTφ(xi) + b = −1,
such that those xi with yi = −1 lie on or below it. These conditions are equivalent to
yi(wTφ(xi) + b) ≥ 1 for all i = 1, . . . , m. The obtained SVM model hence can be used to
predict for a test feature vector x ∈ Rn by assigning its label y = sgn(wTφ(xi) + b), where
sgn denotes the sign function.

Consequently, the determination of w and b can be handled in term of optimization
problems. Let us start with the maximal (hard) margin classifier which is formulated as the
following minimization problem.

min
1
2
‖w‖2

2 (1a)

s.t. yi

(
wTφ(xi) + b

)
≥ 1, i = 1, . . . , m (1b)

Let αi ∈ R, αi ≥ 0 be the Lagrange multipliers associated with the constraint (1b), the
following Lagrangian is defined.

L(w, b, α) ,
1
2
‖w‖2

2 − αi

[
yi

(
wTφ(xi) + b

)
− 1
]

(2)

From the optimization theory, the infimum of this Lagrangian is achieved when the
first-order conditions are satisfied, i.e., the partial derivatives of L(w, b, α) with respect to
w and b are vanished. That leads us to

w =
m

∑
i=1

αiyiφ(xi) (3a)

0 =
m

∑
i=1

αiyi (3b)

Next, substituting (3a) back to (2) gives us the infimum of the Lagrangian as follows.

inf L(w, b, α) =
m

∑
i=1

αi −
1
2

m

∑
i,j=1

αiαjyiyjφ(xi)
Tφ(xj) (4)

Denote K(xi, xj) , φ(xi)
Tφ(xj), then K(·, ·) : X ×X → R is called a kernel. Let K ∈

Rm×m be a Gram matrix whose (i, j)-element is K(xi, xj). This matrix must be a symmetric,
positive semi-definite matrix due to the Mercer’s theorem [24]. Accordingly, such a kernel
is called a positive semi-definite (PSD) kernel. However, it is widely acknowledged that
in practice some kernels which are not PSD but conditionally positive definite (CPD) also
work well, e.g., the sigmoid kernel [25]. In the literature, the most common PSD kernels
are: (i) polynomial: K(xi, xj) = (1 + xT

i xj)
q, where q is a positive integer; (ii) Gaussian or

rbf: K(xi, xj) = e−γ‖xi−xj‖2
, γ > 0, whereas one of the often used CPD kernel is the sigmoid

kernel: K(xi, xj) = tanh
(
κxT

i xj + c
)
, κ > 0, c < 0.
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Now, we obtain the following dual optimization problem of Equation (1),

max
m

∑
i=1

αi −
1
2

m

∑
i,j=1

αiαjyiyjK(xi, xj) (5a)

s.t.
m

∑
i=1

αiyi = 0 (5b)

αi ≥ 0, i = 1, . . . , m (5c)

As shown in [24], different SVM methods and models will finally end up with resolv-
ing a dual optimization problem similar to Equation (5), as follows.

max
m

∑
i=1

αi −
1
2

m

∑
i,j=1

αiαjyiyjK(xi, xj) (6a)

s.t.
m

∑
i=1

αiyi = 0 (6b)

0 ≤ αi ≤ C, i = 1, . . . , m (6c)

The constraint (5c) is referred to as the box constraint in the SVM literature.
Lastly, the label of a test vector x ∈ Rn is obtained by y = sgn(∑m

i=1 αiyiK(xi, x) + b),
due to (3a). Using the Karush–Kuhn–Tucker (KKT) conditions, the following equation
must also be satisfied for the found optimal values of the parameters w and b and of the
Lagrange multiplier.

αi

[
yi

(
wTφ(xi) + b

)
− 1
]
= 0 (7)

Thus, only the feature vectors xi with which αi 6= 0 can affect to the classification
of a test vector, hence they are called supported vectors. These support vectors satisfy
yi
(
wTφ(xi) + b

)
− 1 = 0, due to the condition (7), i.e., they lie on the hyperplanes on the

feature space.

3. Energy Consumer Occupancy Prediction
3.1. Electricity Consumption as a Learning Feature

To employ SVM for the analysis and prediction of energy consumer occupancy, a
feature vector must be constructed based on the consumer electricity consumption. There
may be multiple ways to do so, however in this research we directly use the consumer
electricity consumption profile for constructing SVM feature vectors. The SVM feature
vector length is determined by the electricity consumption data resolution and the time
period for occupancy prediction. For instance, if the occupancy should be inferred each
15-min period and the electricity consumption data resolution is 1-minute, then the SVM
feature vector length is 15. More specific will be illustrated in Section 3.3.

When the occupancy period to be validated is long (e.g., an hour), while the data
resolution is high (e.g., one minute), the dimension of feature vectors is high, leading to
high computation time and cost. However, if the intervals for consumer presence and
absence inference are at least several times smaller than the validated occupancy period,
such computational drawbacks can be eased by the following divide-and-average method.

First, the validated occupancy period, denoted by T, is equally divided into a number,
says n, of smaller time periods with length T , i.e., T = nT . Let x̃1, . . . , x̃T represent the
electricity consumption during the period [1,T]. Second, the electricity consumption is
averaged during each time interval T to obtain

x̄i ,
1
T

(
x̃(i−1)T +1 + · · ·+ x̃iT

)
, i = 1, . . . , n (8)
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As the result, a new low-dimension feature vector of length n is constructed from the
initial high-dimension feature vector [x̃1, . . . , x̃T]

T of length T, as follows.

x , [x̄1, · · · , x̄n]
T ∈ Rn (9)

This method will be further illustrated through test cases in Section 3.3.
During the training process, SVM models are verified using the k-fold cross-validation

method to assess their out-of-sample misclassification error. To this end, a summary of our
SVM-based approach for predicting energy consumer occupancy is provided in Figure 1.

Figure 1. SVM-based approach for energy consumer occupancy prediction.

3.2. Realistic Dataset

In the current work, we employ the public-open dataset provided in [26]. More specif-
ically, we utilize the data with one-minute resolution on the realistic electric consumption
and occupancy profiles of two consumers in home A [26] for all simulations. Those data
show great differences on the electric consumption and consumer occupancy between
weekdays and weekends, and between different seasons. For example, in spring (Figure 2),
during weekend home owners mostly stayed at home and only left for several hours in the
evening. On the other hand, during weekdays they left home from the morning to the late
afternoon (probably for working). Therefore, in this work we only focus our analysis on
the electricity consumption and energy consumer occupancy during weekdays.
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Figure 2. 1-min Resolution of a home electricity consumption and the modified 15-min resolution of
its consumer occupancy, during the period of 1–7 April 2013, taken from [26].

3.3. Prediction Results

Performances of SVM models with different kernels will be compared through differ-
ent indexes introduced in the following.

• Confusion matrix: a 2× 2 matrix for binary classification whose first row composes
of true positive (TP) and false negative (FN), while its second row composes of false
positive (FP) and true negative (TN). Here, TP means the prediction of consumer
presence and the home is occupied, FN means prediction of consumer absence and
the home is occupied, FP means prediction of consumer presence and the home is
not occupied, and TN means prediction of consumer absence and the home is not
occupied;

• Accuracy = TP+TN
TP+TN+FP+FN ;

• Precision, or positive predictive value (PPV) = TP
TP+FP ;

• True positive rate (TPR), or recall = TP
TP+FN ;

• True negative rate (TNR) = TN
TN+FP ;

• F1-score = 2TPR×PPV
TPR+PPV ;

• Matthews correlation coefficient (MCC) = TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

;

• Balanced accuracy = TPR+TNR
2 .

The TNR, MCC and balanced accuracy are employed to better evaluate the perfor-
mances of SVM models since the precision, TPR, and F1-score indexes focus only on the
positive predictions, but not on the negative ones.

All simulations are performed in Matlab R2016b installed on a desktop computer
equipped with Intel Core i7-6700K 4GHz CPU and 64GB RAM.

3.3.1. In Spring

It is worth noting that the occupancy profiles of two energy consumers in home A are
almost identical, except a difference in the third weekday, as observed in Figure 2. The
consumer occupancy profile displayed in green color has a more regular pattern, hence is
considered for our analysis and prediction, for simplicity.

In the first simulation, we directly utilize the electricity consumption data in the
first three weekdays, which are divided into periods of 15 min to train our SVM models.
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Different kernels are used, namely linear, polynomial, and radial basis function (rbf) kernels.
In other words, the feature vectors fed to SVM models have length of 15, and the feature
matrix has the dimensions of 288× 15. The out-of-sample misclassification error for SVM
model with linear, polynomial, rbf, and sigmoid kernel is 30.9%, 42.01%, 35.42%, and
35.76%, respectively, which are quite high.

Consequently, we use the above SVM models to predict the occupancy profile in the
considering home for the last weekday. It then turns out that the result of linear kernel is
totally wrong with 100% of consumer’s presence, while the outcomes of polynomial and
rbf kernels are much better, which are shown in Figure 3, because the residential electricity
consumption data are not linearly separable. The sigmoid kernel, a CPD kernel [25], is
also tested but its performance is not good, hence we do not show its result in Figure 3
to guarantee the figure clarity. Performance comparison of polynomial and rbf kernels is
exhibited in Figure 4. As seen, the SVM model with polynomial kernel is worse than the
SVM model with rbf kernel at some indexes but is better at some other indexes. In addition,
the former is less accurate than the latter in predicting the presence of the energy consumer
but is more accurate in predicting her absence.

Figure 3. 15-min Occupancy prediction in spring using SVM with different kernels.

Confusion 
matrix  Accuracy Precision

TPR
F1-score MCC Balanced 

accuracyTNR

polynomial
50 16

69.79% 79.37%
75.76%

77.52% 31.64% 66.22%
13 17 56.67%

rbf
60 6

72.92% 75%
90.91%

82.18% 30.15% 62.12%
20 10 33.33%

Kernel 

Index 

Figure 4. Comparison of 15-min occupancy prediction in spring using SVM with different kernels.

However, both SVM models above with rbf and polynomial kernels misclassify the
consumer occupancy at several intervals during her working time, i.e., her absence from
home, as seen in Figure 3. This can be explained by some similarity of the electricity
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consumption patterns when home owners were present and absent, as can be observed
from Figure 2, leading to such wrong classification of the SVM models. Such similarity
can be seen better, as shown in Figure 5, where the electricity consumption in each 15-min
period is averaged and displayed for 3 training days and one test day. It is clear that during
the presence of energy consumers at home the 15-min average electricity consumption
are larger at several intervals, but are similar to that when they are not at home. This is
obviously challenging for the occupancy classification.

Figure 5. 15-min Average electricity consumption and occupancy profile of one consumer.

Now, in the second simulation, we aim to predict the energy consumer occupancy
in each hour interval. The same dataset for home A in Spring [26], above, is employed.
Nevertheless, we do not go on the same route as in the first simulation, i.e., we do not use
feature vectors having length of 60 containing one-minute electricity consumption data.
Instead, our proposed divide-and-average is employed, in which the 15-min averages of
electricity consumption, which was shown in Figure 5, will be utilized, resulting in feature
vectors of length 4 and feature matrix of dimensions 72× 4 for the same dataset of three
training days. Thus, we can significantly save the model training time and computational
cost. In this scenario, the out-of-sample misclassification error when using the k-fold
cross-validation for SVM model with polynomial, rbf, and sigmoid kernel is 2.78%, 5.56%,
and 11.11%, respectively. Those errors are much smaller than that in the previous situation
of 15-min occupancy prediction.

The results of the second simulation are depicted in Figure 6, where the sigmoid kernel
is also used. The performance comparison of SVM models with different kernels in this
case is shown in Figure 7. We can clearly observe that the SVM models with sigmoid and
rbf kernels outperform that with polynomial kernel in this scenario in all performance
indexes. On the other hand, the performances obtained with rbf and sigmoid kernels are
slightly different in this case, but we note that with some other sets of parameters for the
sigmoid kernel, their performances become identical.
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Figure 6. 1-h Occupancy prediction in spring using SVM with different kernels.

Confusion 
matrix  Accuracy Precision

TPR
F1-score MCC Balanced 

accuracyTNR

polynomial
12 5

70.83% 85.71%
70.59%

77.42% 38.74% 71.01%
2 5 71.43%

sigmoid
14 3

83.33% 93.33%
82.35%

87.50% 63.91% 84.03%
1 6 85.71%

rbf
15 2

83.33% 88.24%
88.24%

88.24% 59.66% 79.84%
2 5 71.43%

Kernel 

Index 

Figure 7. Comparison of one-hour occupancy prediction in spring using SVM with different kernels.

On the other hand, all models could not predict accurately the presence-absence
switching times, though the sigmoid kernel is a bit better than the rbf kernel on tracking
the switching time in this case. This can be explained by the fact that the number of hours
for the presence-absence-presence pattern of the considering energy consumers in three
training days are 9-8-7, 9-8-7, and 11-6-7, whereas for the test day is 10-7-7. Hence, the
investigating SVM models are probably not sophisticated enough to capture such differ-
ences in the occupancy patterns, which requires further works to improve the occupancy
predicting performance.

3.3.2. In Summer

For the same home as in the previous section, the electricity consumption profile and
home owners’ occupancy patterns in summer are much more irregular, as can be seen
in Figure 8 and more clearly in Figure 9 for the same owner considered in the previous
section for prediction. Particularly, the very short presence or absence of this home owner
happened several times, while his or her long presence at home also occurred a few times.
This makes the occupancy prediction even more challenging.
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Figure 8. 1-min Resolution of a home electricity consumption and the modified 15-min resolution of
its consumer occupancy, during the period of 8–14 July 2013 [26].

Figure 9. 15-min Average electricity consumption and occupancy profile of one consumer during
8–14 July 2013 [26].

In this case, the out-of-sample misclassification error when using the k-fold cross-
validation for SVM model with polynomial, rbf, and sigmoid kernel is 18.49%, 20.83%, and
35.42%, respectively, which are relatively high. The occupancy prediction results for the
next weekday using polynomial, rbf, and sigmoid kernels are shown in Figure 10. Surpris-
ingly, the prediction accuracy obtained with the sigmoid kernel is much better than that
with the other two kernels. Such performance differences can be clearly seen in Figure 11,
where all performance indexes of the SVM model with sigmoid kernel outperform that of
the other SVM models with polynomial and rbf kernels. This is very interesting because its
performance for the 15-min occupancy prediction in Spring in the previous section was
worst than that utilizing the polynomial and rbf kernels.
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Figure 10. 15-min Occupancy prediction using SVM for 12 July 2013.

Confusion 
matrix  Accuracy Precision

TPR
F1-score MCC Balanced 

accuracyTNR

polynomial
45 16

77.08% 88.24%
73.77%

80.36% 54.62% 78.72%
6 29 82.86%

sigmoid
51 10

89.58% 100%
83.61%

91.07% 80.64% 91.81%
0 35 100%

rbf
47 14

83.33% 95.92%
77.05%

85.46% 68.68% 85.67%
2 33 94.29%

Kernel 

Index 

Figure 11. Comparison of 15-min occupancy prediction using SVM with different kernels for
12 July 2013.

3.4. Comparison with Existing Results

In this section, we attempt to compare the performance of our proposed approach
with that of an existing algorithm in the literature [1] conducted on the same dataset. Note
that, the algorithm in [1] was also simple and threshold-based. The prediction results
in [1] were evaluated through the confusion matrix, accuracy, TPR, precision, and F1-score
indexes, and could be improved by combining different metrics (average power, standard
deviation, and power range).

The comparison detail is provided in Figure 12. As seen, our proposed approach
outperforms that in [1] for both cases of spring and summer times.
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This 
work Ref. [1] This 

work Ref. [1]

Accuracy F1-score

spring
week 83.33% 73.27% 88.24% N/A

summer 
week 89.58% 79.09% 91.07% 82%

Period

Index 

Figure 12. Performance comparison for the same data of home A in Spring given in [26].

4. Conclusions and Future Works

This paper has proposed a SVM-based approach for analysis and prediction of binary
occupancy for residential energy consumers. This approach is different from other existing
ones in which only the electricity consumption is used as its input, hence system cost can
be significantly reduced. In addition, a divide-and-average strategy has been proposed to
decrease the dimension of the input feature vector. As a result, computational time and
cost can be saved. Despite of its simplicity, the proposed approach’ performance has been
shown to outperform that of an existing method in the literature, performed on the same
realistic dataset. Our test results also suggest that SVM models with rbf (Gaussian) kernel
and sigmoid kernel give the highest performances.

There are several challenges to be addressed in the future research. First, the presence-
absence switching times are very difficult to track due to aperiodic occupancy patterns of
residential energy consumers. Second, similarities on the electricity consumption patterns
during the absence and presence periods make them hard for being distinguished. Fur-
thermore, the occupancy and electricity consumption patterns can be completely different
between weekends and weekdays, as well as between different seasons, which pose addi-
tional challenges to be resolved for the energy consumer occupancy analysis and prediction.
Last but not least, novel kernels should be developed for achieving better prediction results
on the binary occupancy of energy consumers.
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