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Abstract: In recent years, China has overtaken the United States as the world’s largest carbon
dioxide (CO2) emitter. CO2 emissions from high-energy-intensive industries account for more
than three-quarters of the total industrial carbon dioxide emissions. Therefore, it is important to
enhance our understanding of the main factors affecting carbon dioxide emissions in high-energy-
intensive industries. In this paper, we firstly explore the main factors affecting CO2 emissions in
high-energy-intensive industries, including industrial structure, per capita gross domestic product
(GDP), population, technological progress and foreign direct investment. To achieve this, we rely on
exploratory regression combined with the threshold criteria. Secondly, a geographically weighted
regression model is employed to explore local-spatial heterogeneity, capturing the spatial variations
of the regression parameters across the Chinese provinces. The results show that the growth of
per capita GDP and population increases CO2 emissions; by contrast, the growth of the services
sector’s share in China’s gross domestic product could cause a decrease in CO2 emissions. Effects of
technological progress on CO2 emissions in high-energy-intensive industries are negative in 2007 and
2013, whereas the coefficient is positive in 2018. Throughout the study period, regression coefficients
of foreign direct investment are positive. This paper provides valuable insights into the relationship
between driving factors and CO2 emissions, and also gives provides empirical support for local
governments to mitigate CO2 emissions.

Keywords: spatial spillover; linear regression model; carbon emissions; energy consumption;
global warming

1. Introduction

Over the past 20 years, global warming has become a serious issue, attracting in-
creasing attention from the international community. Relative to pre-industrial levels,
the impacts of global warming increases the temperature by 1.3 ◦C [1]. As a result, ac-
companied with an increase in temperature, glacier melting has caused sea levels to rise,
and extreme weather events occur more frequently. Furthermore, it is widely accepted
that increasing amounts of carbon dioxide (CO2) emissions significantly contribute to
global warming. Since the period of reform and opening-up in 1978, China’s economy has
grown at an average annual rate of 7 percent. Since 2008, China has overtaken the United
States as the world’s largest CO2 emitter, and accounted for 23% of global CO2 emissions
(CEs). As the largest developing country in the world, China has made a commitment that
CEs will peak in 2030, and then CEs per unit of GDP will fall by between 60% and 65%
compared with 2005 level. Why does China produce so many CEs? Largely due to the
fact that high-energy-intensive (HEI) industries still account for a large proportion of the
economy [2,3]. A previous study shows CEs from HEI industries account for 80% of total
industrial CEs [4].
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In China, HEI industries include petroleum refining and coking, mining industries,
chemical production and processing, non-metallic mineral products, ferrous metals pro-
duction, non-ferrous metal manufacturing, power generation and heating. China’s extraor-
dinary economic development, since 1978, has occurred as a result of urbanization. By late
2017, about 60% of the total population lived in China’s urban areas; improving the living
standards of the people, urbanization still continues to occur at a high rate [5–7]. However,
in turn, it also increases the demands for more energy, building materials, and chemical
products. Meanwhile, China is the world’s most important manufacturer and supplier
of industrial products and living goods. In general, this requires more HEI industries,
and inevitably contributes to more carbon dioxide emissions. The Chinese government has
formulated the 13th Five-Year Plan to ensure the completion of the low-carbon develop-
ment tasks and to achieve China’s carbon emission peak by 2030. Undoubtedly, as the main
pillar industries of China’s national economy, HEI industries must improve their energy
efficiency and, in turn, reduce CEs. Therefore, understanding the key driving factors of CEs
will contribute to developing energy-saving plans and CEs reduction policies. In addition,
China is a vast country, and its various regions have obvious differences with regard
to natural resources, production conditions and technical levels. Thus, when this paper
investigates the factors that influence factors of carbon emissions, the spatial heterogeneity
of China’s regions is taken into consideration. Additionally, long-term and short-term
spatial effects are also important to explore in considering the relationships between the
influencing factors and CEs.

To explore the pathway of CEs reduction in HEI industries, many scholars have
carried out research on the driving factors of CEs and measures to reduce CEs in different
regions or industries [8–11]. In power-generation and heating industries, some previous
studies have indicated a percentage increase in non-fossil fuel energy leads to a certain
percentage decrease in CEs from the electricity-generation sector among different countries
or regions [9,12]. Lin and Tan [13] found that the average rates from CEs growth in China’s
energy-intensive industries were roughly 7.20% between 1985 and 2014, and identified that
industrial-scale and labor productivity were the main driving factors in increasing CEs,
while energy intensity had a negative effect on CEs. Lin and Wang [14] explored the CEs
and mitigation potential from iron and steel industries among different provinces in China
during 2000–2011, and suggested that technical innovation and low-carbon investment
should play an important role in mitigating CEs. Wu, et al. [15] identified the reasons for
recent no-growth in CEs, and deduced that China’s CEs in most of HEI industries have
peaked or approached the peak in recent years. Griffin, et al. [16] explored some of the
opportunities and challenges in reducing CEs in the chemical sector in the United Kingdom;
the results showed that technological innovation was needed to meet the short-term and
long-term goals for general emission reduction.

As mentioned previously, most of the CEs in China come directly from industrial
production, especially energy-intensive industries [13]. Therefore, it is important to iden-
tify which factors affect CEs in HEI industries. Many scholars have examined the main
factors affecting CEs [11,17–20]. These factors include the level of economic development,
energy intensity, industrial structure, urbanization level, energy mix, population, techno-
logical progress, foreign trade, foreign direct investment, energy sector investment, and so
on [10,11,17–19,21]. Which of these are the main factors affecting carbon emissions in
energy-hungry industries?

Additionally, the research approaches are also key to evaluate the effects of driving
factors on CEs. A number of scholars developed a mathematical model between CEs and
the driving factors to help local governments to formulate a reasonable CEs reduction
policy. Since 1971,Ehrlich and Holdren have developed the IPAT model which suggests
environment impact (I) is a function of population (P), affluence (A) and technology
(T) [22,23]; in turn, many studies have since employed the extended STIRPAT model, based
on the classical IPAT, to evaluate the main driving factors for CEs [8,24,25]. Additionally,
the LMDI (Logarithmic Mean Divisia Index) model is also a popular method applied
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to investigate the main influencing factors of CEs. Ren, et al. [26] employed the LMDI
method to explore the impacts of the main driving factors on CEs and found that an
increase in economic output contributed to an increase in CEs in China’s manufacturing
industries. Similarly, Xu, et al. [27] used the LMDI model to investigate the factors of CEs,
and contended that economic output was the most important driver of CEs.

In addition, a number of previous studies use spatial-econometric analysis to explore
the effects of driving factors on CEs. For example, Yang, Zhou, Poon and He [22] employed
three spatial-autoregressive models including the spatial-lag model (SLM), the spatial-
error model (SEM) and the spatial Durbin model (SDM), to reveal the relative significance
of drivers on the intensity of CEs in eight regions. The spatial-dependence effects are
considered in the three models above, which can indicate both positive and negative spatial
fill-over effects on different regions. Wang and Li [12] used the SDM model to estimate the
direct and indirect spatial effects of non-fossil fuel power generation on CEs, and the result
of the spatial panel analysis showed that a higher share of non-fossil fuel power generation
contributed to reducing CEs both in terms of direct and indirect spatial effects. However,
these models, which belong to the global regression model, are only able to evaluate global
parameters for a regression model. In recent years, the geographically weighted regression
(GWR) method has been employed to explore local-spatial heterogeneity and capture the
spatial variations of the regression parameters across different regions [19,28–31].

In this study, and to the best of our knowledge, the GWR method is employed to
analyze the relationships between CEs in HEI industries and its driving factors, and to
explore the spatial heterogeneity of these factors. At the same time, this study also helps to
understand the role the driving factors play in influencing CEs in HEI industries. In this
paper, firstly, spatial autocorrelation is used to analyze the spatial characteristics of CEs
in HEI industries between Chinese provinces. Then, we employ exploratory regression
to determine the major driving factors of CEs in HEI industries. Furthermore, the GWR
model is used to explore the driving factors of province-level CEs by providing different
parameter sets across neighboring provinces. Finally, we compare the different impacts of
every driving variable on CEs in different provinces.

2. Data Sources and Methods
2.1. Data Sources and Description

Based on data availability, we selected 30 provinces in China as our study areas.
Four provincial districts including Tibet, Hong Kong, Macau, and Taiwan, are excluded due
to the lack of complete data. The study period covers the years from 2007 to 2018. The en-
ergy consumption data are obtained from China Energy Statistical Yearbook
(2008–2019), and the datasets of the driving factors are available at the provincial level from
China Statistical Yearbook (2008–2019). The gross industrial output value of HEI industries
is acquired from the China Industrial Economic Statistical Yearbook (2008–2019). CEs are
measured based on the formula of CEs in the Intergovernmental Panel on Climate Change
(IPCC) [32]. Whether practical or theoretical perspectives, determining which variables in
a model are its most important predictors is critical [33]. Based on the previous literature,
ten potential driving factors of CEs in HEI industries are selected, these factors include
population (POP), per capita gross domestic product (PGDP), urban level (UL), industrial
structure (IS), technological progress (TP), foreign trade (FT), foreign direct investment
(FDI), energy sectors investment (ESI), energy mix (EM), and energy intensity (EI).

In order to reduce the effects of inflation during the entire study period, gross domestic
product (GDP) is converted into constant prices based on the Chinese 2000 price level.
Energy intensity (EI) is a leading indicator of economic data which is measured by the
quantity of energy required per unit of GDP, urbanization level (UL) is calculated as urban
population divided by the total population, energy mix (EM) is calculated as coal use di-
vided by total energy use, the energy sectors investment (ESI) refers to investment amounts
in energy sectors at the provinces level, which is acquired from China Energy Statistical
Yearbook, and we employ Solow Growth Model to calculate the value of technological
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progress (TP). In addition, industrial structure (IS) refers to the services sector’s share in
China’s gross domestic product.

2.2. Study Methods

Spatial-autocorrelation method is widely used to evaluate the spatial dependency and
heterogeneity among different objects, and the most popular test of spatial autocorrelation
is the global Moran’s index test. The formula of Moran’s Index is expressed as follows:

Moran′s I =
n∑n

i=1 ∑n
j=1 wij(xi − x)(xj − x)

∑n
i=1 (xi − x)2∑n

i=1 ∑n
j=1 wij

(1)

where xi represents the observation in the i-th location, xj represents the observation in
the j-th location, x is the average of all observations for every attribute feature, xi, in n
locations. wij is an element of the spatial weights matrix, w, used to reflect the neighboring
relationship among different regions at n positions [19].

Local-spatial autocorrelation analysis could mainly explore the distribution pattern of
individual unit attribute values in a heterogeneous space, and this analysis could measure
the degree of local-spatial correlation between each unit and its surrounding units [34].
The formula of the local-spatial autocorrelation Index is expressed as follows:

I =
n(xi − x)∑n

j=1 wij(xj − x)

∑n
i=1 (xi − x)

(2)

where I represent the spatial autocorrelation Index, xi and xj represent the observation
in the i-th location and the j-th location respectively, and wij is an element of the spatial
weights matrix. A positive I means that a high value’s neighbors have high values, or a
low value’s neighbors have low values. A negative I implies that a low value’s neighbors
are more likely to have high values, or vice versa [35].

When there are many potential explanatory variables that might be important con-
tributing factors to the response variable, finding the relative importance of predictor
variables is important for building regression models. The exploratory regression is similar
to the stepwise regression, evaluating all possible combinations of the input candidate
explanatory variables along with threshold criteria, these criteria include adjusted R2,
coefficient p-values, Variance Inflation Factor (VIF) values, Jarque-Bera p-values.

The geographically weighted regression (GWR) model could be widely used to ex-
plore the spatial variation of regression parameters. Compared with the general linear
models, the GWR model is a local form of the generalized linear regression, which could
construct separate linear regressions for every geographical unit. In general, the GWR
method extends OLS linear regression models by accounting for the spatial autocorrelation
of variables and estimating a separate model and local parameter for each geographic
location in the dataset, based on a local sub-dataset which uses a differential spatial weight
matrix [36]. The GWR model can be represented as:

yi = β0(ui, vi) +
k

∑
j=1

β j(ui, vi)xij + εi (3)

where yi represents CEs in HEI industries at i-th location of provincial unit(LPU) k is the
number of independent variables, xij represents the j-th independent variable at the i-th
LPU, (ui, vi) is the geographical coordinate of the i-th LPU, β j(ui, vi) represents the locally
estimated coefficient of the j-th independent variable at the i-th LPU, which is a function of
geographical location. β0(ui, vi) is the intercept at the i-th LPU, εi is the error term. Based
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on the distance-weighted least square regression method, the coefficient of the GWR model
at each site are estimated by

β̂(ui, vi) = (XTW(ui, vi)X)
−1

XTW(ui, vi)Y (4)

where β̂(ui, vi) is the vector of estimated coefficients at the i-th LPU, X is the matrix of
independent variables, Y is the n×1 vector of the dependent variable, and W(ui, vi) is n× n
spatial weight matrix:

w(ui, vi) =


wi1 0 · · · 0
0 wi2 · · · 0

...
...

. . . 0
0 0 0 win

 (5)

Due to different distances between the provinces, the key of the GWR model is to
calculate the bandwidth or the number of neighbors used in every location. To obtain the
optimal number of neighboring provinces selected, the Akaike Information Criterion (AIC)
was chose. The bi-square weighting function was used to calculate the weight between the
provinces, and it can be expressed as follows:

Wij =

 [1− (
dij

dmax
)

2
]
2

f or dij < dmax

0 otherwise
(6)

where dmax denotes the max distance from the n-th farthest provinces to the regres-
sion province.

3. Results
3.1. Temporal and Spatial Heterogeneity of CEs

In this study, we investigate the spatial heterogeneity of CEs in HEI industries in
2007, 2013 and 2018. Figure 1 shows the temporal and spatial distributions of CEs across
the entirety of China. From the perspective of space, the distribution difference in CEs
is very clear. The top two carbon dioxide emitters are Shandong and Jiangsu, and the
three smallest emitters are located in northwestern and southern regions, mainly including
Hainan, Qinghai and Ningxia. Shandong remains China’s largest emitter of carbon dioxide,
contributing 12.0%, 12.3% and 14.4% of total national emissions in the three different years,
respectively, while Hainan is always China’s smallest emitter of carbon dioxide, occupying
2.9%, 0.3% and 0.3%. From a temporal perspective, CEs are about 2334 Mton in 2007,
while they rise 59.6%, to 3,725 Mton, in 2018. As the top two carbon dioxide emitters,
Shandong and Jiangsu are responsible for 23.9% of the national CEs in 2007, unexpectedly
accounting for more than 26.6% in 2018. In contrast, the three smallest emitters only occupy
1.2% and 1.5% in 2007 and 2018, respectively.
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On the whole, the provinces with enormous carbon emissions are mainly distributed
throughout China’s eastern coastal regions. In recent years, the CEs of central provinces
have also been increasing. The main reason for this is that China’s extensive development
model of high consumption and high pollution has not been fundamentally changed.
Although the export-oriented development model has made tremendous contributions
to China’s rapid economic development, it has shown little regard for the environment
and, in turn, lead to over-exploitation of resources and CEs. The Chinese government
should establish the “rules of the game”, including property rights, patent protections,
and incentives to invest in technological innovation. These rules contribute to low eco-
nomic growth, which would therefore encourage the institution of a sustainable economic
development model.

3.2. Spatial Autocorrelation Analysis of CEs in HEI Industries

Before performing the GWR model, we use Moran’s I to examine whether there is
a spatial autocorrelation between the CEs in HEI industries. The Moran’s Index in 2007,
2013, and 2018 are given in Table 1. The results show that global Moran’s Index are greater
than 0.3 over the whole time period, suggesting that there is significantly positive spatial
autocorrelation in the CEs between provinces in HEI industries.

Table 1. Spatial autocorrelation results of CEs in HEI industries.

Year Moran’s I Variance Z-Score p-Value

2007 0.32135 0.018521 3.010372 0.001913
2013 0.328055 0.016367 3.175438 0.001437
2018 0.330209 0.010243 3.353327 0.001256
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Local indicators of spatial association (LISA) indicate the high-high and low-low
locations (positive local-spatial autocorrelation) are typically spatial clusters. High-High
locations are usually called hot spots (locations where high-attribute values are surrounded
by high-attribute values: High-High); Low-Low locations are cold spots (locations where
low-attribute values are surrounded by low-attribute values: Low-Low). The High-Low
and Low-High locations (negative local-spatial autocorrelation) are considered as spatial
outliers. As is shown in Figure 2, High-High, Low-Low, High-Low and Low-High regions
are found at the 5% level of significance. During the whole period, four or five provinces
fall into High-High and Low-Low spatial clusters. Meanwhile, a few provinces fall in Low-
High and High-Low areas, which reflects the existence of positive spatial autocorrelation.
Shandong and Jiangsu provinces are always in High-High zones, while Gansu province is in
Low-Low zones over the whole period. This reveals that Shandong and Jiangsu provinces,
and their neighboring provinces, emit more carbon dioxide in HEI sectors. In contrast,
Gansu and its neighboring provinces emit less CEs. Interestingly, High-High clusters do
not include Guangdong province, which has the largest GDP among the 30 provinces in
China; this suggests most of its neighboring provinces emit less carbon dioxide.
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3.3. Evaluating All Possible Combinations of the Candidate Explanatory Variables

Exploratory regression is used to find major drivers of CEs in HEI industries. To elim-
inate the differences in numerical magnitude within the statistical data, we normalize
all explanatory variables based on the average of these variables in 2007, 2013 and 2018,
respectively. The following threshold criteria are set: acceptably adjusted R2 is more than
0.5, the p-value of Coefficient is less than 0.05, VIF value is less than 7.5, the p-value of
Jarque-bera test is greater than 0.1.

Table 2 shows the results of exploratory regression, and lists seven models, with the
highest adjusted R2 meeting all of the threshold criteria. These models are divided into four
groups, by number of exploratory variables. The fourth group only contains one model
which has five explanatory variables, and we note that the model has five variables that
are statistically significant. Based on adjusted R2 and other threshold criteria, we decide to
use IS, PGDP, TP, POP and FDI as explanatory variables, following the GWR model.

Table 2. The results of exploratory regression.

Adjusted R2 AICc JB p-Value VIF Num. Vars. X1 X2 X3 X4 X5

0.721 −26.2 0.27 1.0 2 PGDP POP - - -
0.678 −21.9 0.131 1.1 2 UL POP - - -
0.783 −32.0 0.37 2.0 3 IS PGDP POP - -
0.734 −25.8 0.13 1.2 3 UL POP FT - -
0.706 −22.8 0.121 1.9 3 IS UL POP - -
0.829 −37.2 0.521 3.0 4 IS PGDP POP FDI -
0.834 −35.8 0.297 3.0 5 IS PGDP TP POP FDI

Abbreviation: AICc, corrected Akaike Information Criterion; JB, Jarque-Bera test; VIF, Variance Inflation Factor.
Num. Vars. represents the number of variables. X1, X2, X3, X4 and X5 represents the variable symbol respectively.

3.4. Estimation Results of the GWR Model

Table 3 shows the calculated results of the GWR models during three periods. The R
square values identify spatial variation over the whole study area; those exceeding 0.8 indi-
cate more than 80% of the variation and could be explained by IS, PGDP, TP, POP or FDI.
As the GWR model constructs a separate linear regression for every province, regression
coefficients could be separately calculated for each province. The regression coefficients of
POP and PGDP are always positive, which indicates a positive relationship between the
two driving factors and CEs in HEI industries, and also that POP and PGDP are the key
factors which increase CEs. However, the regression coefficient of IS is negative, which
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shows a negative relationship between IS and CEs, and further that IS contributes to the
decrease in CEs. In the two years of 2007 and 2013, regression coefficients of TP are also
negative but, by contrast, the coefficients are positive in 2018. On the whole, regression
coefficients of FDI are mostly positive, though there are a few negative coefficients in some
provinces in 2018. Meanwhile, Table 3 shows the maximum and the minimum of regression
coefficients from the GWR model, compared with the coefficients from Ordinary Least
Squares (OLS) regression model during the three periods. Absolute values of the intercepts
in all of models are very small, which vary between 0.0583 and 0.188. The differences of
regression coefficients, based on the GWR model, are very obvious among the 30 provinces
in 2013 and 2018, which indicates the spatial heterogeneity of relationships between driving
factors and CEs in HEI industries. Similarly, this shows the GWR model might be more
suitable than the OLS regression model in this study.

Table 3. The results of GWR and OLS.

Parameters 2007 2013 2018

Methods
GWR

OLS
GWR

OLS
GWR

OLS
Min. Max. Min. Max. Min. Max.

Intercept 0.083 0.085 0.084 −0.179 −0.0111 −0.065 −0.188 −0.058 −0.136
IS −0.899 −0.898 −0.898 −0.308 −0.228 −0.286 −0.255 −0.225 −0.204

PGDP 0.307 0.311 0.31 0.197 0.368 0.302 0.28 0.431 0.384
TP −0.606 −0.603 −0.604 −0.0728 −0.014 −0.037 0.005 0.097 0.063

POP 0.449 0.454 0.451 0.47 0.869 0.602 0.564 0.83 0.703
FDI 0.494 0.497 0.495 0.228 0.410 0.262 −0.116 0.154 −0.066
R2 0.894 0.872 0.855 0.739 0.822 0.725

Note: R2 is a statistical measure of fit.

As shown in the Table 4 below, the Moran’s I of the residuals from the GWR are very
small in 2007, 2013 and 2018. All of p–values are higher than 0.05 in the three years and are
therefore not statistically significant. The z-tests indicate spatial distribution of residuals are
the result of random spatial processes. Thus, it is reasonable that the above five variables
are selected as explanatory variables in the GWR model.

Table 4. The Moran’s I and test of residuals in 2007, 2013 and 2018.

Year Variables I E(I) sd(I) Z-Score p-Value

2007 residual 0.018 −0.035 0.117 0.388 0.335
2013 residual 0.058 −0.035 0.111 0.856 0.185
2018 residual 0.047 −0.035 0.094 0.074 0.211

4. Discussion
4.1. The Effect of the Industrial Structure on CO2 Emissions

It is evident from Figure 3 that IS has a strongly negative impact on CEs in HEI indus-
tries because many developed provinces have made great efforts to develop services and
electronic-information industries, and also to limit HEI industries as much as possible in
order to reduce CEs [37]. Compared with other independent variables, the effect of IS on
CEs is relatively strong and gradually weakening. The averages of regression coefficients
of IS in 2007, 2013 and 2018 are −0.8982, −0.2739 and −0.2437, respectively. In 2007,
IS has great impact on CEs in the northern provinces, such as Inner Mongolia, Xinjiang.
The reason for this is that the northern regions have a large number of HEI industries,
the proportion of tertiary industries is small, thus resulting in more CEs. Compared with
2007, on the whole, regression coefficients of IS decline by 72.9 percent in 2018. Although
China issued the 12th Five-Year Development Plan for Energy Saving and Environmen-
tal Protection Industry in 2012, and promoted the transformation of economic growth
modes [38], the provinces of the western and northern China still develop HEI industries in
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order to best achieve their economic goals. Additionally, these provinces are mainly located
in marginal areas, coupled with inconvenient transportation, which limits the development
of service industries. Yet, eastern China experiences relatively low negative impacts of IS.
These provinces, such as Guangdong, have a more developed industrial structure and thus
avoid more CO2 emissions by importing high-energy-intensive products while exporting
low-energy-intensive and higher-value-added products in the machinery, equipment and
service sectors.
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From 2007 to 2018, CEs in HEI industries have increased by about 59.6%, while the
share of tertiary sectors in GDP rises slowly, climbing by 23.8%; this explains the phe-
nomenon that the impact of IS on CEs in HEI industries is gradually weakening. However,
a few results from previous studies are not consistent with the present study. For example,
Liu et al. [39] found IS had positive effects on CEs in HEI industries, with coefficients of
0.179. Most previous studies identify that increasing the share of tertiary sectors in GDP
contributes to reduction of CEs [37,40,41]. In the current and future period, the proportion
of the third industry in the Chinese economy continues to rise. The provinces with high
proportions of energy-intensive sectors should vigorously develop low-carbon industries
and information industries to promote carbon emission reduction.

4.2. The Effect of the Per Capita GDP on CO2 Emissions

Figure 4 reflects the positive effects of per capita GDP on CEs in HEI industries in
the different years. The regression coefficients range from 0.31 to 0.39 from 2007 to 2018.
The groups of the regression coefficients of PGDP are similar across the different years.
The regression coefficients are relatively low in western China but, by contrast, relatively
high in eastern China. In 2007, the most influenced provinces are mainly distributed
the in three northeastern provinces and the eastern coastal provinces. By the year 2018,
its distribution area has extended to some central provinces. In the whole study period,
the low-coefficient group has always been in the western provinces. Since the late 1970s,
China has been one of the world’s fastest-growing economies and PGDP is also growing at
faster rate. In the coverage of the 30 provinces, PGDP grows from 22,300 Yuan in 2007 to
59,100 Yuan in 2018. The growth of PGDP leads to the substantial increase of individual
income, which in turn results in rising demand for energy products [19]. The results
from the GWR model show that PGDP has the largest impact on the eastern coastal
regions, because PGDP or individual income are higher in these regions than other regions.
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This suggests that these regions have greater potential to reduce CEs. In fact, economically
developed provinces are characterized by higher than average CEs. Therefore, they have
the responsibilities and obligations to reduce CEs.
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4.3. The Effect of the Technological Progress on CO2 Emissions

As is shown in Figure 5, technological progress has more significant impact on CEs
in HEI industries in 2007 than in 2013 and 2018. Effects of TP on CEs in HEI industries
are negative throughout the whole study period. From 2007 to 2018, the absolute average
of regression coefficients on CEs declines from 0.60 to 0.03, and the result indicates the
impact of TP on CEs is decreasing year by year. As a whole, the differences of regression
coefficients between different provinces are small. This could mainly be attributed to
TP increasing energy efficiency and reducing energy consumption [42]. While CEs will
continue to steadily increase in the near future, TP will play a smaller role in reducing CEs,
from the perspective of a purely mathematical model. Some previous studies have shown a
negative relationship between TP and CEs. The finding in this study is somewhat consistent
with the finding of Zhang et al. [43], who found that TP increased the efficiency of fossil fuel
consumption and reduced CEs. However, a few researchers conclude that the relationship
between TP and CEs is uncertain [42]. The main reasons for the inconsistent results may
include differences in the calculation methods of technological progress, differences in
estimating carbon emissions, and differences in mathematical model.
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4.4. The Effect of the Population on CO2 Emissions

Figure 6 reveals that population is an important factor affecting CEs in HEI industries.
The average regression coefficients of POP are 0.45, 0.64 and 0.71 in the three different
years, respectively, which identifies that the positive effect of the population on CEs has
increasingly grown from 2007 to 2018. The most affected provinces lie in the northeastern
provinces, its maximum coverage includes Heilongjiang, Jilin and Liaoning in 2013 and
2018, and minimum coverage consists of Heilongjiang and Jilin in 2007. Small values of
regression coefficients mainly distribute in the northwestern and southwestern provinces.
Additionally, the regression coefficients of POP violently vary between provinces compared
to the other four driving factors.

Population aging, urbanization and household size have distinct effects on CEs [44].
The population growth in China is slow across the whole study period, while the statistical
data shows that urbanization rises from 32.6% to 59.8%. Urbanization is an important
driving factor increasing CEs in HEI industries, as a great deal of the rural population
migrates to cities each year to promote the rapid growth in the real estate industry [45].
This dramatic growth in the urban population would inevitably increase the demand
for urban transportation, urban infrastructure, which relies on steel, cement, chemicals
and other products. All of these products are processed and completed in high-energy-
intensive industries, which contributes to emitting more CO2. Moreover, the average size
of households in China varies between 2.8 and 3.1, and shrinking households contribute
to an increase in CEs [46]. However, numerous studies have found that population aging
contributed to reducing CEs [46,47].
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4.5. The Effect of the Foreign Direct Investment on CO2 Emissions

Figure 7 shows the effects of foreign direct investment on CEs falls gradually in 2007,
2013 and 2018. Although the boundaries between the groups are roughly northeast to
southwest each year, the regression coefficients of FDI actually fluctuate very little among
the provinces, especially in 2007. During three different years, the average regression
coefficients of FDI are 0.50, 0.27 and −0.03, respectively, which indicates that the effect of
FDI on CEs has gradually decreased. The most affected province is Xinjiang, located in
northwestern part of China, and the least affected provinces mainly lie in the central and
southeastern regions.

During the entire study period, China has remained the world’s second largest recipi-
ent of foreign direct investment. However, more than 20% of the total amount of FDI in the
secondary industry flows into HEI industries between 2007 and 2018. There are several pos-
sible causes for this situation. Firstly, many local governments in China allow FDI in more
HEI industries to increase taxes and promote the local economic growth. Secondly, the cen-
tral and local government fails to amend its existing FDI industries guidance catalogue to
encourage FDI to flow into low-carbon, high-tech sectors. Thirdly, the government has not
formulated effective policies to guide foreign-funded enterprises to carry out technological
innovation to reduce energy consumption per unit of GDP. The finding that FDI has posi-
tive impacts on CEs is consistent with previous research [48,49]. To date, the environmental
problems caused by FDI has aroused great concern for the Chinese government.
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5. Conclusions and Policy Implications

This study examines all possible combinations of the candidate influencing factors on
CEs in HEI industries by employing the exploratory regression model. Based on adjusted
R2 and other threshold criteria, IS, PGDP, TP, POP and FDI are selected as explanatory
variables in the GWR model. The GWR model is then used to investigate the impact of
the driving factors on CEs and their differences across the whole study area. The result
reveals PGDP and POP are significantly positive driving factors on CEs. By contrast, IS has
strongly negative impact on CEs. Meanwhile, effects of TP on CEs in HEI industries are
negative in 2007 and 2013, while the coefficient is positive in 2018. On the whole, regression
coefficients of FDI are positive, the coefficients are only negative in some provinces in 2018.
The statistical data identifies the CEs are generally rising in HEI industries between 2007
and 2018. The differences of regression coefficients, based on the GWR model, are very
obvious among the 30 provinces in 2013 and 2018, which indicates the spatial heterogeneity
of relationships between driving factors and CEs in HEI industries.

Based on the empirical results of this work, the following corresponding policy impli-
cations are outlined below.

Firstly, optimizing and upgrading industrial structure is a powerful way to control
CO2 emissions. The eastern provinces should further increase the proportion of the tertiary
sector, optimize the energy-consumption structure and increase the use of renewable
energy. Local governments should seek to develop high-tech service industries, such as
computer, communications, semiconductor industries, and so on. The central and western
provinces should vigorously develop characteristic agriculture, forestry, and tourism,
in combination with their own resource advantages, and further promote the development
of renewable energies such as wind power, hydropower and solar energy. In the meantime,
these governments should make full use of financial support to further increase carbon
sink through afforestation, desertification control to reduce CO2 emissions caused by
industrial transfer.

Secondly, this study reveals that POP and PGDP are significantly positive driving
factor on CEs. Wide disparities in population growth remain between different provinces
in China. The more affluent coastal regions have had a large population inflow over
the past 40 years; therefore, household registration policies need further improvement in
order to control population sizes in the developed southeastern coastal regions. Mean-
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while, the governments in the central and western regions should offer preferential taxation
policies to create a better business climate and attract more enterprises to invest in the
encouraged industries. In addition, various subsidies should be used to attract more talents
for employment, and to induce labor transfers to the country’s west and northeast regions.
The increase in PGDP is best way to measure economic growth, driving more consumption,
including energy consumption. The local government should encourage people to adopt a
low-carbon lifestyle. Taking daily life as an example, people can be encouraged to recycle
all that they can, and also reduce food waste. The government sector should reward people
who use public transit systems, especially bicycles.

Thirdly, our results indicate a positive relationship between FDI and CO2 emissions
throughout most of the study period. This shows that Chinese government has excessively
focused on economic development in the past 30 years. This policy stance is bound to
cause great damage to the quality of the environment, and FDI is more concentrated in
pollution-intensive and high-polluted industries. In recent years, the Chinese government
has begun to encourage FDI in low-carbon industries, mainly focusing on the service sectors.
In particular, the government should formulate and implement environmental regulations
that force the firms receiving FDI to develop and use environmental protection technologies.

Fourthly, technological progress (TP), such as energy-saving technology, has a more
significant impact on CEs in HEI industries in 2007 than in 2013 and 2018. Moreover, the
role of TP in the western provinces is greater than that in the central and Southeastern
provinces. The energy-saving technology can enhance energy efficiency and reduce energy
costs, as the government of China had proposed the policy of energy saving and emission
reduction during the Eleventh Five-Year-Plan (2006–2010). China’s central government
should reduce and limit the production of high-energy-consuming and high-emission
industries through price reform measures. Further improving the environmental protection
standards, the project which cannot meet the requirements of environmental assessment,
must be stopped. In addition, the local government should encourage the enterprises to
carry out technological transformation through tax, land price and other measures, in order
to further save energy and reduce emissions.

Author Contributions: Conceptualization, Y.W.; formal analysis, R.H. and Y.C.; funding acqui-
sition, X.S.; methodology, S.Y. and X.S.; supervision, Y.W.; writing—original draft, S.Y. and Y.C.;
writing—review and editing, R.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (grant
numbers 41874044 and 51574221) and Shandong Normal University Teaching Team Fund (grant
number 20190025).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available at
https://data.cnki.net/Yearbook/Navi?type=type&code=A.

Acknowledgments: The authors would like to thank the editor and the anonymous reviewers for
their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 emissions and climate change from existing energy infrastructure. Science

2010, 329, 1330. [CrossRef]
2. Ma, X.J.; Wang, C.X.; Dong, B.Y.; Gu, G.C.; Chen, R.M.; Li, Y.F.; Zou, H.F.; Zhang, W.F.; Li, Q.N. Carbon emissions from energy

consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [CrossRef]
3. Liddle, B. What are the carbon emissions elasticities for income and population? Bridging STIRPAT and EKC via robust

heterogeneous panel estimates. Glob. Environ. Chang. 2015, 31, 62–73. [CrossRef]

https://data.cnki.net/Yearbook/Navi?type=type&code=A
https://data.cnki.net/Yearbook/Navi?type=type&code=A
http://doi.org/10.1126/science.1188566
http://doi.org/10.1016/j.scitotenv.2018.08.183
http://doi.org/10.1016/j.gloenvcha.2014.10.016


Sustainability 2021, 13, 8304 23 of 24

4. Shen, K.T.; Gong, J.J. Environmental Pollution, technical Progress and productivity growth of energy-intensive industries in
China-empirical study based on ETFP(in Chinese). China Ind. Econ. 2011, 12, 25–34. [CrossRef]

5. Franco, S.; Mandla, V.R.; Ram Mohan Rao, K. Urbanization, energy consumption and emissions in the Indian context A review.
Renew. Sustain. Energy Rev. 2017, 71, 898–907. [CrossRef]

6. Bai, Y.P.; Deng, X.Z.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban
agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [CrossRef]

7. Yin, G.Y.; Lin, Z.L.; Jiang, X.L.; Yan, H.W.; Wang, X.M. Spatiotemporal differentiations of arable land use intensity—A comparative
study of two typical grain producing regions in northern and southern China. J. Clean. Prod. 2019, 208, 1159–1170. [CrossRef]

8. Wang, C.J.; Wang, F.; Zhang, X.L.; Yang, Y.; Su, Y.X.; Ye, Y.Y.; Zhang, H.O. Examining the driving factors of energy related carbon
emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61.
[CrossRef]

9. Liddle, B.; Sadorsky, P. How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?
Appl. Energy 2017, 197, 212–221. [CrossRef]

10. Jiang, Y.; Bai, H.t.; Feng, X.y.; Luo, W.; Huang, Y.y.; Xu, H. How do geographical factors affect energy-related carbon emissions?
A Chinese panel analysis. Ecol. Indic. 2018, 93, 1226–1235. [CrossRef]

11. Han, X.Y.; Cao, T.Y.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission
intensity in China’s urbanization construction. J. Clean. Prod. 2019, 238, 117958. [CrossRef]

12. Wang, Y.P.; Li, J. Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China’s provinces.
Renew. Energy 2019, 136, 317–330. [CrossRef]

13. Lin, B.Q.; Tan, R.P. Sustainable development of China’s energy intensive industries: From the aspect of carbon dioxide emissions
reduction. Renew. Sustain. Energy Rev. 2017, 77, 386–394. [CrossRef]

14. Lin, B.Q.; Wang, X.L. Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry.
Renew. Sustain. Energy Rev. 2015, 47, 746–754. [CrossRef]

15. Wu, R.; Geng, Y.; Cui, X.W.; Gao, Z.Y.; Liu, Z.Q. Reasons for recent stagnancy of carbon emissions in China’s industrial sectors.
Energy 2019, 172, 457–466. [CrossRef]

16. Griffin, P.W.; Hammond, G.P.; Norman, J.B. Industrial energy use and carbon emissions reduction in the chemicals sector: A UK
perspective. Appl. Energy 2018, 227, 587–602. [CrossRef]

17. Geng, Y.B.; Wang, Z.T.; Shen, L.; Zhao, J.A. Calculating of CO2 emission factors for Chinese cement production based on inorganic
carbon and organic carbon. J. Clean. Prod. 2019, 217, 503–509. [CrossRef]

18. Pan, X.F.; Uddin, M.K.; Ai, B.W.; Pan, X.Y.; Saima, U. Influential factors of carbon emissions intensity in OECD countries: Evidence
from symbolic regression. J. Clean. Prod. 2019, 220, 1194–1201. [CrossRef]

19. Qin, H.T.; Huang, Q.H.; Zhang, Z.W.; Lu, Y.; Li, M.C.; Xu, L.; Chen, Z.J. Carbon dioxide emission driving factors analysis and
policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster. Sci. Total Environ.
2019, 684, 413–424. [CrossRef] [PubMed]

20. Su, K.; Wei, D.z.; Lin, W.X. Influencing factors and spatial patterns of energy-related carbon emissions at the city-scale in Fujian
province, Southeastern China. J. Clean. Prod. 2019, 244, 118840. [CrossRef]

21. Wang, Z.B.; Bu, C.; Li, H.M.; Wei, W.D. Seawater environmental Kuznets curve: Evidence from seawater quality in China’s coastal
waters. J. Clean. Prod. 2019, 219, 925–935. [CrossRef]

22. Yang, Y.; Zhou, Y.N.; Poon, J.; He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 2019,
211, 640–651. [CrossRef]

23. Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [CrossRef]
24. Cong, X.L.; Zhao, M.J.; Li, L.X. Analysis of Carbon Dioxide Emissions of Buildings in Different Regions of China Based on

STIRPAT Model. Procedia Eng. 2015, 121, 645–652. [CrossRef]
25. Yeh, J.C.; Liao, C.H. Impact of population and economic growth on carbon emissions in Taiwan using an analytic tool STIRPAT.

Sustain. Environ. Res. 2017, 27, 41–48. [CrossRef]
26. Ren, S.g.; Yin, H.y.; Chen, X.H. Using LMDI to analyze the decoupling of carbon dioxide emissions by China’s manufacturing

industry. Environ. Dev. 2014, 9, 61–75. [CrossRef]
27. Xu, S.C.; He, Z.X.; Long, R.Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition

analysis using LMDI. Appl. Energy 2014, 127, 182–193. [CrossRef]
28. Wang, Y.N.; Chen, W.; Kang, Y.Q.; Li, W.; Guo, F. Spatial correlation of factors affecting CO2 emission at provincial level in China:

A geographically weighted regression approach. J. Clean. Prod. 2018, 184, 929–937. [CrossRef]
29. Wang, S.; Shi, C.; Fang, C.; Feng, K. Examining the spatial variations of determinants of energy-related CO2 emissions in China at

the city level using Geographically Weighted Regression Model. Appl. Energy 2019, 235, 95–105. [CrossRef]
30. Guo, B.; Wang, X.; Pei, L.; Su, Y.; Zhang, D.; Wang, Y. Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple

scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 2021,
751, 141765. [CrossRef] [PubMed]

http://doi.org/10.19581/j.cnki.ciejournal.2011.12.003
http://doi.org/10.1016/j.rser.2016.12.117
http://doi.org/10.1016/j.jclepro.2018.10.248
http://doi.org/10.1016/j.jclepro.2018.10.143
http://doi.org/10.1016/j.rser.2016.09.006
http://doi.org/10.1016/j.apenergy.2017.04.025
http://doi.org/10.1016/j.ecolind.2018.05.080
http://doi.org/10.1016/j.jclepro.2019.117958
http://doi.org/10.1016/j.renene.2019.01.012
http://doi.org/10.1016/j.rser.2017.04.042
http://doi.org/10.1016/j.rser.2015.03.056
http://doi.org/10.1016/j.energy.2019.01.156
http://doi.org/10.1016/j.apenergy.2017.08.010
http://doi.org/10.1016/j.jclepro.2019.01.224
http://doi.org/10.1016/j.jclepro.2019.02.195
http://doi.org/10.1016/j.scitotenv.2019.05.352
http://www.ncbi.nlm.nih.gov/pubmed/31154214
http://doi.org/10.1016/j.jclepro.2019.118840
http://doi.org/10.1016/j.jclepro.2019.02.012
http://doi.org/10.1016/j.jclepro.2018.11.185
http://doi.org/10.1126/science.171.3977.1212
http://doi.org/10.1016/j.proeng.2015.08.1057
http://doi.org/10.1016/j.serj.2016.10.001
http://doi.org/10.1016/j.envdev.2013.11.003
http://doi.org/10.1016/j.apenergy.2014.03.093
http://doi.org/10.1016/j.jclepro.2018.03.002
http://doi.org/10.1016/j.apenergy.2018.10.083
http://doi.org/10.1016/j.scitotenv.2020.141765
http://www.ncbi.nlm.nih.gov/pubmed/32882558


Sustainability 2021, 13, 8304 24 of 24

31. Guo, B.; Wang, Y.; Pei, L.; Yu, Y.; Liu, F.; Zhang, D.; Wang, X.; Su, Y.; Zhang, D.; Zhang, B.; et al. Determining the effects of
socioeconomic and environmental determinants on chronic obstructive pulmonary disease (COPD) mortality using geographically
and temporally weighted regression model across Xi’an during 2014–2016. Sci. Total Environ. 2021, 756, 143869. [CrossRef]
[PubMed]

32. IPCC. Climate Change 2001: Synthesis Report; Cambridge University Press: Cambridge, UK, 2001.
33. Braun, M.T.; Oswald, F.L. Exploratory regression analysis: A tool for selecting models and determining predictor importance.

Behav. Res. Methods 2011, 43, 331–339. [CrossRef]
34. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
35. Zhou, Y.; Kong, Y.; Sha, J.; Wang, H.K. The role of industrial structure upgrades in eco-efficiency evolution: Spatial correlation

and spillover effects. Sci. Total Environ. 2019, 687, 1327–1336. [CrossRef] [PubMed]
36. Matthews, S.A.; Yang, T.C. Mapping the results of local statistics: Using geographically weighted regression. Demogr Res. 2012,

26, 151–166. [CrossRef]
37. Tian, X.; Chang, M.; Shi, F.; Tanikawa, H. How does industrial structure change impact carbon dioxide emissions? A comparative

analysis focusing on nine provincial regions in China. Environ. Sci. Policy 2014, 37, 243–254. [CrossRef]
38. Miao, W. Seizing the Opportunities of the“12th Five-year Plan” Strategic Emerging Industries Development and the “04 Special

Projects” Practice, to Complete the Industry Development Mode Transformation and the Products Structure Adjustment (in
Chinese). Manuf. Technol. Mach. Tool 2011, 5–7.

39. Liu, H.C.; Fan, J.; Zhou, K.; Wang, Q. Exploring regional differences in the impact of high energy-intensive industries on CO2
emissions: Evidence from a panel analysis in China. Environ. Sci. Pollut. Res. 2019, 26, 26229–26241. [CrossRef] [PubMed]

40. Zhang, Y.J.; Liu, Z.; Zhang, H.; Tan, T.D. The impact of economic growth, industrial structure and urbanization on carbon
emission intensity in China. Nat. Hazards 2014, 73, 579–595. [CrossRef]

41. Li, Z.L.; Sun, L.; Geng, Y.; Dong, H.J.; Ren, J.Z.; Liu, Z.; Tian, X.; Yabar, H.; Higano, Y. Examining industrial structure changes and
corresponding carbon emission reduction effect by combining input-output analysis and social network analysis: A comparison
study of China and Japan. J. Clean. Prod. 2017, 162, 61–70. [CrossRef]

42. Chen, J.D.; Gao, M.; Mangla, S.K.; Song, M.L.; Wen, J. Effects of technological changes on China’s carbon emissions. Technol.
Forecast. Soc. Chang. 2020, 153, 1–11. [CrossRef]

43. Zhang, X.H.; Han, J.; Zhao, H.; Deng, S.H.; Xiao, H.; Peng, H.; Li, Y.W.; Yang, G.; Shen, F.; Zhang, Y.Z. Evaluating the interplays
among economic growth and energy consumption and CO2 emission of China during 1990–2007. Renew. Sustain. Energy Rev.
2012, 16, 65–72. [CrossRef]

44. Zhu, Q.; Peng, X. The impacts of population change on carbon emissions in China during 1978–2008. Environ. Impact Assess. Rev.
2012, 36, 1–8. [CrossRef]

45. Xu, B.; Xu, L.; Xu, R.J.; Luo, L.Q. Geographical analysis of CO2 emissions in China’s manufacturing industry: A geographically
weighted regression model. J. Clean. Prod. 2017, 166, 628–640. [CrossRef]

46. Yang, Y.Y.; Zhao, T.; Wang, Y.N.; Shi, Z.H. Research on impacts of population-related factors on carbon emissions in Beijing from
1984 to 2012. Environ. Impact Assess. Rev. 2015, 55, 45–53. [CrossRef]

47. Yang, T.; Wang, Q. The nonlinear effect of population aging on carbon emission-Empirical analysis of ten selected provinces in
China—ScienceDirect. Sci. Total Environ. 2020, 740, 140057. [CrossRef]

48. Zhang, Y.; Zhang, S. The impacts of GDP, trade structure, exchange rate and FDI inflows on China’s carbon emissions. Energy
Policy 2018, 120, 347–353. [CrossRef]

49. Malik, M.Y.; Latif, K.; Khan, Z.; Butt, H.D.; Hussain, M.; Nadeem, M.A. Symmetric and asymmetric impact of oil price, FDI and
economic growth on carbon emission in Pakistan: Evidence from ARDL and non-linear ARDL approach. Sci. Total Environ. 2020,
726, 1–17. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2020.143869
http://www.ncbi.nlm.nih.gov/pubmed/33280870
http://doi.org/10.3758/s13428-010-0046-8
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1016/j.scitotenv.2019.06.182
http://www.ncbi.nlm.nih.gov/pubmed/31412466
http://doi.org/10.4054/DemRes.2012.26.6
http://doi.org/10.1016/j.envsci.2013.10.001
http://doi.org/10.1007/s11356-019-05865-w
http://www.ncbi.nlm.nih.gov/pubmed/31286375
http://doi.org/10.1007/s11069-014-1091-x
http://doi.org/10.1016/j.jclepro.2017.05.200
http://doi.org/10.1016/j.techfore.2020.119938
http://doi.org/10.1016/j.rser.2011.07.137
http://doi.org/10.1016/j.eiar.2012.03.003
http://doi.org/10.1016/j.jclepro.2017.08.052
http://doi.org/10.1016/j.eiar.2015.06.007
http://doi.org/10.1016/j.scitotenv.2020.140057
http://doi.org/10.1016/j.enpol.2018.05.056
http://doi.org/10.1016/j.scitotenv.2020.138421

	Introduction 
	Data Sources and Methods 
	Data Sources and Description 
	Study Methods 

	Results 
	Temporal and Spatial Heterogeneity of CEs 
	Spatial Autocorrelation Analysis of CEs in HEI Industries 
	Evaluating All Possible Combinations of the Candidate Explanatory Variables 
	Estimation Results of the GWR Model 

	Discussion 
	The Effect of the Industrial Structure on CO2 Emissions 
	The Effect of the Per Capita GDP on CO2 Emissions 
	The Effect of the Technological Progress on CO2 Emissions 
	The Effect of the Population on CO2 Emissions 
	The Effect of the Foreign Direct Investment on CO2 Emissions 

	Conclusions and Policy Implications 
	References

