
sustainability

Article

Low-Carbon Multimodal Transportation Path Optimization
under Dual Uncertainty of Demand and Time

Xu Zhang, Fei-Yu Jin, Xu-Mei Yuan * and Hai-Yan Zhang

����������
�������

Citation: Zhang, X.; Jin, F.-Y.; Yuan,

X.-M.; Zhang, H.-Y. Low-Carbon

Multimodal Transportation Path

Optimization under Dual Uncertainty

of Demand and Time. Sustainability

2021, 13, 8180. https://doi.org/

10.3390/su13158180

Academic Editor: Hamid

R. Sayarshad

Received: 21 June 2021

Accepted: 18 July 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Economics and Management, Yanshan University, Qinhuangdao 066000, China;
15232366482@163.com (X.Z.); jfyysu2018@163.com (F.-Y.J.); zhy980422@163.com (H.-Y.Z.)
* Correspondence: yxmysu@163.com; Tel.: +86-0335-8057025

Abstract: The research on the optimization of a low-carbon multimodal transportation path under
uncertainty can have an important theoretical and practical significance in the high-quality devel-
opment situation. This paper investigates the low-carbon path optimization problem under dual
uncertainty. A hybrid robust stochastic optimization (HRSO) model is established considering the
transportation cost, time cost and carbon emission cost. In order to solve this problem, a catastrophic
adaptive genetic algorithm (CA-GA) based on Monte Carlo sampling is designed and tested for
validity. The multimodal transportation schemes and costs under different modes are compared, and
the impacts of uncertain parameters are analyzed by a 15-node multimodal transportation network
numerical example. The results show that: (1) the uncertain mode will affect the decision-making of
multimodal transportation, including the route and mode; (2) robust optimization with uncertain
demand will increase the total cost of low-carbon multimodal transportation due to the pursuit of
stability; (3) the influence of time uncertainty on the total cost is significant and fuzzy, showing the
trend of an irregular wave-shaped change, like the ups and downs of the mountains. The model and
algorithm we proposed can provide a theoretical basis for the administrative department and logistic
services providers to optimize the transportation scheme under uncertainty.

Keywords: low-carbon multimodal transportation; uncertain demand; stochastic transportation time;
hybrid robust stochastic optimization (HRSO); catastrophic adaptive genetic algorithm (CA-GA);
Monte Carlo sampling

1. Introduction

With the rapid growth of the world economy and production scale, fossil fuel con-
sumption and carbon dioxide emission from combustion increase day by day, and the
phenomena of climate warming and environmental pollution are constantly highlighted.
The resulting problems, such as “global warming” and “ecosystem deterioration”, are
seriously threatening the living environment and development space of human beings [1].
In recent years, the government of China has actively taken measures to reduce carbon
emissions and advocate the development concept of “green GDP”. Transportation, espe-
cially cargo transportation, is one of the major energy consumers [2]. According to the
National Bureau of Statistics, the cargo turnover in China has increased from 4630.4 billion
ton kilometers in 2001 to 19,929 billion ton kilometers in 2019 [3]. How to deal with the
relationship between the continuous growth of cargo transportation and carbon emission
reduction is a severe challenge today.

As an important form of modern logistics, multimodal transportation can make use of
the advantages of various modes to provide a more flexible and reliable choice for cargo
transportation. Low-carbon multimodal transportation, which can realize the full use of
energy by choosing transportation modes with low-carbon emissions, has become a hot
issue in many countries. In 2020, the Ministry of Transportation in China put forward “the
suggestions on promoting the modernization of transportation governance system and
governance capacity”, establishing an advanced and efficient multimodal transportation
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application mechanism and improving the transportation energy conservation and emis-
sion reduction system [4]. However, the data on cargo transportation in China in the past
five years show that the proportion of road transportation is about 75% and presented an
increasing trend year by year, while the proportion of railway and waterway transportation
is about 10% and 14%, respectively. This proportion feature has failed to make full use of
the advantages of the railway and waterway in transportation costs and carbon emission.
To sum up, under the new economic situation of high-quality development, the low-carbon
multimodal transportation route optimization research has important theoretical and prac-
tical significance, which can simultaneously meet the practical needs of the market, the
economy and environmental protection, so as to realize energy conservation and emission
reduction, promote the adjustment and upgrading of industrial structure and advance the
low-carbon management of transportation industry.

Transportation is a complex system with many uncertain factors. Demand uncer-
tainty is a common and difficult problem in the process of cargo trading based on the
following two main reasons [5]. On the one hand, it is because of inaccurate information
communication among the trading companies, which lack real and effective information
exchange. On the other hand, due to the advance of transportation planning, logistics
service integration enterprises need to forecast the demand, but it is difficult for the forecast
result to accurately reflect the fluctuation of a cargo demand similar to the bullwhip effect.
In addition to the demand uncertainty, the randomness of transportation time should also
be considered. Multimodal transportation path optimization is a typical non-polynomial
problem, which is often affected by various emergencies or other unexpected events [6],
such as (1) vehicle maintenance; (2) traffic jam or anchoring in vehicle transportation; (3)
emergency transportation; (4) vehicle performance; (5) differences in personnel capabilities;
(5) road conditions, etc. [7], which make it difficult for multimodal transportation to operate
as planned. It has an impact on the entire operation and transportation time, and thus
affects the multimodal transportation scheme.

The contribution of this paper is mainly reflected in two aspects. Firstly, the modeling
contribution is the formulation of a hybrid robust-stochastic optimization model with
double uncertainties of demand and time, including multiple scenarios of demand and
uncertain collection of time. Secondly, the contribution of the research method is the
catastrophe adaptive genetic algorithm based on Monte Carlo sampling, and the robust
optimization problem with uncertain parameters is solved by Monte Carlo sampling. The
results of a numerical example study can verify the effectiveness and efficiency of the model
and the algorithm. In addition, we also observe the influence of uncertain parameters
on decision-making and cost. Robust optimization with uncertain demand will increase
the total cost, and the impact of time uncertainty on the total cost presents an irregular
wave trend.

A brief review of the recent literature follows in Section 2. Section 3 defines the specific
problems and related assumptions; in Section 4, we establish the hybrid robust stochas-
tic optimization model with dual uncertainty based on cost analysis; Section 5 designs
the model solution with adaptive genetic algorithm based on Monte Carlo sampling; in
Section 6, we verify the effectiveness of the model and algorithm by numerical examples
and analyze the effect of uncertainty on decision-making; finally, some conclusions and
future research problems are summarized in Section 7.

2. Literature Review

The multimodal transportation path optimization problem has been relatively well-
studied. Bontekoning et al. (2004) considered path optimization as a new and important
field within the transportation research field [8]. Janic (2007) built an optimization model
of a multimodal transportation path with a time window to minimize the total cost [9].
Liu et al. (2015) studied the multimodal transportation multi-objective optimization prob-
lem jointly solved by single-objective genetic algorithm and multi-objective genetic algo-
rithm through model decomposition [10]. Aiming at profit maximization, Ji et al. (2018)
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established an optimization model of a sea-rail intermodal container operation and de-
signed a heuristic solving algorithm to obtain the optimal path and service pricing of
railway transportation [11]. However, the research of carbon emission in multimodal
transportation has only recently been considered. The research on low-carbon multimodal
transportation path optimization can be divided into the following two aspects.

Firstly, researchers try to prove the advantages of the multimodal transportation mode
and path in low-carbon environmental protection. Liao et al., (2009) compared the carbon
dioxide emission of single transportation and multi-modal transportation, and proved the
applicability and superiority of the latter [12]. Craig et al., (2013) calculated the carbon
emissions in different modes of transportation and proved the advantages of multimodal
transportation [13]. Jiang et al., (2018) established a multi-objective decision-making model
considering carbon emission, transportation cost and transportation time by analyzing the
influencing factors of carbon emissions in container sea-land multimodal transportation,
and concluded that the “railway-waterway-railway” multimodal transportation mode
was the optimal scheme [14]. The second aspect refers to the design and optimization
of the multimodal transportation path considering low-carbon environmental factors.
Bauer et al., (2010) designed the optimization model of a multimodal transportation path
with carbon emission factors, and they believed that improving the transportation path
could reduce carbon emissions and costs [15]. Benjaafa et al., (2012) and Fahimnia et al.,
(2014) established a path planning model considering the transportation costs and carbon
emissions simultaneously. The former pointed out that the choice of transportation mode,
distribution frequency and coordination relationship between enterprises had a great
impact on carbon emissions, while the latter solved the model by using an improved
cross entropy algorithm [16,17]. Bouchery et al., (2015) established a two-target dynamic
multimodal transportation model including transportation cost and carbon emissions,
and determined a specific low-carbon transportation scheme [18]. Cui et al., (2014) and
Duan et al., (2015) designed the low-carbon synergies evaluation equation and model of
various transportation modes. On this basis, an “axle-spoke” container shipping network
optimization model with carbon emissions was constructed [19,20]. Wang et al., (2014)
proposed a new irregular prism network model to realize the intelligent optimization
of multimodal transportation paths and modes [21]. Cheng (2019) studied the impact
of carbon emission policies, including mandatory carbon emission, carbon tax, carbon
trading and carbon compensation on carbon emission reduction and the cost of multimodal
transportation [22].

Uncertainty has become an important feature of today’s society. It can be seen that
stochastic programming [23], fuzzy programming [24], robust optimization [25] and fuzzy-
based hybrid methods [26–28] are the effective ways to solve the uncertainty problems
in multimodal transportation. The uncertainty in low carbon multimodal transportation
can be divided into the uncertainty related to demand, transportation time and carbon
emissions. For the demand uncertainty in multimodal transportation, Ramezani (2013)
proposed a random multi-objective model of forward/reverse logistics network design-
ing under an uncertain environment [29]; Demirel et al., (2014) solved the problem of
multimodal transportation route selection in the case of fuzzy demand by introducing
triangular fuzzy numbers [30]. Li et al., (2018) established an opportunistic constrained
multi-objective robust-fuzzy programming model considering the fuzziness of multi-stage
closed-loop supply chain network parameters [31]; Zhang et al., (2020) researched the
multimodal transportation path optimization problem under demand uncertainty using
robust optimization [24]. In terms of uncertain transportation time, Adil et al., (2019)
optimized the overall transportation cost and customer satisfaction by simultaneously con-
sidering the random cargo demand and fuzzy transportation time [32]; Jiang et al., (2020)
constructed the optimization model of a container multimodal transportation path, taking
the transportation time and transfer time as random numbers [33]. For the carbon emis-
sions uncertainty, Gao and Ryan (2014) considered a robust formulation of a multi-period
capacitated CLSC network design problem while considering two regulations for carbon
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emissions [34]; Yu-Chung et al., (2018) solved the low carbon network design problem
using nonlinear optimization technology, which took the uncertainty related to a carbon
tax and carbon emissions into consideration [35]. In the study of Ali et al., (2018), the
randomness of the carbon tax was considered, and an optimization model of low-carbon
multimodal transportation route was established [36].

Based on the above analysis, studies on low-carbon multimodal transportation have
been relatively mature, but most of them focus on a deterministic environment, and there
are few studies on uncertain scenarios, especially dual or multiple uncertain scenarios.
Considering the characteristics and requirements of China’s carbon emission policies,
we take carbon emissions as determining factors, and our study combines two types of
uncertainties mentioned above, namely, uncertain demand and random time, including
transportation and transshipment. To model demand uncertainty, we formulate a robust
optimization, which was first proposed by Soyster (1972) [37]. Meanwhile, the stochastic
transportation time is regarded as a set of random numbers following a normal distribution.
Therefore, in our hybrid robust-stochastic low-carbon multimodal transportation path
optimization problem, we integrated robust optimization and stochastic programming to
deal with uncertainty in the demand and transportation time. In addition, we design the
catastrophe adaptive genetic algorithm based on Monte Carlo sampling, verify the validity
of the model and algorithm through an example, and analyze the uncertain parameters’
influence on the transportation scheme and cost. We show that the changes in demand and
time will have an impact on the path and mode of transportation. This paper can enrich
the modeling and solving methods of robust optimization with uncertain parameters, and,
further, provide low-carbon transportation decision-making references for the multimodal
transportation operators.

3. Problem Description and Hypothesis

This study envisages a situation where a batch of cargo from starting point O to desti-
nation D is transported by a logistics service provider, and there are three transportation
modes, including road, water and rail, to choose from. During this period, the cargo
will pass through several transportation nodes using one of the alternative transportation
modes, and meanwhile each mode has its own transportation costs, time, carbon emissions
and costs. On the one hand, due to the advance of the multimodal transportation plan and
the volatility of demand, the logistics service provide the need to determine the cargo trans-
portation plan under uncertain demand. On the other hand, the transportation process can
be inevitably affected by various emergencies, and the total time is random and difficult
to determine.

The aim of this essay is to explore the transportation path and mode that can not
only meet the requirements of transportation cost, time and carbon emission, but also
achieve the stability of the robust optimization model in the double uncertainty of demand
and time.

The research hypothesis is as follows:
(1) The same batch of cargo is indivisible in the process of transportation, that is, it can

only be transported as a whole unit in the process of transportation, and cannot be divided
into two or more parts;

(2) Each transportation node has sufficient transshipment capacity, and the waiting
time and its cost during transshipment can be ignored;

(3) Transshipment can only occur at the transportation node, and at this node, the
transportation mode of each batch of cargo can be changed at most once;

(4) All nodes can meet the transshipment requirements of each transportation mode,
and there is no difference in transshipment time and cost;

The transportation capacity of different modes can always meet the requirements of
the cargo volume.
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The following parameters and decision variables in Table 1 will be used in the for-
mulation of the low-carbon multimodal transportation path optimization problem under
double uncertainty.

Table 1. Parameters and decision variables.

sets
M the collection of transportation nodes
N the collection of transportation modes
T the sum of transportation time and transshipment time

Parameters

Tmin the lower limit of the time window required for the total time,
including transportation and transshipment

Tmax the upper limit of the time window required for the total time
P1 the unit warehousing cost for early arrival
P2 the unit penalty cost for late arrival

C(T) the total time cost due to early or late arrival

Z the total carbon emissions including transportation and
transshipment

CZ the cost of total carbon emissions
Q the emission quotas under the carbon trading policy
ω the carbon trading price
qij the cargo volume between nodes i and j
dn

ij the transportation distances between nodes i and j with mode n
vn the average speed of transportation mode n
tn
ij the transportation time between nodes i and j with mode n

tn1n2
i the transshipment time from mode n1 to n2 at node i

ttn1n2
i the unit transshipment time from mode n1 to n2 at node i

cmijn the unit transportation price between nodes i and j with mode n
cnn1n2

i the unit transshipment cost from mode n1 to n2 at node i
Cn

ij the transportation cost between nodes i and j with mode n
Cn1n2

i the transshipment cost from mode n1 to n2 at node i
ηn1n2

i the carbon emission coefficient from mode n1 to n2 at node i
zzn1n2

i the carbon emissions from mode n1 to n2 at node i
emijn the unit carbon emissions between nodes i and j with mode n

zn
ij the carbon emissions between nodes i and j with mode n

Decision
variables

Xn
ij

whether mode n is adopted for transportation between nodes i and
j; if so, Xn

ij = 1, otherwise, Xn
ij = 0

Yi
n1n2

whether to convert from mode n1 to mode n2 at node i; if so,
Yi

n1n2
= 1, otherwise, Yi

n1n2
= 0

4. Hybrid Robust Stochastic Optimization (HRSO) Model

In the dual uncertain low-carbon multimodal transportation path optimization prob-
lem, the uncertainty of cargo demand and total time should be considered at the same
time. We add the time cost related to the random transportation and transshipment time
to the traditional low-carbon path optimization model. Meanwhile, different demand
situations and their adaptability to model constraints and targets are also analyzed. The
model construction idea is as follows: the first step is to determine the cost composition
and its calculation method in low-carbon multimodal transportation; secondly, the total
transportation time should be expressed as a random number in the uncertain demand
situations; at last, a hybrid robust stochastic optimization (HRSO) model of low-carbon
multimodal transportation path can be established.

4.1. Total Transportation Cost

The total transportation cost consists in the direct transportation cost between nodes
and the transshipment cost on each node, which can be expressed in the form of
Equations (1) and (2), respectively. The former is the product of the cargo volume, the
transportation distance and the unit transportation price, while the latter is the product
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of the cargo volume and the unit transshipment cost corresponding to the transportation
mode.

Cn
ij = ∑

i∈M
∑

j∈M
∑

n∈N
qijdn

ijcmijnXn
ij (1)

Cn1n2
i = ∑

i,j∈M
∑

n1∈N
∑

n2∈N
qijcnn1n2

i Yi
n1n2

(2)

4.2. Total Time Cost

The total time consists of the transportation time between nodes and the transshipment
time on each node, as shown in Equation (3).

T = ∑
i∈M

∑
j∈M

∑
n∈N

tn
ijX

n
ij + ∑

i∈M
∑

n1∈N
∑

n2∈N
tn1n2
i Yi

n1n2
(3)

The first half of Equation (3) is transportation time, which is expressed by the ratio
of distance to speed, i.e., tn

ij = dn
ij/vn, while the second half is transshipment time, which is

calculated by the product of cargo volume and unit transshipment cost corresponding to
the transportation mode, i.e., tn1n2

i = ttn1n2
i · qij.

Based on this, the time cost consists of two parts: the warehousing cost for early
arrival and the penalty cost for late arrival. If the cargo arrives in advance, before the lower
limit Ta of the time window, a certain warehousing cost shall be paid; on the contrary,
if the cargo arrives late, after the upper bound Tb of the time window, there will be a
corresponding penalty cost.

The time cost is linearly related to the transportation time, which can be expressed in
the form of Equation (4).

C(T) = ∑
i∈M

∑
j∈M

P1max
[(

Tmin − T
)

, 0
]
· qij + ∑

i∈M
∑

j∈M
P2max[(T − Tmax), 0] · qij (4)

4.3. Total Carbon Emission Cost

In recent years, various countries have adopted different emission reduction measures,
such as carbon emission trading, cap-and-trade, technical standards and a carbon tax.
Among them, carbon trading is a concept in the Kyoto Protocol, which takes carbon
emission rights as commodities and forms a new strategy to solve emission reduction
problems through market trading, which has been widely adopted by the United Nations,
the European Union and many other countries or international organizations. The rationale
for carbon trading is the carbon quota, which can be bought or sold. The companies
can either purchase the additional quota or sell the extra quota, and they can change the
total cost through the carbon trading cost or benefit. China officially launched its carbon
trading market in December 2012, and eight provinces and cities, including Beijing, Fujian,
Guangdong, Hubei, Shanghai, Shenzhen, Tianjin and Chongqing, are taken as the pilots.
In this study, carbon emission costs or benefits are calculated based on the carbon trading
policy. In other words, the emission cost will increase when the carbon emission exceeds
the emission quota Q; otherwise, the emission cost will decrease by selling the unused
carbon quota. See Formula (5) for the total carbon emissions generated in multimodal
transportation.

Z = ∑
i∈M

∑
j∈M

∑
n∈N

zn
ijX

n
ij + ∑

i∈M
∑

n1∈N
∑

n2∈N
zzn1n2

i Yi
n1n2

(5)

Among them, the carbon emissions in transportation are calculated by the production
of unit carbon emissions, cargo volume and transportation distance, which is zn

ij = emijn·qij ·
dn

ij. The carbon emissions in transshipment are expressed as the carbon emission coefficient
and cargo volume, i.e., zzn1n2

i = ηn1n2
i · qij.
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Therefore, based on the characteristics of carbon trading policy, the carbon emission
cost can be expressed in the form of Formula (6).

CZ = ω · (Z−Q) (6)

4.4. HRSO Model with Dual Uncertainty

As an effective method to study uncertain optimization, robust optimization is widely
used in production scheduling, transportation planning and supply chain management.
In order to analyze the dual uncertainty of cargo demand and total transportation time,
the concept of robust optimization is applied to the optimization model of the multimodal
transport path:

The uncertainty of the cargo demand is represented by the scenario approach in robust
optimization. Suppose that there are S demand scenarios, the uncertain demand in each
scenario is qij(s) and their occurrence probability is ps.

For the time uncertainty, the transportation time and transshipment time are set
as random numbers subject to normal distribution, namely tn

ij ∼ N(µn
ij, σn

ij
2), ttn1n2

i ∼
N(µn1n2

ij , σn1n2
ij

2), where µn
ij and σn

ij
2 represent the mean and variance of transportation time,

and µn1n2
ij and σn1n2

ij
2

represent the mean and variance of transshipment time separately.
According to the Lyapunov’s central limit theorem, the sum of multiple independent
random variables follows a normal distribution; then:

E(T) = ∑
i∈M

∑
j∈M

∑
n∈N

µn
ijX

n
ij + ∑

i∈M
∑

n1∈N
∑

n2∈N
µn1n2

i Yi
n1n2

(7)

D(T) = ∑
i∈M

∑
j∈M

∑
n∈N

σn
ij

2Xn
ij + ∑

i∈M
∑

n1∈N
∑

n2∈N
σn1n2

i
2Yi

n1n2
(8)

Therefore, the total transportation time T obeys the normal distribution of mean value
E(T) and variance D(T), i.e., T ∼ N(E(T), D(T)).

In summary, the optimization problem of the low-carbon multimodal transportation
path with dual uncertainty of demand and time can be abstracted into a hybrid robust
stochastic optimization model (HRSO) combining a scenario method and stochastic pro-
gramming. The HRSO model is shown below.

minC′(x) =
S
∑

s=1
ps · Cs(x)

=
S
∑

s=1
ps( ∑

i∈M
∑

j∈M
∑

n∈N
qijsdn

ijcmijnXn
ij + ∑

i,j∈M
∑

n1∈N
∑

n2∈N
qijscnn1n2

i Yin
in1n2

+ ∑
i∈M

∑
j∈M

P1max[(Ta − T), 0] · qijs + ∑
i∈M

∑
j∈M

P2max
[(

T − Tb
)

, 0
]
· qijs

+ω̃( ∑
i∈M

∑
j∈M

∑
n∈N

emijn · qijn · dn
ij · Xn

ij + ∑
i∈M

∑
n1∈N

∑
n2∈N

ηn1n2
i · qijs ·Yn

n1n2
−Q))

(9)

s.t.
T ∼ N(E(T), D(T)) (10)

Cs(x) ≤ (1 + α)C∗s (11)
s

∑
s=1

ps = 1 (12)

∑
n∈N

Xn
ij ≤ 1 ∀i, j ∈ M; ∀n ∈ N (13)

∑
n1∈N

∑
n2∈N

Yi
n1n2
≤ 1 ∀i ∈ M; ∀n1, n2 ∈ N (14)

Xn1
ij · X

n2
jk = Y j

n1n2 ∀i, j, k ∈ M; ∀n1, n2 ∈ N (15)
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Xn
ij ∈ {0, 1}, Yi

n1n2
∈ {0, 1} (16)

Formula (9) is a prototype of the objective function based on scenario robust optimiza-
tion under the dual uncertainty of demand and time, which is composed of transportation
cost, time cost and carbon emission cost under scenario s. Formula (10) constrains the range
of total time T, which is subject to a normal distribution of mean E(T) and variance D(T).
Formula (11) is a constraint related to demand uncertainty, which limits the proximity
of each feasible solution to the optimal value of scenario s. In this formula, Cs(x) is the
allowable objective function value of scenario s, C∗s is the optimal objective function of
deterministic problems of scenario s, and, always, C∗s > 0. In addition, α is called the
maximum regret value, which indicates the maximum deviation between the allowable
objective function value and the optimal objective function value; specifically, it was a
deterministic demand when α = 0. Equation (12) indicates that the sum of the occurrence
probability of each scenario is 1. In Equation (13), only one transportation mode can be used
at most between nodes i and j. Equation (14) is the constraint that transshipment at one
node can only occur at most once. Equation (15) requires that if the cargo is transshipped
at one node, its transportation mode should be consistent with the mode before and after
the node. Equation (16) defines the decision variable as a 0–1 variable.

5. Catastrophic Adaptive Genetic Algorithm (CA-GA) Based on Monte Carlo
Sampling

The multimodal transportation path optimization problem under dual uncertainty
needs to determine the transportation path and mode under robust demand and random
time. The model involves many intermediate variables, and it is a typical NP-hard prob-
lem [38]. In view of the proposed HRSO model with uncertain parameters, the traditional
genetic algorithm is partially improved, and the catastrophic adaptive genetic algorithm
(CA-GA) based on Monte Carlo is designed to prevent premature convergence and improve
the global search performance. These specific improvements include: (1) adding topologi-
cal sorting rules when generating the initial population based on the characteristics of the
research problem; (2) constructing a fitness function based on the Monte Carlo sampling
method; (3) designing adaptive crossover and mutation operation; (4) adding catastrophic
operator to the genetic operation. The algorithm ideas and steps are as follows.

5.1. Chromosome Coding

The problem of the multimodal transportation path optimization is a combinatorial
optimization problem; therefore, a two-layer coding structure is adopted. The first layer is
the coding of the transportation path, and the second layer is the coding of the transporta-
tion mode. All of these layers are coded by real numbers, as shown in Equation (17). Each
coding corresponds to a transportation scheme, representing the transportation path and
mode from the starting point to the end.

X = [{x1, x2, . . . , xM}|{y1, y2, . . . , yN}] (17)

In Formula (17), M is the number of transportation nodes, and N is the number of
transportation modes.

5.2. Population Initialization Based on Topological Sorting

The nodes in the multimodal transportation are arranged in a certain order. In order
to ensure the feasibility of the solutions, the initial population is generated based on
topological sorting rules to suppress the generation of illegal schemes. The multimodal
transportation topology order is obtained by the following methods.

(1) Design the transportation paths in the transportation diagram into a directed
acyclic graph;

(2) Place the directed acyclic graph in the topological sorting sequence to obtain the
topological sorting of the network graph.
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In addition, it is useful and necessary to deal with the relationship between population
diversity and algorithm efficiency when determining the initial population size. In practice,
it is mainly determined according to the experience of decision makers or the problem’s
characteristics.

5.3. Fitness Function Based on Monte Carlo Sampling

The fitness function construction of the genetic algorithm is an important link that
directly affects the convergence rate and the optimal solution [39,40]. For the HRSO model
with uncertain parameters, the pseudo-random numbers in Monte Carlo sampling are
used in this study to construct the fitness function.

The uncertain parameter ξ is obtained by the random sampling from the probability
density distribution function U. Suppose that the mean value and variance of the corre-
sponding objective function of decision variable X = X0 under different ξ are, respectively,
µ and σ2.

Then, according to the characteristics of this optimization problem, the smaller µ
and σ2 can reflect the pursuit of the minimization of the objective function and its fluc-
tuation. Therefore, the fitness function of the optimization problem can be expressed as
Formula (18).

F =
1

µ2 + σ2 (18)

5.4. Genetic Operation
5.4.1. Select Operation

The select operation uses the common roulette selection method, that is, the probability
p(vi) of an individual to be selected is determined according to the fitness of chromosomes,
as shown in Formula (12), where I is the population size and F(vi) is the fitness of an
individual.

p(vi) = F(vi)/
K

∑
k=1

F(vi) , i = 1, 2, 3, . . . , I (19)

5.4.2. Adaptive Crossover and Mutation Operation

The adaptive adjustment of crossover and mutation is one of the main methods of
the adaptive genetic algorithm. The crossover probability and mutation probability are
dynamically adjusted according to the fitness value, which can improve the global and
local convergence performance of the genetic algorithm. The following formulas are used
to represent the dynamic crossover probability pc and the mutation probability pm.

pc = k1 · pc + p′c +
F′ − Favg

k2 · F′
(20)

pm = k2 · pm + p′m +
F′ − Favg

k3 · F′
(21)

In Formulas (20) and (21), p′c and p′m are the initial crossover probability and the
mutation probability, respectively. Favg is the average fitness of the population, and F′ is the
larger fitness among the crossover or mutation individuals. k1, k2, k3, k4 are the constants
between 0 and 1.

5.5. Catastrophic Operator

In order to reduce the “precocious” phenomenon in the algorithm, a catastrophic
operator is added to the traditional genetic algorithm. In other words, the catastrophe
will be initiated when there is still no new optimal solution generated in the optimization
search process for multiple generations, and the local search will be actively removed from
the algorithm. The global search capability of the algorithm can be enhanced through
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this catastrophic operator. The catastrophe counter is used to judge the conditions of
catastrophe in this research, and the specific catastrophe mode is as follows.

Set a catastrophe counter C whose initial value is 0, and the catastrophe counter value
plus 1 for each generation of new individuals. This means that the optimization results
did not change many times and the local search has been fully adequate if the catastrophe
counter value exceeds a specific value C. In this situation, the catastrophe which includes
re-selecting the best individuals and performing genetic operation can be initiated. In
detail, the diverse individual tournament selection mechanism is used to select the reserve
individuals, that is, γ% of the individuals in the population would be randomly selected
for comparison, and the chromosome with the best performance among these individuals
will be selected for the next stage of genetic operation. On the contrary, if a new optimal
solution appears in the counting process, the catastrophe counter C will return to zero.

In conclusion, the process of CA-GA based on Monte Carlo sampling to determine
the optimization scheme of the multimodal transportation path under dual uncertainty of
demand and time is shown in Figure 1.

Sustainability 2021, 13, x FOR PEER REVIEW  11  of  18 
 

contrary,  if  a  new  optimal  solution  appears  in  the  counting  process,  the  catastrophe 

counter  C  will return to zero. 

In conclusion, the process of CA‐GA based on Monte Carlo sampling to determine 

the optimization scheme of the multimodal transportation path under dual uncertainty of 

demand and time is shown in Figure 1. 

 

Figure 1. The process of CA‐GA based on Monte Carlo sampling. 

6. Numerical Example 

6.1. Basic Scenario and Data 

The  numerical  scenario  considers  that  an  enterprise  providing  multimodal 

transportation services will transport a batch of cargo from Nanning, the starting point, 

to Harbin, the destination point, by a  joint transportation network containing 15 nodes. 

The  node  numbers  O,  1,  2…  D  are,  successively,  Nanning,  Guiyang,  Chongqing, 

Nanchang, Changsha, Wuhan, Hefei,  Shanghai,  Xuzhou,  Jinan,  Zhengzhou,  Taiyuan, 

Beijing, Dalian and Harbin. The specific network is shown in Figure 2. 

 

Figure 2. Transportation network diagram. 

The  transportation  distance  data  of  different modes  between  cities  are  obtained 

through Amap,  the  train  ticket  network  (https://www.12306.cn/,  accessed  on  27  June 

2020),  the ship  ticket network and  the  related  literature. The specific distance data are 

Figure 1. The process of CA-GA based on Monte Carlo sampling.

6. Numerical Example
6.1. Basic Scenario and Data

The numerical scenario considers that an enterprise providing multimodal transporta-
tion services will transport a batch of cargo from Nanning, the starting point, to Harbin, the
destination point, by a joint transportation network containing 15 nodes. The node num-
bers O, 1, 2 . . . , D are, successively, Nanning, Guiyang, Chongqing, Nanchang, Changsha,
Wuhan, Hefei, Shanghai, Xuzhou, Jinan, Zhengzhou, Taiyuan, Beijing, Dalian and Harbin.
The specific network is shown in Figure 2.
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The transportation distance data of different modes between cities are obtained
through Amap, the train ticket network (https://www.12306.cn/, accessed on 27 June
2020), the ship ticket network and the related literature. The specific distance data are
shown in Table 2, where (a,b,c) represents the transportation distance of highways, railways
and waterways, respectively, and “—” means that there is no transportation mode or route
between two adjacent nodes.

Table 2. Transportation distance of different modes between transportation nodes (unit: km).

Road Distance Road Distance Road Distance Road Distance

O-1 (604, 875, 105) 4-7 (1066, 1173, 398) 7-10 (942, 998, —) 10-D (1976, 2139, —)
O-2 (986, 1338, 422) 4-8 (993, 1247, —) 7-11 (1356, 1497, —) 11-12 (491, 568, 612)
1-3 (1156, 1264, 337) 4-9 (1181, 1291, —) 7-12 (1206, 1328, —) 11-13 (1304, 1452, 1168)
1-4 (793, 949, —) 5-7 (821, 811, —) 8-10 (366, 349, —) 11-D (1774, 1846, —)
2-5 (932, 1159, 658) 5-8 (641, 595, 572) 8-11 (775, 926, —) 12-13 (840, 938, 697)
2-6 (1285, 1492, 1322) 5-9 (846, 976, —) 8-12 (695, 814, —) 12-D (1288, 1278, —)
3-7 (728, 807, —) 6-7 (473, 457, —) 9-10 (446, 668, —) 13-D (1032, 946, —)
3-8 (743, 817, —) 6-8 (318, 295, —) 9-11 (526, 529, 497)
3-9 (1056, 1162, —) 6-9 (675, 614, —) 9-12 (410, 495, 1026)

According to the objective reality, this research supposes that the cargo must arrive
within the time period (55, 65) h. The unit storage fee for early arrival is 15 yuan/hour·ton,
and the unit penalty cost for late arrival is 30 yuan/hour·ton. The emission quota for the
transportation mission is 4 ton, and the carbon trading price is set to 30 yuan/ton based on
the statistical data of the “Carbon K Line”, developed by the China Carbon Information
Technology Research Institute

The relevant parameters of transportation and transshipment by various modes of
transportation are obtained based on the price of the railway freight service and the settings
in the existing literature [38]—see Tables 3 and 4. Among them, the transportation time
follows a normal distribution, and the transportation speeds of different modes are used
to calculate the mean value of the time. In Table 2, (a,b,c) represents the benchmark trans-
portation price between the nodes whose distance is in the range of “mileage ≤ 500 km”,
“500 km < mileage ≤ 1000 km” and “1000 km < mileage”, respectively.

https://www.12306.cn/
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Table 3. Transportation parameters of different modes.

Average Velocity vn
(km/h)

Variance of Transportation
Time σn

ij
2

Benchmark
Transportation Price

cmijn (¥/km·t)

Unit Carbon Emission
emijn (t/t·km)

Highway 80 0.52 (0.526, 0.497, 0.361) 7.1 × 10−5

Railway 60 0.33 (0.392, 0.340, 0.273) 4.2 × 10−5

Waterway 30 0.75 (0.090, 0.073, 0.051) 1.2 × 10−5

Table 4. Transshipment data of different modes.

Average
Transportation Time

µn1n2
i (h/1000·t)

Variance of
Transportation σn1n2

ij
2

Transportation
Carbon Emission
Factor ηn1n2

i (t/t)

Transportation Cos ts
cnn1n2

i (¥/t)

Highway-Railway 30 1 1.28 × 10−4 8
Railway-Waterway 60 1 1.13 × 10−4 10

Waterway-Highway 50 1 1.17 × 10−4 9

Due to the advance in transportation planning, the cargo demand is difficult to predict.
Considering the daily data of the actual cargo volume, as well as the attention to high and
low volume situations, we set the cargo volume qij and its corresponding probability Ps
under different scenarios of high, middle and low as 150t (0.36), 85t (0.5) and 40t (0.14),
respectively.

6.2. Algorithm Validity

The proposed CA-GA based on Monte Carlo sampling is adopted by Matlab2016
programming in order to verify its performance. The parameters of the algorithm are set
as follows: the population size is 80, the number of iterations is 200, the initial crossover
probability is 0.8, the initial mutation probability is 0.3, the critical value of the catastrophic
counter is 50 and the catastrophic proportion is 10%. In addition, the maximum regret
value α in robust optimization is set to 0.2.

Taking the model of deterministic demand and time as an example, the traditional
GA and the CA-GA in this paper are respectively used to conduct 10 optimization tests.
The optimization results and average running time are shown in Table 5.

Table 5. Results comparison of two algorithms.

Target Value/Run Time

CA-GA GA

1 112,054.39/21′′99 120,036.93/14′′40
2 115,036.88/21′′02 119,025.36/14′′57
3 112,054.39/21′′23 118,066.32/14′′51
4 116,905.36/20′′89 112,096.58/14′′55
5 112,054.39/21′′08 121,025.31/14′′46
6 120,011.25/21′′21 117,036.96/14′′45
7 118,906.45/21′′19 112,054.39/14′′74
8 112,054.39/21′′33 112,169.57/14′′52
9 119,063.25/21′′20 117,039.32/14′′50
10 112,054.39/21′′14 112,536.39/14′′40

Average target value 115,019.51 116,108.17
Average computing time 21′′23 14′′51

In Table 5, the running time of CA-GA is slightly higher than that of the traditional
GA. It is affected by the changing crossover and mutation probability, the number of
catastrophes and the number of iterations between two catastrophes in CA-GA, which
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makes the algorithm operation more complicated and the termination conditions more
difficult to reach accordingly.

As regards the optimization results, the target value of CA-GA in Table 4 is obviously
better than that of the traditional GA. In the 10 calculations, GA-CA obtains the optimal
value of 112,054.39 four times, while the traditional GA achieved the optimal value only
once. At the same time, from the average target value and the worst target value, CA-
GA is obviously superior to GA. Compared with the traditional GA, CA-GA can obtain
more excellent individuals and schemes due to the addition of catastrophic operators and
adaptive crossover and mutation operations.

6.3. Results Analysis
6.3.1. Results Comparison

For a more comprehensive analysis of the transportation scheme and cost, four con-
texts are designed, including deterministic demand and time (demand is the mean value
of three scenarios, time variance is 0, mode I), deterministic time and uncertain demand
(maximum regret value α = 0.2, mode II), deterministic demand and uncertain time (time
variance as Formula (8), mode III), and uncertain demand and time (mode IV). The trans-
portation scheme (see Figure 3) and cost (see Table 5) of each mode are calculated by the
proposed CA-GA.
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According to Table 6, the total cost of the four modes is sorted as “mode IV > mode II
> mode III > mode I”, and the specific comparative analyses are as follows.

Table 6. Comparison of transportation schemes and costs under different modes.

Mode I Mode II Mode III Mode IV

Transportation path O-1-3-8-10-D O-1-3-7-10-D O-1-3-7-10-D O-1-3-7-10-D

Transportation mode
waterway-waterway-

highway-highway-
highway

waterway-waterway-
railway-railway-

railway

waterway-waterway-
railway-railway-

railway

waterway-waterway-
railway-railway-

railway
Total cost 112,054.39 124,914.11 118,600.56 125,507.59

(1) Mode I is the basic mode, whose demand and time are both deterministic. In
this mode, the transportation path is “O-1-3-8-10-D”, and the transportation modes are,
respectively, waterway, waterway, highway, highway and highway. There is only one
transshipment, and the final total cost is 112,054.39 yuan.
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(2) Mode II, III and IV are all uncertain modes, which meanwhile have the same
transportation path and modes. In the aspect of cost, mode II increases by 12,859.72 yuan
compared with mode I, which indicates that the uncertainty of demand has a significant
impact on the cost of multimodal transportation; mode III increases by 6546.17 yuan
compared with mode I, which is mainly caused by the change of time; mode IV has the
largest total cost, which increased, respectively, by 0.4% and 5.8% compared with modes II
and III. This is mainly caused by the different influence mechanism of uncertain demand
and stochastic time, i.e., the uncertain demand affects cost by the maximum regret value
constraints in robust optimization, while the stochastic time changes the cost through the
random number and its distribution.

6.3.2. Impact of Uncertainty on Cost and Decision Making

(1) The impact of demand uncertainty on cost and decision-making
The total cost under different scenarios, including low, medium and high, can be

obtained by taking the transportation path and mode of mode II into different cargo
volumes. Figure 4 shows the total cost comparison results between Mode I and Mode II
under three demand scenarios. Among them, the total costs of the three scenarios in mode
II are not all lower than the total costs of mode I, which indicates that robust optimization,
as a method focusing on the stability of the target, has a certain conservatism in solving
uncertain problems.
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Further, the parametric sensitivity analysis is performed for the maximum regret
value under mode IV to explore the influence of demand uncertainty on cost and decision
making under dual uncertainty. The results are shown in Figure 3. Among them, the total
cost decreases with the increase of the maximum regret value, which further verifies the
fact that robust optimization pays more attention to stability. The curve in Figure 3 is
characterized as “steep edge and flat ground”, when 0 ≤ α ≤ 0.25, the total cost decreases
quickly and, accordingly, when α ≥ 0.25, the reduction in the total cost is relatively smooth.
Therefore, the strong robustness of multimodal transportation does not necessarily mean
that the total cost will increase significantly. Decision-makers may be able to improve the
operation efficiency of multimodal transportation by weighing the relationship between
the maximum regret value and the cost.

(2) The impact of time randomness on cost and decision
In order to explore the impact of time randomness on cost and decision, the basic value

of time variance in models III and IV is changed by 50%, 75%, 125% and 150%, respectively,
according to the adjustment ratio in Figure 5, and the total cost is shown in Figure 6.
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Based on Figure 6, the impact of time randomness on total cost shows a wave-shaped
trend like the ups and downs of the mountains, and there are no obvious laws. The main
reason for this phenomenon is that the variance parameter of normal distribution can only
restrain the variation degree of time; however, it has obvious randomness for a specific
example, and then the total cost associated with time is no longer a non-decreasing linear
trend. Nevertheless, some rules and phenomena can still be found from the results. On
the one hand, in Figure 6, the cost change of mode IV (uncertain demand and time) is
significantly higher than that of mode III (deterministic demand and uncertain time) under
the same degree of time variance, and the fluctuation range is more significant. This
further verifies the impact of demand uncertainty. On the other hand, compared with
the impact of demand uncertainty in Figure 5, the impact of time randomness on cost
and decision in Figure 6 is more obvious, and the impact trend is more vague under the
same variations. This result suggests that enterprises should pay more attention to the
fluctuation of transportation time caused by various reasons.

7. Conclusions

Focusing on the problem of low-carbon multimodal transportation with both demand
uncertainty and transportation time randomness, a hybrid robust stochastic optimization
(HRSO) model for a multimodal transportation path with dual uncertainty was established,
and a catastrophic adaptive genetic algorithm (CA-GA) based on Monte Carlo sampling
was designed. On the basis of the algorithm validity, a numerical example analysis was
carried out to compare the multimodal transportation scheme and cost under the mode of
certainty, demand uncertainty, time randomness and dual uncertainty, and the influence of
uncertain parameters was analyzed. Based on the results, the demand uncertainty and time
randomness will affect the decision of low-carbon multimodal transportation, not only the
transportation path but also the transportation mode. Explicitly, the robust optimization
with uncertain demand has a certain conservatism in solving this optimization problem,
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which will increase the total cost of low-carbon multimodal transportation due to the
pursuit of stability. Therefore, it can improve the transportation efficiency of multimodal
transportation under an uncertain environment by selecting the appropriate maximum
regret value and restricting the relationship between demand uncertainty and total cost.
What is more, the randomness of time has a significant and fuzzy influence on the total
cost, showing a wavy change trend, like the ups and downs of the mountains, with no
obvious law. However, the influence of time randomness on multimodal transportation
cannot be ignored.

Overall, our findings can provide some useful insights for the administrative depart-
ment and logistic services providers to design the transportation scheme. When choosing
the transportation path and mode, they should consider the uncertainty of demand and
time simultaneously. Note that the methodology, including HRSO model and CA-GA,
provides a way to model a low-carbon transportation path under dual uncertainty. Even
for the different carbon reduction policies, similar studies can be carried out by adjusting
the related parameters. Through a simple modification of the model, more studies on the
uncertain low carbon transportation scheme considering different cargo transportation
values can also be proposed.

Suggestions for future research include extending the analysis to the constraint ability
and influence mechanism of transportation time under dual uncertainty. In addition,
due to the complexity of the model construction, the study did not explore the impact of
carbon trading price changes on transportation decisions, and establishing a more realistic
optimization model will be our next research focus.
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