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Abstract: Human error is a crucial factor leading to maritime traffic accidents. The effect of human–
computer interaction (HCI) also plays a leading role in human error. The objective of this study
is to propose a method of interaction strategies based on a cognitive-processing model in crews’
daily navigation tasks. A knowledge-based ship HCI framework architecture is established. It
provides an extensible framework for the HCI process in the maritime domain. By focusing on the
cognitive process of a crew in the context of accident and risk handling during ship navigation, based
on the information, decision, and action in crew context (IDAC) model, in combination with the
maritime accident dynamics simulation (MADS) system, the MADS-IDAC system was developed
and enhanced by the HCI structure and function design of the dynamic risk analysis platform for
maritime management. The results indicate that MADS enhanced by HCI can effectively generate
a strategy set of various outcomes in preset scenarios. Moreover, it provides a new method and
thought for avoiding human error in crew interaction and to lower the risk of ship collision as well
as effectively improving the reliability of HCI.

Keywords: knowledge-based systems; cognitive model; memory; human–computer interaction;
data driven

1. Introduction

Human-error-induced accidents have become the primary source of accidents in
complex socio-technical systems. Statistics have shown that more than 60% of casualties
and accidents that occur around the world every year are associated with human error.
Moreover, the proportion of major disasters caused by such events can reach 80% or
more, a number that continues to increase annually, especially in high-risk fields, such as
nuclear plants, aerospace, and maritime fields [1,2]. A ship’s navigational system is also a
complex human–machine system (HMS) comprising people, machines, and the operating
environment, where human factors play a vital role in ship navigational safety. According
to statistics, human-error-related maritime traffic accidents account for 80% or more of
maritime accidents; moreover, the proportion of human-error-related accidents can be as
high as 95% in collisions [3]. Maritime traffic accidents not only result in potentially huge
personnel and property losses but also cause irreversible damage to the environment [4].
An ordered logistic regression model has been used to reflect the relationship between these
factors and the severity of marine accidents using the worldwide accident investigation
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reports during the period 2010–2019. Regarding aspects related to human factors, the results
showed that insufficient manning of the ship, invalid or incomplete ship certificate(s), and
seafarers lacking in theoretical knowledge and seafaring experience to be factors most
inclined to be the cause of accidents, often with severe consequences [5]. Rothblum
emphasized that the prevention of human error should not be underestimated because, in
addition to ship collisions, human error could cause tanker accidents, vessel groundings,
fires, and explosions [6].

In terms of human error, human–computer interaction (HCI) plays a leading role
as humans exhibit relatively large plasticity and uncontrollability due to their physical,
psychological, social, and spiritual characteristics [7]. The complexity of HCI can also affect
human error in many ways:

(a) A decrease in situational awareness (SA). An operator’s complete understanding
of the system and environment serves as the basis for making correct operational
decisions. However, the absence of SA is one of the main causes of human error
and operational accidents [8]. SA [9] relates to continuously obtaining information
from the environment and integrating it with existing knowledge to form a complete
and unified mental representation of the situation at any point in time. The operator
then uses this mental representation to determine how to obtain information for
the next step and to predict the event(s) that may occur. Cognitive processes that
shape SA during ship navigation include identifying signals, understanding their
meanings, integrating information, predicting system status, and so on. This is a
process involving complex mental processing, which can be affected by a variety of
cognitive factors, where processes such as attention, perception, and memory all play
an important role [10].

(b) An increase in time pressure due to prompt communication and feedback failure.
The ship crew follow a duty system, which exhibits significant timeliness. At night—
especially during the period when the second officer (2/O) and chief officer (C/O)
are on duty—the crew on duty are more likely to feel fatigued and sleepy due to
their biorhythms, potentially leading to navigational accidents [11]. In emergency
situations, risk information needs to be obtained from the crew on duty through
telephone communication; in this case, there may be delays in communicating such
information. If there is insufficient knowledge to solve this complex task, it may create
time pressure for the operator, serving to increase the complexity of the task.

(c) An increase in the cognitive load due to onboard human machine interaction (OHMI)
management tasks and operation control tasks [12]. Cumbersome cockpit manage-
ment tasks require the operator to filter, screen, reorganize, and integrate a large
volume of information, which may increase the operator’s cognitive load and may
result in the misjudgment or missing of crucial information. Moreover, the physical
environment for HCI—such as the weather, wind, waves, temperature, noise, and
other factors—may also affect the HCI quality and outcomes [13].

As the scale of systems becomes more complex and human–machine interactions
become more important, the behavior of system operators becomes increasingly critical for
the entire human–machine system [14]. However, previous researchers in the maritime
field have focused their maritime traffic safety research primarily on the development
of advanced equipment, the optimization of the navigational environment, and legal
and regulatory constraints, emphasizing the reduction of the accident occurrence rate
by improving technologies [15,16]. Research into the human factors involved has been
relatively scarce and biased toward the studying of psychological factors and performing
static assessments. There have been few studies on dynamic risk assessments. As a result,
this field of research faces many challenges:

1. HCI has not been sufficiently associated with safety issues in the field of ship trans-
portation.

2. Current human factor research in the ship transportation industry has not employed
precise and detailed probability analysis methods.
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3. In daily navigational processes, the mechanism(s) of cognitive-based information
flow and task completion processes among the crews remain unclear.

This study aims to fill this research gap and promote the research of human error in the
interaction processes with complex systems from descriptive and predictive perspectives.
This work includes:

(a) Based on the IDAC model, a knowledge-based ship HCI framework architecture
is established; (b) a proposed maritime accident dynamics simulation (MADS) method,
enhanced by HCI based on cognition, decision making, and operational models, a method
that can predict possible event(s) and probabilities that may lead to decision-making errors
in scenarios of knowledge-driven task failures; and (c) the building of a related simulation
verification platform, the delivery of a HCI performance assessment tool and multiple
interaction strategies, the performing of a preliminary decision-making reliability test, and
the provision of viable solutions for ship collision avoidance.

The remainder of the paper is organized as follows. Section 2 briefly introduces
the relationships between HCI, human error, human reliability, and dynamic probability
analysis, and also reviews and summarizes related work. Section 3 establishes a ship HCI
framework for knowledge-based complex tasks. Section 4 explains the approach of the
MADC-IDAC method for daily navigation tasks. Section 5 performs simulation verification
for the decision-making reliability of collision avoidance in a two-ship encounter scenario
on the MADS-IDAC system, as well as discussing and analyzing the case study. The
conclusions are summarized in Section 6.

2. Literature Review
2.1. HCI Based on the Cognitive Process

HCI refers to a process whereby operators obtain information from a system, make
decisions accordingly, and then take related actions [17]. This study started by understand-
ing users and studying their usage habits by analyzing their cognitive processes as well
as associated physical and psychological characteristics, so as to solve practical problems
encountered by users in the HCI process.

The cognitive process refers to the information processing process of an individual’s
cognitive activities. In cognitive psychology, this process is regarded as an information
processing system, consisting of continuous cognitive operational behavior—such as ac-
quiring information, encoding, storing, extracting, and using it [18]. The human infor-
mation processing model proposed by Wickens [19] focuses on the perception, thinking
and decision-making, and response processes by calling on working memory (WM) and
long-term memory (LM). This process depends on the user’s psychological or cognitive
resources, describing the human cognitive behavior from an information flow perspective.
When a user acquires, accepts, and uses information, they have to go through a series of
cognitive processes—such as feeling, perception, attention, thinking, and memorizing—
before performing information filtering, memorizing, and problem solving. All of these
factors may affect every aspect of the interaction process. Sohn and Doane [20] pointed
out that both short-term and long-term WM play a role in complex HCI tasks, and their
importance varies with the user’s degree of professionalism. Short-term WM plays an
important role in the early stages of learning a task; once proficiency is reached in terms of
task execution, long-term WM takes over. In short, in the HCI process, multiple processing
stages are linked together under the intermediate effects of long-term WM; consequently,
new information can be integrated with information already obtained to continuously
enrich SA and related cognitive processes, finally forming a complete cognition of the
HMS [21]. The focus in HCI is the feelings and processes generated during the interaction
processes, which are the result of continuous interaction and the mutual influences between
the HMS and the surrounding environment.
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2.2. Human Error in HCI

As HMS complexity continued to increase, people began to realize the negative effects
of human error in the 1940s. In the late 1960s, substantial research had been conducted on
such errors. Traditional human errors were mostly studied from an individual perspective,
where a method of experimental psychology was adopted to analyze the impact of an
individual’s error, WM, and other cognitive factors, as well as physiological factors, and
the specific microenvironment on their performances [22]. By the 1990s, research on human
error had been steered in a new direction. Through studies of organizational behavior,
researchers found that accidents were not simply caused by individual factors but also
resulted from organizational systems to a large extent because an individual’s behavior
could be greatly affected by organizational behavior [23]. Reason proposed the concept of
Latent Failures—which specifically referred to management failures—in his book “Human
Error”, where he believed that the root cause of accidents could be traced back to latent
failures and organization error resulting from internal system problems [24]. Catherine
et al. [25] reviewed studies on human factors in ship transportation safety and determined
that the impact of individual and organizational factors were the most noteworthy factors
affecting the occurrence of accidents in ship transportation. The specific influencing factors
included the nine aspects of fatigue, stress, health, environment, collaborative operation,
decision making, information, automatic control, and safety culture.

The application and development of digital technologies have made HCI more conve-
nient and effective, which has improved system reliability and personnel performance [26].
Moreover, the role of the operator in the HMS has changed, having been transformed
from being the executor and monitor in charge of “monitoring + operation” previously,
to today’s supervisor and manager who performs “monitoring + judgment + decision
making + operations”. As a result, in the subsequent interaction processes, the operator
not only has to perform tasks that directly monitor the system operation, but also needs to
obtain more information to perform the interface management tasks. Such tasks occupy
and require more attention, thereby increasing the operator’s cognitive load. This role
change requires more sophisticated individuals, and thus objectively increases the possible
occurrence of human error [27].

The causes of human error comprise many complex factors, which are of random and
uncertain nature [28]. In many systems, the principle of crew operation is often adopted to
compensate for individual errors—that is, in a crew, members will support each other and
supervise the correctness of each other’s actions. In this way, the system will not be affected
by individual problems, thereby improving its reliability [29]. However, an operator often
needs to complete abnormal and demanding tasks when handling accidents, which plays a
vital role in the safety of the entire system. Human behavior may lead to the occurrence of
abnormal accidents or exacerbate the consequences of accidents; however, it may also be
possible to restore a system to its normal status or alleviate the consequences of accidents
through the correct intervention behavior.

2.3. Probability Risk Analysis

Probability risk analysis (PRA) [30] is a quantitative risk assessment technique and
logical analysis method. It uses the event tree (ET), fault tree, and other methods in a
comprehensive manner to construct a risk event chain model. Qualitative assessment and
quantitative calculations are combined to perform model quantification and uncertainty
analysis, thereby realizing the reasonable prediction of a system’s risk level as well as an
analysis of the key factors affecting the risk.

PRA integrates reliability analysis, human reliability assessment (HRA), and uncer-
tainty analysis. However, as PRA research depends on the professional knowledge of
analysts, it can sometimes lead to incomplete risk settings for major accident scenarios.
Consequently, researchers have proposed various dynamic PRA methods.

Dynamic PRA can be divided into two categories, namely continuous-time and
discrete-time. In terms of the convenience for computer simulation and solutions, discrete
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dynamic PRA—such as the dynamic discrete event tree (DDET) model [31]—has seen
wider adoption. The DDET method dynamically generates an ET and performs calcula-
tions based on a time-dependent system evolution model and various branch conditions.
Essentially, all discrete dynamic PRA methods use a simulation engine, the main function
of which is to generate branches under each user-specified time step or conditions and
related probabilities, and calculate the probability of each branch node. This dynamic sim-
ulation analysis method has provided a natural framework for the design safety analysis
of complex human–machine–environment systems. It includes a physical model of the
operating environment, a mechanical model of hardware failures, and a behavioral model
of the operator’s cognitive process. A typical example is the MADS-IDAC method [32], as
shown in Figure 1, where the standards for generating branch nodes include the system
hardware status, changes in physical quantities, human decisions and operations, software
failures or preset end states, and so on. The final ET that is dynamically generated through
system simulation is the DDET. It can provide a quantitative and detailed analysis of the
interactive responses between the system and human information, decisions, and actions,
as well as the corresponding results. At present, it has been applied to the safety and
reliability analysis of nuclear power plants and the HRA of the remote control center in
intelligent ships.
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Accordingly, a DDET-based probabilistic simulation engine (MADS) was proposed,
which was combined with the crew’s cognitive decision-making model (IDAC) to form
a dynamic risk analysis system of maritime accidents, that is, the MADS-IDAC system.
Its main function is to simulate the accident development process through driving a
ship physical simulator and a crew’s decision-making model for a preset scenario, and
dynamically generating the ET branches, so as to obtain the event development processes
and probabilities for different results in the preset scenario.

2.4. Human Reliability Assessment Method and IDAC Model

The HRA discipline in relation to PRA has gone through an evolutionary process [33].
HRA studies the ways in which people obtain information from the outside world, the
representation of information in the human brain and how it is transformed into knowledge,
the storage of such knowledge, and how it is used to guide people’s attention and behavior.
The core research work is the qualitative and quantitative analysis and assessment of
human reliability, and the research objective is to analyze, predict, reduce, and prevent
human error [34]. The first generation of HRA methods assumed that human behavior
could be decomposed like a hardware system. These models were highly dependent on
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expert analyses. The second generation focused on the modeling and analysis of human
cognitive mechanisms, and the third generation was dynamic and based on cognitive
simulation models, that is, the IDAC model.

The IDAC model was proposed by Chang YHJ and Mosleh A. (researchers at the Uni-
versity of Maryland) based on the IDA model, a computational model for aircrew operation
reliability analysis. The IDAC model was developed based on numerous relevant findings
from cognitive psychology, behavioral science, neuroscience, human factors, social science,
field observations, and various first- and second-generation HRA methodologies [35]. The
IDA analysis method was based mainly on simulations of the specific operating behavior
of an individual under given operating conditions, whereas the IDAC method quantifies
the human reliability at each operating stage through cognitive modeling and analysis.
Compared with other cognitive reliability models, the IDAC model exhibits the following
distinct differences:

• In the IDAC model, thorough consideration was given to the individual performing
an operation, the environmental impact factors of the current operation were also
analyzed, and the performance-influencing factor (PIF) was introduced to analyze the
reliability relationships at the cognitive stage.

• A flow chart for the transmission of operational information was also established
in this model, and the MADS program was used to simulate the cognitive response
process of the operator during their specific operating process.

IDAC models the individual and group behavior of the operating crew. Currently,
three generic types of operator can be modeled, each with somewhat different roles and
responsibilities [35]. The operator responds to system abnormalities and interacts with
the system based on organizational specifications. The MADS code simulates an accident
scenario and generates information about the external environment—that is, the system
state and environmental variables. This information can then be used as input to the
crew model (i.e., the IDAC model), which, in turn, simulates the various types of operator
responses, including operations on the system. Each individual operator model includes
elements of the IDAC cognitive architecture—that is, PIFs, memory architecture, etc.—and
a model of the cognitive process (e.g., the information processing model) [36].

The IDAC method has been widely applied to the reliability simulation analysis of nu-
clear power plants but has not been widely employed in other fields to date. Consequently,
this study extends its application to the ship transportation field.

3. Methodology: Knowledge-Based Ship HCI Framework Architecture

Ships engage in a labyrinth of communication tasks as well as prompts and operations
based on multi-source information during navigation, which require frequent interactions
between humans and machines. Based on the literature review and related theoretical
analysis, this paper proposes an HCI framework architecture in the context of handling
complex tasks, as shown in Figure 2. The overall architecture consists of four layers, namely
the physical, cognitive decision-making, interaction application, and data layers.
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3.1. The Physical Layer

The physical layer consists of navigational aids, including an automatic identification
system (AIS), for sending locations, speed, and headings at set times, as well as sharing
information; an automatic radar plotting aid (APRA) radar, for sending alerts upon contact;
an electronic chart (ENC), for sharing geological locations with other ships; a Baidu GPS,
for self-positioning navigational information, a bridge management software, etc.; internal
and external monitoring equipment, including alarms, intercoms, running status indica-
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tors, cameras, etc.; and a OHMI module, which is used to perform the human–machine
interaction in the ship bridge and engine room.

The physical layer is responsible for serving operations, risk perceptions, real-time
monitoring, and information sharing for humans, machines, and the environment. The
crew will be immersed in an environment of continuous perception and participate in
cognitive decision-making tasks with a large number of risk reminders and data. The
officer on watch (OOW) can collect current navigational status information and make
preliminary judgments on scenarios through the ship’s navigational aid system. The
OOW receives the captain’s instructions and performs all interactions with ship operations
through the OHMI module. The real-time communication during the interaction is realized
with assistance from the cockpit management equipment. Depending on the existing
real-time information transmission and risk warning data, various sensing and operational
equipment are configured to realize interconnection and mutual sensing between physical
resources, thereby ensuring the real-time accuracy of multi-source information as well as
a reliable understanding of safety risks during navigation. The digital monitoring of the
system requires obtaining complete data about it and its environment during the entire
navigational process through various data acquisition methods, either directly or with the
aid of other sensors and equipment.

3.2. The Cognitive Decision-Making Layer

The cognitive decision-making layer acts as the core layer of the entire architecture,
which includes a basic IDAC model and a decision-making process. The basic IDAC model
part starts from a human cognitive behavior perspective and models the cognitive process
of the crew’s perception of their environment and risks during ship navigation. Each
operator’s cognitive activities can be divided into three phases: information perception
(I), diagnosis selecting and decision making (D), and action taking (A) [37]. A set of
cognitive rules are defined and applied for each operator’s cognitive activity of these three
phases. The operator’s behavior—such as changes in memory, changes in mental state,
and behavior in a synchronized dynamic environment—is regulated by cognitive rules.
The IDAC cognitive model constructed includes working memory (WM), intermediate
memory (IM), knowledge base (KB)/long-term memory (LM), and indications of the
operator’s mental state. The most recent perceived information is stored in the WM, which
is of relatively limited capacity, similar to that of an operator’s short-term memory. The
information residing in the WM is transferred to the IM for later retrieval. It is assumed
that the intermediate storage is unlimited, but the information may be forgotten (or decay)
over time. The KB is a collection of all the information (including collision-avoidance
procedures, current internal and external facts, and past experience) that the operator
has regarding the hardware system and accidents. In this memory model, IM acts as a
buffer between the WM and the KB [37]. The static and dynamic influencing factors—the
PIFs—are the core elements of the IDAC. The PIFs discussed here refer to the ones that
play an effective role in changing the event process by affecting the operator’s responses.
Therefore, the PIFs that take a long time to be effective (such as learning-related factors)
are not considered.

The decision-making process part consists of daily navigational task decisions, risk
situation awareness (RSA), and emergency response decision making. By combining the
information perception and the IDAC model, the operator can predict the risk situation
and make corresponding decisions. The specific details of the IDAC model are elaborated
on in Section 4.

3.3. The Interactive Application Layer

The interactive application layer is driven by information from the physical layer
as well as data from the IDAC model of the cognitive decision-making layer, where a
visual prediction MADS-IDAC platform and a cognitive reliability assessment system
are established. The MADS-IDAC model comprises MADS—a probabilistic simulation
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engine based on the DDET method—and IDAC—a cognitive decision-making model of
the crew and the intelligent system. It can simulate the HCI and the ship’s hydrodynamic
performance during real navigation through driving the ship’s physical simulator and the
crew decision-making model. It can dynamically generate ET branches when human- or
physical-factor-induced events—such as crew decision making, operations, and collisions—
occur during the event development process. Moreover, it can further simulate various
subsequent scenarios with or without event occurrences along the branch, thereby obtaining
the event development logic and the occurrence probability of each scenario for different
results under a preset scenario. The cognitive reliability assessment system includes visual
information acquisition (via camera) in the cockpit and background data assessment. It
can provide real-time and accurate feedback based on the real operational situation in the
cockpit. The system exhibits the advantages of integrated risk avoidance and assessment,
risk control, and real-time process traceability. It can also assist and participate in the
quality assessment of the HMS and select the optimal navigational strategy. A specific case
is expanded on in Section 5.

3.4. The Data Layer

The data layer provides immediately available services—such as a reliability knowl-
edge base, data integration rule base, and resource knowledge base—for the operation of
the entire interaction framework from a data, information, and knowledge perspective.
Equipped with navigation aids (e.g., GPS or sensor), machines and workstations realize a
preliminary perception of the environment. Massive raw data reflecting the real scenario is
generated. Multi-source heterogeneous data collected from various sensors describe the
real scenario and acts as connectors among different modules. The information data layer
serves as the interface between the operator model and the machines through information
digitization, transmission, and reception.

4. The Approach of the MADC-IDAC Method for Daily Navigation Task
4.1. Cognition-Based Task Execution Process

In the IDAC method, the operator’s cognitive process is divided into three phases:
information perception and processing (information, I), decision making (decision, D), and
action taking (action, A). These cognitive processes are supported by a memory model
composed of three different units [35].

In the MADS-IDAC system, the current crew model of the ship includes a decision
maker (captain) and two actors (OOWs). Similar to an actual collision-avoidance scenario,
each operator assumes their unique role and responsibilities. Among them, the captain
selects a high-level objective(s) and sends instructions to the actors. The OOWs collect
current navigational status information through the ship navigational aid system and
make preliminary judgments on the current scenario. The OOWs receive the captain’s
instructions and interact with the ship maneuvering model through the OHMI module of
the MADS-IDAC system. The current system supports three high-level objectives in the
analysis of ship collision accidents: maintaining normal navigation, the timing of collision
avoidance, and collision-avoidance decision making. The selection of specific objectives
and strategies is based on the current risk situation perceived by the operator and their
PIFs.

The current version of the MADS-IDAC system only considers the stage from risk
detection to collision-avoidance decision making and does not involve the rescue and
repair stage after the collision itself.

4.2. Performance-Influencing Factors (PIFs) for the Crews’ Response to Daily Navigation Task

When encountering an abnormal event during navigation, the natural responses of
the operator usually include physical, cognitive, and emotional responses, all of which can
affect each other. In addition to these internal factors, some external factors also play a
role—for example, organizational factors.
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The operator’s behavior is affected by static and dynamic PIFs, which have captured
both internal and external factors that may affect cognitive performance. In the current
version of the MADS-IDAC system, the PIFs are divided into two groups and seven classes
in the ship’s IDAC model. The states of the PIFs determine the operator’s mental state and
affect their cognitive behavior. In the system, such an effect is manifested as an influence
on the probabilities of nodes in the DDET.

When running the MADS-IDAC model, the PIFs are manifested as influences on the
state-change probability of the IDAC model. Figure 3 shows the task completion flowchart
of a role, where the PIF exhibits an important effect, such that the deterministic decision-
making process and the influencing factors of uncertainties are unified to present the entire
decision-making process in a more complete form.
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At the human cognition and decision-making level, PIFs show the interactions be-
tween human, machine, and environment, as well as the internal impact logic on decision
makers’ and operators’ behavior. The hierarchical structures and influence paths of these
PIFs are shown in Figure 4.

Figure 4 shows that external PIFs refer to the external influence factors experienced by
the crew during the cognitive process, which includes both the influence from the team and
organization on the crew’s personal status and the real-time information obtained regarding
the internal and external navigational status. The external PIFs affect the behavior of the
crew by activating internal PIFs.

The degree of influence of physical factors, memory information, and mental and
intellectual status varies for crews in different posts. For example, an OOW’s work is more
dependent on the stability of their mental and intellectual state, whereas the performance
of a crew member is mainly affected by physical factors. The captain’s post has the
most demanding requirements for long-term memory information. A unique variation
model, parameter system, and influence path can be assigned to each of these PIFs when
constructing the IDAC model; they can have either a positive or negative impact on
different links in the cognitive decision-making process.
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5. Case Study
5.1. Introduction of the MADS-IDAC Risk Analysis Platform and Simulation Scenario
Construction
5.1.1. Introduction of the MADS-IDAC Risk Analysis Platform

The MADS-IDAC system comprises the MADS system and IDAC model, where
MADS is a general simulation engine for maritime accidents, and IDAC is a simulation
object for a specific verification scenario—that is, the decision-making scenario for ship
collision avoidance in this case. The web interface of the collision-avoidance decision-
making simulation system developed for the two-ship encountering scenario is shown
in Figure 5. In this interface, users can easily traverse the entire ET and query the ship’s
navigational status at every simulation node. In Figure 5, the section for simulation system
parameters on the upper-left-hand side can be used to call all the stored virtual machines
(VMs) and ETs through the ID of the simulation VM or ET. The lower-left-hand side shows
the risk situation calculated using the speed–obstacle method for the currently selected
ship, where the green sector represents the safe navigational area. The entire ET for the
current scene is shown on the upper-right-hand side. Next to each node is the ID of the
simulation VM that the node is running. By clicking on any node, the scenario development
trajectory during the period of the node can be displayed in the map below. By continuously
clicking on the ET sequence from the initial event to any node, a complete development
trajectory for a certain scenario can be plotted. The bottom-right-hand area shows the
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navigational history trajectory based on the map. Accordingly, the user needs to specify the
specific longitude and latitude coordinates of the accident in the initial-state settings. For
simulation convenience, a wide sea area east of the Shanghai Yangshan Port was selected
as the experimental waters for a multi-ship collision-avoidance scenario in this section.
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5.1.2. Input Information and Requirements of the MADS-IDAC System

(1) OHMI module
In the ship model, the operator performs information perception and operation

through the OHMI module. The control scheme resembles an actual ship cockpit or
engine room. The MADS-IDAC OHMI module—as the information interface between the
operator and the ship’s mechanical model—displays four types of information:

• The navigational status of the current ship and the other ships displayed on naviga-
tional aids (the AIS, ARPA, GPS systems, etc.) during actual navigation, including
real-time position, speed, heading, etc.

• The navigational status of the current ship displayed on the dashboard during actual
navigation, including the current speed, heading, and rudder angle of the ship.

• The operational status of the main propulsion and steering equipment such as the
main engine and steering engine of the ship.

• Alarm: alarm for collision risk(s) regarding the current navigational status or alarm
for the failure of instruments and mechanical equipment regarding the ship status.

The information input to the OHMI module by the crew includes speed and heading
information. The incoming information is used to represent the operating activities of the
crew, which, through the ship’s hardware and hydrodynamics modules, will be reflected
as actual changes in the ship’s speed and heading.

(2) Crew’s experience and knowledge base
In the MADS-IDAC system, each individual operator possesses a unique knowledge

base and operational file to guide and regulate their behavior. The knowledge base includes:
operational procedures and emergency plans for different accident scenarios; interactions
between each link and the OHMI module, including information that needs to be queried,
its processing methods, and the operational content that needs to be output; the position
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of the current post relative to the entire team, upstream and downstream posts of the
information; and the response and processing of alarm information. In addition, uncertain
factors that affect the operator’s performance are also included.

(3) System schedule module
When running the MADS-IDAC system, a new accident sequence will be generated

when a branching rule is activated. To simplify the scenario and control the number of
branches of the DDET, in the current version of the MADS-IDAC system, new branches
will only be generated when the navigational status of the physical ship changes. Factors
that can change the ship’s navigational status include:

• The decision-based operational behavior of the human-factor system.
• The ship’s hardware failure and mechanical failure events.
• The safe collision-avoidance process or collision of the ship.

The simulation of a large number of sequences usually requires many computing
resources and much time. Consequently, it is often necessary to terminate or truncate
sequences of no research significance. The number of branches in the MADS-IDAC system
is controlled by increasing the step length of the time series generated by the branch;
however, a set of rules for terminating or truncating accident sequences (such as sequences
with a termination probability below a certain small threshold value) are formulated.

5.1.3. Output Information and Requirements

Many output data files are generated from running the MADS-IDAC system. The
DDET sequences are described by these files to identify the influencing factors that would
lower the safety of the ship collision-avoidance scenario, thereby verifying the reliability
of the ship collision-avoidance decision. This output information can either be visually
displayed on the web interface developed for the MADS-IDAC system, or output as a
JSON database file.

(1) DDET information: All the information needed to construct a graphical representation
of the DDET is provided by the MADS-IDAC system output. The specific output of
each branch event includes:

• The type of branch event (initial event and subsequent events, post-decision
events, safe scenario results, and collisions), the number of subsequent branches,
and corresponding probabilities.

• The activation time of branch events.
• The sequence identifier associated with the branch event.

Based on the above data, the web interface can draw a complete dynamic event
sequence tree for the ship collision accident. In addition to the data required to reconstruct
the DDET, the MADS-IDAC system also provides a list of sequence summaries and a
complete narrative description for each sequence. In a sequence summary, all event
sequences generated during the simulation, the related sequence probabilities, termination
times, and reasons for the sequence results are listed. In the sequence narrative, all OHMI
module alarms, inter-crew communications, the time history of the interaction between the
operator and the OHMI module, etc., are described.

(2) Cognition and decision-making information from the human cognitive system: The
MADS-IDAC system has a built-in OHMI module scanning function for active infor-
mation acquisition. During each scanning cycle, the system can output all the query
information, received alarm information, decision content, and operational instruc-
tions of the human cognitive system contained in the scanning queue, as well as a list
of the PIF parameters and related priorities at each time point. In the MADS-IDAC
system, the output data of the cognitive and decision-making process of the human
cognitive system includes:

• The PIF status, such as human fatigue and continuous error accumulation.
• Acquired information, such as navigational aid alarms, the ship’s current naviga-

tional status, and the information of the ship(s) encountered in the scenario.
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• Perception and understanding of the current scenario, such as the risk–value
calculation of the scenario, and the prediction of the future status of the target
ship.

• Response strategies for the current scenario, such as making decisions for manual
ship steering or gear shifting.

(3) Ship status data: In general, ships of different types have different hydrodynamic
parameters, thus exhibiting different response characteristics to human operations.
This affects the outcomes of collision avoidance and the PIFs (the hardware factors)
of the human factor intelligent system. Therefore, to determine the influence of a
specific set of ship hardware system configurations on the ship collision-avoidance
process, the comprehensive time history records of a specific sequence of all OHMI
module data streams, ship navigational status, and controller input values were
provided in the MADS-IDAC system. The output information was stored in a JSON
database file, and the navigational status information could also be visually displayed
on the web interface developed for the MADS-IDAC system. Together with the
preset ship hydrodynamic parameters, this information could be used to perform a
comprehensive analysis on the influence of the ship’s status on the consequences of a
collision.

5.2. Case Simulation and Results
5.2.1. Simulation Scenario Construction

In this section, a simulation of collision-avoidance decision making was performed in
a two-ship encounter scenario. Real geographic environment information was adopted for
physical modeling and simulation. This case was set in a wide water area in the sea east
of the Zhoushan Islands, the location being approximately 123◦ E, 30.9◦ N. The specific
initial-state settings of the ship are listed in Table 1.

Table 1. Initial-state settings of the ship case-study simulation.

Ship No.
Initial Location

Initial Speed
Initial Heading Angle

(Due North Direction as 0)Longitude Latitude

S1 123.00◦ E 30.916667◦ N 18 mile/h 0
S2 123.074551◦ E 31.0535◦ N 18 mile/h 230

5.2.2. Simulation Experiment and Results

In this case study, two ships were selected from the multi-ship collision-avoidance sce-
nario to perform a decision-making reliability test for collision avoidance in the encounter
scenario. By running the system, a total of six different end states—including taking no
collision-avoidance measures—were obtained; among them were four security end states
and two collision scenarios. The specific calculation results are shown in Table 2.

In this experiment, the branch generation scan step for the DDET was set to 6 min in
the scenario control module of the MADS-IDAC system; that is, after every 6 min cycle of
running the physical scenario, the system would check whether a new branch had been
generated or not. Until the collision between the two ships 30 min later, a total of six end
states had been generated. Among them, end states 1 to 4 successfully avoided a collision,
attributed to timely collision-avoidance decisions. In the final state, due to the ship giving
way not having enough time to make a collision-avoidance decision and collision-avoidance
maneuvers, a ship collision accident occurred. That is, as the entire collision-avoidance
event was simulated, a set of six schemes were generated after achieving the objective, of
which the interaction strategy of end states 1 to 4 could be adopted to successfully complete
the collision-avoidance task.

Figure 6 shows the trajectories of the two ships for all six end states. The upper right
corner of each subfigure of Figure 6 represents the currently running Event Sequence
Diagram (ESD) state. The small characters are the number of each node, which is detailed
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in the system ID in Table 2. The end state corresponding to the current scenario is circled
in the ET shown in the upper region of Figure 6, a red dashed line being used to mark
the route extension of the ship giving way. In the case where neither of the two ships
make a decision, they will collide at the intersection. Based on this, the decision timing
for end states 1 to 4 can be compared. It can be seen that even in end state 4—when the
collision-avoidance risk of the two ships was already high—the ship giving way still had a
chance to successfully avoid collision. Under the current settings, the probabilities of the
six end states are listed in Table 2.

Table 2. Summary of case simulation results.

Item System ID Probability State

End state 1 2008161046373361 0.9219108 Security
End state 2 2008161046385717 0.0719775 Security
End state 3 2008161046381289 0.0056325 Security
End state 4 2008161046383681 0.0004415 Security
End state 5 2008161046389389 0.0000347 Collision
End state 6 2008161046384263 0.0000030 Collision

Total
Security end states: 4 0.9999624

Collisions: 2 0.0000376
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5.3. Discussion

As the complexity of systems continue to increase, HCI has become increasingly
more critical. People are also becoming more aware of the importance of the system
operator’s behavior to the entire HMS performance. Our research results show that the
established MADS-IDAC system can simulate and analyze a crew’s decision-making
reliability in shipping risk scenarios, obtaining the probabilities of successful decision
making at different timings as well as the logic of various influencing factors on the timing
of decision making. By simulating a real risk scenario, an exhaustive set of interaction
strategies was predicted. In the process of achieving the safety objective, the optimal
strategy can be selected based on the developing changes in a situation. At the same
time, in the interaction strategy of a failure scenario, the risk probability of the problem
node can also be adjusted to establish the weak link(s) in the interaction process. The
top-level interaction layer searches for risk problems in the cognitive decision-making
layer and physical layer (e.g., risk accidents caused by human decision making or machine
operations) from top to bottom, and identifies the causes.

This study proposed a relatively complete architecture of a ship HCI framework,
including a physical layer, a cognitive decision-making layer, an interaction layer, and
a data layer. Moreover, a dynamic simulation method for maritime accidents based on
cognition, decision making, and operational models was proposed, and a dynamic risk
analysis system for maritime accidents—that is, the MADS-IDAC system—was constructed.
The interaction strategies predicted and generated in the simulation environment were
found to improve a ship’s HCI capabilities, serving as an effective strategy generation tool
for measuring HCI performance. In real scenarios, it could also generate prediction plans
for safe collision avoidance through real-time simulation before encountering risks.

6. Conclusions

With the continuing development of ergonomics, cognitive engineering, and other
disciplines, system engineers are paying increasing attention to human performance and
human error analyses. A large number of practical HRA methods have been developed in
the fields of reliability, safety engineering, and risk analysis. However, in the maritime field,
there has been no predictive model that has considered the operator’s cognitive behavior,
exhibiting both theoretical bases as well as experimental verifications. To fill this research
gap, this study proposed an architecture for a knowledge-based ship HCI framework. By
focusing on the cognitive process of the crew in the context of accident and risk handling
during ship navigation, as well as the dynamic probability simulation, based on the IDAC
model, MADS enhanced by HCI can effectively generate a strategy set of various outcomes
in preset scenarios. The reliability of HCI on the ship can be improved effectively through
these interaction strategies. This study has also provided a new research approach and
interaction strategies for preventing human error, promoting the research of human error in
the interaction process of complex systems from a descriptive and predictive perspective.

The main contributions of this paper can be summarized as follows:

• A knowledge-based ship HCI framework was proposed, the proposed framework fully
considering the interaction process in the cognitive-processing model of operating
crew responses to daily navigational work on a cargo ship.

• A dynamic simulation method of maritime accidents based on cognitive, decision
making, and operational models was proposed from the perspective of HCI onboard
aims at modeling the crew’s daily navigation task execution process. This method
could simulate and analyze the crew’s decision-making reliability in risk scenarios for
ships by generating a DDET through simulation, predicting and generating an exhaus-
tive set of interaction strategies, as well as obtaining the probabilities of successful
decision making at different timings.

• This paper presents a method of human–machine interaction strategies based on a
cognitive-process model. It provides a new method and thought for avoiding human
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error in crew interaction and to lower the risk of ship collision as well as effectively
improving the reliability of human–computer interaction.

• The MADS-IDAC was enhanced from the perspective of HCI structure and function de-
sign of the dynamic risk analysis platform for maritime accidents. The HCI-enhanced
MADS-IDAC method provided both a theoretical basis and practical experience for
the development of accident dynamic modeling, software reliability analysis, and
HRA in the maritime and transportation fields.

Despite the abovementioned advantages, there are still limitations to this research. For
instance, the development of the MADS-IDAC system is still in its infancy. At the current
stage, it can only simulate ship collision scenarios in wide waters. In the future, further
development efforts can be devoted to a more refined parameter library for the human
reliability model, a more substantial algorithm library for the intelligent decision-making
system, a more complete library for the ship’s hydrodynamic model, as well as a more
comprehensive library for maritime accident scenarios.
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