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Abstract: This paper presents a study of the characteristics of rainfall in a typical Mediterranean
climate, characterized by infrequent and irregular rain in the territorial area and its intensity. One
of the main components of this type of climate is short-duration and high-intensity rain events that
cause a large amount of damage to property and human lives, seriously affecting the operation
of infrastructure and the activity of society in general. The objective of this study was to design a
methodology based on peak over threshold (POT) analysis. This methodology allows us to establish
reference precipitation values and more approximate return periods in the absence of sufficiently
extensive historical precipitation series. In addition, the frequency of these extreme events or
return periods is established. The characteristics of the precipitation regime make direct analysis
difficult. Thus, the functions of the probability distributions underlying the described phenomena
are improved.

Keywords: return period; extreme rainfall; Mediterranean climate

1. Introduction

On a regional or local scale, climate analysis and prediction techniques using numeri-
cal and statistical models are widely used. Episodes of isolated atmospheric depression
at high levels (in Spanish, depresion aislada en niveles altos (DANA)), generated by the
collision of a cold air mass at altitude with warm surface air, produce extreme precipitation
events. These events have a return period, T, or estimated number of years that, on aver-
age, will equal or exceed a given value. Analyzing the frequency of these extreme events
is essential for prediction and for the engineering design of infrastructure. Estimating
such events can be done by analyzing precipitation time series associated with generally
asymmetric or skewed distribution functions: Gumbel, generalized distribution of extreme
values (GEV), SQRT-ETmax (statistical distribution function of extreme values used in the
regional analysis of maximum hydrological values; see [1]), log-normal, Weibull, Fréchet,
generalized Pareto distribution (GPD), and others [2]. In the case of the Mediterranean
coast, there is a greater influence of the upper-level atmospheric circulation, which gen-
erates extreme episodes of precipitation. This phenomenon has been studied in [3,4], an
approximation of which is made by means of decomposing singular values. This method
isolates linear combinations of variables within two fields that tend to be linearly related to
each other.

Rainfall during the month of March in the Iberian Peninsula underwent a sustained
decrease of up to 70% between the 1950s and the 1990s. The most relevant rainfall occurs
during September and October, with frequent episodes of torrential rainfall generated by high–
level atmospheric depressions (DANA), or “cold drop”, in the east of the peninsula [5–10].

Torrential precipitation is measured by the torrentiality index (I1/Id), defined as the
relationship between hourly intensity, I1 (mm/h) and the corrected average daily precipita-
tion intensity, Id (mm/h). Its value depends on the geographic area; on the Mediterranean
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coast (east) of Spain, the value is 11, according to Standard 5.2.IC “Superficial Drainage”,
Order FOM/298/2016, as can be seen in Figure 1.
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Changes in land use and the loss of vegetation cover as a consequence of anthro-
pogenic activities as well as the progressive desertification of the soil, especially on the
Mediterranean coast [11,12], are factors that contribute to the increasing effects of climate
variability and thus the frequency of extreme precipitation events. There are two possible
approaches to mitigate the resulting problems: optimize the use of resources directly or indi-
rectly [13,14] or improve the predictive capability for the phenomena under consideration.

In the literature there are several approaches to studying hydrological extremes, such
as analyzing the frequency with which the parameters of a given model vary as a function
of time. The study of the concept of the return period and the risk of non-stationary
hydrological phenomena to see how they can influence hydraulic structures is beginning
to gain importance.

Many studies have focused on the variables that can influence future precipitation,
such as evapotranspiration [15], air temperature, and atmospheric pressure, which affect
climate change [16]. The impacts of climate change on extreme daily precipitation are
remarkable and recognized in several studies [17–19].

Along the same line, studies on the surface temperature of the Mediterranean Sea
can be found. This factor plays a very important role, as it acts as a source of humidity
in Mediterranean cyclogenesis, affecting the conditions that produce torrential rainfall.
These are explained by a mechanism that, by itself, allows the development of a potentially
unstable mass over the Mediterranean Sea [20].

Other studies have investigated the factors that may influence precipitation related to
greenhouse gases [21] and sulfate aerosols [22], although nothing can be concluded about
their future influence on Mediterranean precipitation.
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Consequently, a number of studies on changes in annual and seasonal precipitation
amounts and their variability have emerged using different methods [23–26]. Related to
variability is the problem of maximum or extreme values, with various mentions in the
literature, such as an analysis of the distribution of maximum daily rain applying the
SQRT-ETmax distribution model [1]. Other studies use generalized extreme value (GEV)
distribution, considering series of very long annual maximums for the estimation and
analysis of their suitability for the statistical treatment of real data, through the relationship
between statistical parameters and climatological variables [27].

Studies have examined extreme events that occurred in the Segura Basin, Spain, and
return periods considered as a SQRT-ETmax distribution function in the Mediterranean
area (a new approach to pluviometric regionalization) [26,27]. To complete the analysis, the
variables precipitation intensity, I (mm/h), estimated duration, D (minutes), and frequency,
F (years), or probability of occurrence or the return period, T (years), of each extreme
precipitation event are characterized and integrated in intensity–duration–frequency (IDF)
curves. These IDF curves can be obtained by wavelet analysis, applying the different
distribution functions described for extreme precipitation events. In this way, new return
periods can be characterized [28–30].

2. Materials and Methods
2.1. Study of Probabilities of Extreme Events

Let us consider a set of values of a variable sampled at times {ti/i ∈ N}:

si = s(t)|t=ti
(1)

For simplicity, it is usually convenient to limit the sample times to instants homoge-
neously separated by a time interval given by h. Then, Equation (1) can be rewritten as:

si = s(t)|t=t0+h·i, (2)

Examining the characteristics of signal s(t) that generates the values of the data
series {si/i ∈ N} is usually done from the point of view of estimating future values of the
variable [31–41]. Another approach more related to the current research to decompose the
signal into more basic components. A variety of techniques can be used for this goal: Fourier
analysis, wavelet decomposition [42–45], and Hilbert–Huang transform (HHT) [46–51].

2.1.1. Generalized Extreme Value (GEV) Distribution

Usually, statistics focuses on the properties of average values of stochastic processes
leading to the central limit theorem. The main strength of this result is its validity irre-
spective of the particular distribution that generates the values. The study of extreme
and rare values is a different branch of statistics with its own results, for example, the
Fisher–Tippett theorem [52]. Before going into further detail, it is important to determine
what is considered to be a rare event.

Extreme values theory (EVT) studies the properties of the distributions of extreme
values of phenomena regardless of the underlying distribution of probabilities that gen-
erates these values. Let us consider a dataset of values obtained from an independent
and identically distributed (iid) random distribution F and divide them into m blocks

containing n values in each,
{

X(i)
1 . . . X(i)

n

}m

i=1
. Then, under certain criteria over F, the

series of maximum values
(

M(1), . . . M(m)
)

, normalized as
(

M(i) − µ
)

/σ, distributes as
the generalized extreme value (GEV) distribution with the cumulative distribution function
parametrized by ξ:

Hξ(x) =

 exp
(
−(1 + ξ·x)−1/ξ

)
ξ 6= 0

exp(−e−x) ξ = 0
(3)
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Depending on the values of ξ, the specific distribution is called Weibull (ξ < 0),
Gumbel (ξ = 0), or Fréchet (ξ > 0).

Analogous to the central theorem of the limit, for a large n, the following equation
is satisfied:

P
(

M(i) < x
)
= Hξ

(
x− µ

σ

)
(4)

Although this approach to the problem of determining the characteristics of the
distributions under study is often used, there is an alternative approach with better charac-
teristics, as we will explain in the following section.

2.1.2. Peak over Threshold (POT) Pareto Distribution

Given that in each set
(

X(i)
1 . . . X(i)

n

)
there exist values other than the maximum that

are not being taken into account, the study of block maxima does not take advantage of
all available information. For this reason, other approaches, such as peak over threshold
(POT), are more efficient, and in practice this method has become more commonly used.

In the POT technique, the behavior of values above a reference level (threshold) are
studied to obtain their distribution.

Let us consider a random variable following a distribution given by the function f,
X ∼ f . With F denoting the cumulative distribution function, the distribution of values
over a value w is given by the expression:

Fw(x) = P(X− w ≤ x|X > w) =
F(x + w)− F(w)

1− F(w)
(5)

If the normalized values of the maximums M(i) converge to the GEV distribution, for
large values of w, the distribution Fw(x) converges to the corresponding generalized Pareto
distribution (GPD) with cdf given by the following:

Gξ,β(x) =

{
1− (1 + ξ·x/β)−1/ξ ξ 6= 0

1− exp(−x/β) ξ = 0
(6)

The three cases given by the different values of ξ (see Equation (3)) correspond to the
ordinary Pareto, exponential, and Pareto II distributions.

2.2. Determination of Return Periods

Through the statistical analysis of precipitation, extreme precipitation events of an
increasingly less exceptional nature can be linked, given their increasing frequency and
temporal randomness over the last decades, so that the probability P of the occurrence of
such extreme events can be obtained. In hydrological analyses, the inverse of the probability
of a certain event (return period, T) is often used:

Ti =
1
Pi

, (7)

where Ti is the return period of event i and Pi is the probability of occurrence of event i.
The return period Ti or recurrence period of an extreme precipitation event is de-

fined as the interval of years that, on average, a precipitation threshold value will be
equaled or exceeded, which is equivalent to the frequency of occurrence f of a given
precipitation value:

fi =
1

(1− Pi)
(8)

Although extreme precipitation events occur less frequently than ordinary precipita-
tion, their occurrence is increasing progressively and with increasing randomness, which
requires an exhaustive analysis of the distribution of the series of pluviometric values.
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The probability of risk or occurrence of a given event X at least once during a period
of time n is defined by

P(X ≥ xT) = 1−
(

1− 1
T

)n
(9)

where n is the number of years, P is the probability of occurrence of an event, and T is the
return period.

Or, R = 1− (1− P)n, where R is the risk that a given infrastructure will be affected
by a given magnitude of an extreme event and P = 1/T is the probability of occurrence of
such an extreme event of magnitude equal to or greater than the extreme event, in time
period n.

On the other hand, another expression for the return period, T = 1/
(

1− e
ln(1−R)

n

)
, is

applicable in the case of risk analysis when the risk R of an event occurring with probability
P = 1/T is known, as well as the number of years.

The probability of exceeding k times a given rainfall in return period T is given by a
Poisson distribution:

P(k, t) =
1
k!

(
t
T

)k
e−

t
T (10)

where k is the number of occurrences of an event, T is the return period (years), and t is
elapsed time (years).

In the hydrological analysis of extreme precipitation events, the following factors and
proxy variables should be considered when analyzing the return period, T:

- Modification of hydrological channels;
- Variation of flows;
- River basin typology;
- Variation in land use in the area potentially affected by flooding;
- Infrastructure located in the analysis area;
- Climatological variability (effects of climate change);
- Orography of the study area;
- Geological characterization of the terrain in the analysis area;
- Links with other hydrological basins or nearby environment.

In summary, analyzing the return period and obtaining the IDF curves for each return
period considering 5, 10, 25, 50, 100, 500, 1000, etc., years, and their linkage and adjustment
with a certain distribution function of the series of pluviometric data analyzed allows
characterization of the precipitation that has occurred and its possible potential effects, and
forecasting of its temporal occurrence.

2.3. Numerical Model of Rainfall Time Series

The main problem when analyzing temporal series of meteorological data, especially
rainfall registers, is the low proportion of an effective amount of data with values greater
than zero. This can be a major problem in the case of regions and areas with a low
rainfall profile.

Comparing data corresponding to different dates is then particularly complicated,
since the values obtained in many cases do not correspond to actual occurrences of the
phenomenon being studied.

To avoid this problem, one can consider that rainfall records, {xi}N
i=1, are generated by

a process that only expresses itself effectively depending on a probability, π(t), that varies
throughout the year. At each instant, regardless of this realization, it is assumed that there is
a “potential” distribution of precipitation given by b(t). Additionally, some heteroscedastic
(εhet) and homoscedastic (εhom) perturbations can act over the average values:

s(t) = π(t)·[b(t)·(1 + εhet(t)) + εhom(t)] (11)
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The nature of these perturbations includes seasonal effects and others caused by other
frequency components.

The aim of this research was therefore to try to isolate the distribution, b(t), and study
the behavior of the extreme values of its distribution. In order to achieve this, the following
steps were followed:

1. Transform the original dataset, including only those days when π(t) ≥ 0: there are
many observations with zero value, which generates a distortion when calculating
the mean values to compare non-zero data;

2. Calculate monthly averages: In order to estimate the global trend (see next section), it
is necessary to minimize the variance of the data considered. One way is to consider
monthly groupings of the data, since this represents a period long enough for several
rainfall episodes to appear and short enough so that the possible trend does not affect
the calculated averages too much;

3. Eliminate global trends: from the averages grouped by month calculated in the
previous step, a linear regression is performed to obtain an overall trend;

4. Remove seasonal effects of the time series from the median values of the monthly
data grouped in step 2: once the medians (which are less sensitive than means to
extreme values) of the monthly values are calculated, the difference between these
values and the medians are used to study the seasonal components;

5. Once the data are treated in steps 1–4, use the extreme values of distribution b(t) to
determine the characteristics of the distribution using the TOP approach: Steps 1–3
attempt to eliminate the main random values appearing in Expression (11). Once
the global and seasonal components of the original signal are discounted, we can
make the approximation s(t) ≈ b(t). The analysis of extremes is performed on this
modified data;

6. From the distribution obtained in step 5, calculate the return periods for different
extreme values: once the distribution parameter estimates are obtained by POT, they
can be used for return period forecasting;

Monthly averages are used to study global trends and seasonal averages are used
to eliminate variability in the daily data. Once these trends are obtained, their effect is
deduced from the daily dataset obtained in step 1.

3. Results
3.1. Introduction to the Rainfall Series of Ciudad Jardin Dataset

This dataset was previously used in [53]. The study area corresponds to daily precip-
itation values provided for the National Meteorological Agency (AEMET) for each day
between 1 September 1938 and 31 January 2017 at a weather station located in the north of
the city of Alicante, in southeastern Spain, as seen in Figure 2.
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The data series is composed of 28,631 daily observations of precipitation between
1 September 1938 and 31 January 2017. Of these, 4720 records have values greater than
zero and were selected to create the effective rainfall dataset. A summary of the full and
effective datasets can be seen in Table 1.

Table 1. Summary of Ciudad Jardin dataset (full and effective).

Date Rainfall (L/24 h) Effective Rainfall (L/24 h)

Minimum 1 September 1938 0 0.1
Maximum 31 January 2017 270.2 1 270.2 1

Median - 0 1.7
Average - 0.8922 5.4694
Std. Dev. - 4.9678 11.3687

1 On 30 September 1997.

Figure 3 shows histograms of the log(1 + rain f all) for the full and effective datasets,
and Figure 4 presents the plot of the dataset. Obviously, the imbalance between the number
of observations in the first case makes obtaining accurate results complicated. For this
reason, only records with effective rainfall were considered in the modeling.
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A factor associated with the previous one to take into account is the number of consecutive
days with precipitation (NCD). The corresponding summary is shown in Table 2.
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Table 2. Summary of number of consecutive days with precipitation (NCD).

NCD

Maximum 10 1

Average 1.7115804807
Std. Dev. 1.0895069514

1 On 29 February 1948.

Given the characteristics of the rainfall regime in the studied zone, there were no long
periods with continued precipitation, so correlation effects can be ignored. In addition,
extreme events are not usually clustered in consecutive rainfall episodes.

3.2. Filtering of Global Trends and Seasonal Components

In order to study the existence of global and seasonal trends, the data were grouped
into monthly and yearly records to reduce the inherent variance present in daily values.
So, annual averages were used to study global trends and monthly grouped averages to
account for seasonal relationships.

Given the results presented in the previous point, the average grouped by month was
used to study the trends and main frequencies in the data series. This is to limit the variance
in the data corresponding to daily rainfall using average rainfall as its representative
magnitude (calculated over effective days with rain not past the 30/31 days of each month).

Once these components were calculated, their effect could be eliminated from the
daily data series and the corresponding study of maximum components was carried out.

The data corresponding to October 1982, September 1985, September 1997, and March
2017 were not considered because they were influenced by the presence of extremely
abnormal episodes; instead, they were considered as outliers in order to calculate the
global trend of the series. Precipitation in these months corresponded to extremely important
torrential rainfall episodes concentrated within a maximum interval of 3 days (see Table 2),
which are precisely the type that motivated the present study. The magnitude of these
episodes can be seen in Figure 5, with values for monthly average over 35 L/24 h.
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3.2.1. General Trend

Once these values are removed, the data show a slight downward trend, as indicated
by the regression line, represented in Figure 6:

rain = α + β ·(year− 1938) (12)
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Figure 6. Evolution of annual rainfall average and linear regression.

The results of yearly average regression are shown in Table 3.

Table 3. Summary of linear regression from average monthly grouped data.

Estimate t Value Pr(>|t|) 1

α 34.826622 0.00747 **
β −0.014934 0.02245 *

1 Level of significance of parameters (* = 0.90, ** = 0.95).

3.2.2. Seasonal Analysis

Following the steps introduced in Section 2.3, the next step is to investigate the periodic
components of the signal without trend. So, the monthly averages were modified to delete
the trend, followed by Hilbert–Huang transform analysis, as introduced in Section 2.1. The
IMF result of the empirical mode decomposition (EMD) can be seen in Figure 7.
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The time–frequency representation for the principal IMFs (2, 3, 4, 5, and 6) can be seen
in Figure 8.
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From the results of the Hilbert–Huang analysis, the most important periodic compo-
nent corresponds to the annual period captured by IMF3 (Figure 8b). There are also other
factors, corresponding to 6 months (IMF4, Figure 8c), 4 months (IMF5, Figure 8d), and
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around 2 months (IMF6, Figure 8e), but their amplitudes are small except in the period
1991–1999, so they were not considered.

Additionally, comparing the evolution of the amplitude of each frequency over time
in Figure 8a–e does not show a significant variation for the period of time between 1938
and 2017. To diminish this annual effect, a transform was made to the rainfall variable,
subtracting the monthly median, which is less sensible to extremes than the mean:

rain[date] = rain[date]−median[month] (13)

3.3. Fitting of Distribution of Extreme Value Probabilities
3.3.1. POT Analysis

The most important step in estimating the parameters of the extreme value distribution
is selecting the threshold. This has usually been done by using graphical tools that represent
the behavior of statistical variables and identifying their behavior over the plots. As
introduced in Section 2.3, representative examples of this approach can be seen in the plots
in Figure 9.
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The use of these tools, however, requires a certain degree of expertise. Even in that
case, the result may not be evident at all. Fortunately, a new approach, based on the use of
a hypothesis test, allows this step to be simplified.
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First, let us remember that at this point the data used do not correspond with the
original data with a domain given by [0,∞], Once the components are used as reference
levels, the transformed data can present negative values corresponding to cases where
the rainfall was under the expected value for the date. This will be used in the next step,
given that the mean residual life plot in Figure 9c suggests looking for a threshold value
not far from zero. Following the method introduced by Northrop [56], the result can be
seen in Figure 10, which represents the p-values of the testing set ξi = . . . = ξm using the
distribution χ2

m−i, against ui for the threshold set (u1, . . . , um) = {−6,−5, . . . , 8} (initially,
the search range was between −6 and 60, but for clarity in the results we show only the
plot between −6 and 8).
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Using a p-value of 0.05 as the limit for the significance of the hypothesis test, the value
of −1 can be taken as the threshold. Now it is possible to obtain estimations for parameters
σ and ξ of Equation (6). Several estimators were used, and the results are shown in Table 4.

Table 4. Results for estimations of scale and shape parameters of generalized Pareto distribution.

Estimator Scale σ Shape ξ Scale Std. Error Shape Std. Error

MLE 6.2516 0.3927 0.26519 0.03597
PWMU 6.3134 0.3709 0.26627 0.03934
PWMB 6.3184 0.3704 0.26631 0.03928

Pickands 5.9410 0.5127 – –
MDPD 6.0974 0.4245 – –
MPLE 6.2677 0.3892 0.26486 0.03553

The values and standard errors are very similar, except for the estimators Pickands
and MDPD. Using these results, one can calculate the average of the parameters weighted
with the inverse of the corresponding standard errors to obtain a global estimation of
σ = 6.2562 and ξ = 0.3829.

Additionally, some methods offer confidence intervals for these estimations, as can be
seen in Table 5.
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Table 5. Confidence intervals (0.95) for estimated scale and shape.

Estimator Inf. Scale σ Sup. Scale σ Inf. Shape ξ Sup. Shape ξ

MLE 5.731855 6.771363 0.3221609 0.4631557
PWMU 5.791555 6.835303 0.2938097 0.4480322
PWMB 5.796462 6.840393 0.2934333 0.4474126

To check the behavior of the model, we consider the estimator MLE and represent the
quality of the model in Figure 11.
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3.3.2. Return Period

The number of rainy days per year can be averaged from the data series to obtain a
result of 59.8974 with a standard deviation of 10.4354. Using these data, it is possible to
represent the estimated period of return for 50, 60, and 70 events per year, as represented
in Figures 12–14.
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4. Discussion

Obtaining the return period T by means of the proposed analysis (Hilbert–Huang trans-
form) is proposed as a recommendation for the analysis of extreme precipitation events.

Most of the studies we consulted and analyzed applied extreme event distributions
relating mean maximum rainfall to return period T [2,17,25]. This implies that they did not
take into account monthly, annual, and seasonal non-representative trends [28,30,31]. The
proposed method more accurately considers the impact of extreme events on the ordinary
rainfall regime (which may be affected by local climate change effects).

In contrast to other studies [1,5,6,9], in the analysis developed in this study, representa-
tive actual rainfall days (maximum ordinary rainfall and its annual average) are considered.
In the analysis, disturbances generated by seasonal effects are isolated in order to study
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their distribution, which is decisive in the behavior of extreme values [12,53,56]. It is also
convenient to carry out the previous transformation of the data using monthly seasonal
averages grouped together to study the possible global annual trend.

Finally, the use of the Hilbert–Huang transform allows the detection of periodic
components [46], their period, and their importance in a clear and efficient way. A POT
analysis was performed to obtain the parameters of the distribution of extreme events.

This research facilitates the identification of trends in the evolution and distribution
of extreme precipitation values during extreme episodes [22,24], thus fixes the probable
return period associated with rainfall of a given intensity, an essential value for hydrological
planning and the design of hydraulic infrastructure [8,57].

5. Conclusions

The analysis developed in this research allows return period adjustments to be used
in hydrological planning, related to the frequency of extreme episodes of precipitation
used in the definition of intensities, and the frequency of extreme rain events, which are
increasingly common and intense due to climate change.

The characteristics of the Mediterranean climate in the area under study, where
generally infrequent rainfall of short duration and low magnitude alternates with torrential
episodes, make the statistical study of these extreme events extremely complex. The biases
introduced by the imbalance between the two regimes distort the results of the return
period estimates.

The methodology proposed in this research does not make any assumptions about
the probability distribution of rainfall values. Instead, it is based on the general theory of
extreme values and assumes that the observed values represent an underlying process that
manifests itself only on occasions when precipitation (potential rainfall) occurs.

To avoid the effects of the excess frequency of the zero value, the data were filtered
so that only those recording actual precipitation values were considered. The general
trends and seasonality effects were then extracted by performing linear regression and
decomposition of the instantaneous frequencies of the signal grouped by months to reduce
the statistical variability of the data. In order to make better use of the data, which are
by their nature scarce, a POT analysis is proposed instead of other approaches frequently
used in the literature. Once these values are estimated, they are used to generate return
period curves.

The statistical analysis carried out provides relevant information along the same lines
as most of the referenced research, related to estimating the distribution of frequency inter-
vals of extreme precipitation events and, therefore, the return period as well as maximum
daily precipitation intensity. It is noted that the higher the frequency of extreme precipita-
tion events (higher probability of occurrence), the longer the return period. Likewise, there
is a greater dispersion of precipitation intensity values (minimum and maximum) in line
with an increased return period.

This research facilitates the identification of a trend in the evolution and distribution
of extreme precipitation values during these extreme episodes and, thus, fixes the probable
return period associated with a given rainfall intensity, an essential value for hydrological
planning and the design of hydraulic infrastructures.
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