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Abstract: Park and ride (P&R) facilities provide intermodal transfer between private vehicles and
public transportation systems to alleviate urban congestion. This study developed a mathematical
programming formulation for determining P&R facility locations. A recently developed Weibit-
based model was adopted to represent the traveler choice behavior with heterogeneity. The model’s
independence of irrelevant alternatives (IIA) property was explored and used to linearize its nonlinear
probability. Some numerical examples are provided to demonstrate a feature of the proposed mixed
integer linear programing (MILP). The results indicate a significant impact of route-specific perception
variance on the optimal P&R facility locations in a real-size transportation network.

Keywords: park and ride; multinomial logit; Weibit; mixed integer linear program

1. Introduction

Park and ride (P&R) facilities are a significant component of the public transportation
system in many cities around the world. The facility has been recognized as part of
sustainable development for many decades. With globalization, economic growth brings
more business activities [1], and the desire to use public transportation more frequently
depends on the ease of car access [2,3]. Hence, the selection of P&R facility locations
becomes essential in encouraging drivers to transfer from their private vehicles to public
transportation to alleviate traffic congestion in the urban areas [4].

The mathematical programming (MP) approach plays an important role in the P&R
facility location problem. The optimal facility location is determined through the interac-
tion of the travel choice behavior and the level of service (LOS) of the P&R locations in a
transportation network. The pioneer location model was provided by [5], which assumes
an all-or-nothing (AON) assignment (i.e., all travel demands are entirely assigned to the
closest facility). Several studies relaxed the AON assumption using the attractiveness of
the facility to determine the assignment [6,7]. Most of these studies adopted the gravity-
based model [8,9] and the random utility maximization (RUM) model. The gravity-based
model usually considers the attractiveness through the negative exponential impedance
or the negative power impedance of the distance. The RUM model considers the attrac-
tiveness through the travelers’ perception. The travelers’ observed utility is measured
and incorporated with the unobserved utility [10]. A market share for the open facility is
determined based on the travelers’ choice behavior that maximizes their individual utilities.
The well-known multinomial Logit (MNL) model is usually adopted to represent such
choice behavior for the parking selection [11,12]. Benati and Hansen [13] provided a MNL
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model-based MP and a linear reformulation of the nonlinear MNL probability in the facility
location problem. Haase [14] adopted the MNL model with a constant substitution pattern
to provide a linear reformulation. Aros-Vera et al. [15] utilized this method for P&R facility
location in a hypernetwork [16], where the level of service (LOS) or travel cost of each
intermodal transport journey is considered through the performance of links, and hence
routes, in a one-dimensional transportation network. The study in [17] employed a similar
linear reformulation of Benati and Hansen [13] to give an alternative formulation. In all
these approaches, Haase and Muller [18] argued that the constant substitution pattern
assumption seems to be superior to other formulations. Further, Liu and Meng [19] and
Liu et al. [20] provided the bus-based P&R facility location. Pineda et al. [21] integrated the
traffic and public transportation systems for the P&R facility location.

The drawbacks of the MNL model include: (1) inability to consider the similarity
between the choice alternatives and (2) inability to consider the heterogeneity [22]. These
two drawbacks stem from the independently and identically distributed (IID) assumption
embedded in the random error term of the MNL model [23]. In the hypernetwork, the MNL
model cannot account for route similarity (route correlation or route overlapping) [20,24–26]
and the heterogeneous perception variance from different trip lengths [22,27]. It has been
shown that heterogeneity is an important factor of the P&R facility location selection [28].

In this study, we developed a mathematical programming (MP) formulation to con-
sider the travelers’ heterogeneity in selecting a P&R facility location. The multinomial
Weibit (MNW) model [29] was adopted to account for the heterogeneity among the inter-
modal journey alternatives. The independence of irrelevant alternatives (IIA) property of
MNW was explored and used to provide a linear reformulation of its non-linear choice
probability. Application of the proposed mixed integer linear programing (MILP) is demon-
strated in a real-size transportation network. The numerical examples indicate a significant
impact of heterogeneous perception variance on the optimal P&R facility locations. The
MNW route-specific perception variance as a function of trip length is more sensitive to
a change in distance-based public transport fare structure, and hence, the P&R facility
location selection.

The paper is organized as follows. Section 2 provides a list of notations used in this
study. Section 3 gives some background of the MNL and MNW models. In Section 4,
the proposed MILP is developed with a rigorous proof. Section 5 shows two numerical
examples to demonstrate features of the proposed model and its applicability in a realistic
transportation network. Section 6 concludes this paper.

2. Notation

Table 1 provides a notation list. Sets, variables, and parameters are presented. Some
notations are used intensively in Section 4, especially the variables.

Table 1. Notation list.

Type Symbol Definition

Set IJ Set of origin-destination (O-D) pairs
Rij Set of routes between O-D pair ij∈IJ
N Set of potential park and ride (P&R) facility locations

RT(n)
ij

Set of public transport routes via P&R n∈N between O-D pair ij∈IJ
(RT(n)

ij ⊂ Rij)
RA

ij Set of auto routes between O-D pair ij∈IJ (RA
ij ⊂ Rij)

Variable Pij
k(n)

Probability of choosing route k∈RT(n)
ij passing through P&R n∈N

between O-D pair ij∈IJ
Pij

a Probability of choosing route a∈RA
ij between O-D pair ij∈IJ

xn Binary variable for P&R facility at location n∈N
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Table 1. Cont.

Type Symbol Definition

Parameter θ Multinomial Logit (MNL) model dispersion parameter

βij Multinomial Weibit (MNW) model shape parameter between O-D
pair ij∈IJ

ζ ij Multinomial Weibit (MNW) model location parameter between
O-D pair ij∈IJ

gij
r Travel cost on route r∈Rij between O-D pair ij∈IJ
p Number of P&R facilities

3. Multinomial Logit Model and Multinomial Weibit Model

This section provides some background of the multinomial Logit (MNL) model and
the multinomial Weibit (MNW) model in the context of a hypernetwork.

3.1. Multinomial Logit Model

The MNL model is derived from the Gumbel distributed route perceived travel cost.
Let Fij

r be the cumulative distribution function (CDF) for route r ∈ Rij between O-D pair

ij ∈ IJ; gij
r be the mean travel cost on route r ∈ Rij between O-D pair ij ∈ IJ; and (σ

ij
r )

2
be

the variance on route r ∈ Rij between O-D pair ij ∈ IJ. Table 2 provides the Gumbel CDF,
its mean, and its variance. The Gumbel CDF and its mean are a function of the location
parameter ζ

ij
r and scale parameter θ

ij
r . Meanwhile, the variance is a function of only θ

ij
r .

Note that γ is the Euler constant.

Table 2. Gumbel distribution and its characteristics.

CDF (Fij
r ) 1− exp

(
− exp

(
θ

ij
r

(
t− ζ

ij
r

)))
Mean (gij

r ) ζ
ij
r − γ

θ
ij
r

Variance (σ
ij
r )

2
π2

6θ
ij2
r

With the independently distributed assumption, a joint Gumbel distribution can be
expressed as

Hij = ∏
r∈Rij

Fij
r (1)

The route choice probability can be determined by

Pij
r =

+∞∫
−∞

Hij
r dx (2)

where Hij
r = ∂Hij/∂xij

r and xij
r is the random route travel cost. Following [30], we have

Pij
r =

+∞∫
−∞

θ
ij
r eθ

ij
r (x−ζ

ij
r ) exp

− ∑
k∈Rij

(
eθ

ij
k (x−ζ

ij
k )

)dx (3)

Setting θ
ij
r = θ for all routes between all O-D pairs, we have

Pij
r =

exp
(
−θζ

ij
r

)
∑

k∈Rij

exp
(
−θζ

ij
k

) (4)
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Relating ζ
ij
r to the mean route travel cost, we have the MNL model, i.e.,

Pij
r =

exp
(
−θgij

r

)
∑

k∈Rij

exp
(
−θgij

k

) (5)

Furthermore, the MNL model exhibits the independence of irrelevant alternatives
(IIA) property [22], in which the probability ratio of each route pair is unaffected by the
change in other route travel costs, i.e.,

Pij
r

Pij
l

=
exp

(
−θgij

r

)
∑

k∈Rij

exp
(
−θgij

k

)/ exp
(
−θgij

l

)
∑

k∈Rij

exp
(
−θgij

k

) =
exp

(
−θgij

r

)
exp

(
−θgij

l

) (6)

Note that the Gumbel variance is a function of θ
ij
r alone. By setting θ

ij
r = θ (i.e., the

identically distributed assumption) in Equation (4), a closed-form probability expression
for the MNL model can be derived with the following identical perception variance for all
routes between all O-D pairs: (

σ
ij
r

)2
=

π2

6θ2 (7)

This identical perception variance does not allow heterogeneity among the alternatives
in the hypernetwork. All routes are assumed to have the same and fixed perception
variance, and travelers are assumed to be insensitive to different trip lengths.

3.2. Multinomial Weibit Model

The MNW model was developed from the Weibull distribution. Table 3 provides
the Weibull CDF, its mean, and its variance. For the Weibull distribution, its CDF, mean,
and variance are function of the location parameter ζ

ij
r , scale parameter θ

ij
r , and shape

parameter β
ij
r , where Γ() is the Gamma function.

Table 3. Weibull distribution and its characteristics.

CDF (Fij
r ) 1− exp

−( t−ζ
ij
r

θ
ij
r

)β
ij
r


Mean (gij

r ) ζ
ij
r + θ

ij
r Γ
(

1 + 1
β

ij
r

)
Variance (σ

ij
r )

2

θ
ij2

r

[
Γ
(

1 + 2
β

ij
r

)
− Γ2

(
1 + 1

β
ij
r

)]

Following the same derivation of the MNL model, we have

Pij
r =

+∞∫
ζ

ij
r

β
ij
r

(
x− ζ

ij
r

)β
ij
r −1

(
ϕ

ij
r

)β
ij
r

exp

− ∑
k∈Rij

(
x− ζ

ij
k

ϕ
ij
k

)β
ij
k

dx (8)

By setting β
ij
r = βij and ζ

ij
r = ζ ij, a closed-form probability expression for the MNW

model can be expressed as follows:

Pij
r =

(
θ

ij
r

)βij

∑
k∈Rij

(
θ

ij
k

)βij (9)
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Relating the scaling parameter to its mean, the MNW model can be rewritten as

Pij
r =

(
gij

r − ζ ij
)βij

∑
k∈Rij

(
gij

k − ζ ij
)βij (10)

Unlike the MNL model, setting β
ij
r = βij and ζ

ij
r = ζ ij does not require the identically

distributed assumption. Hence, the MNW model can have individual (i.e., non-identical)
perception variance as follows [27,31]:

(
σ

ij
r

)2
=

(
gij

r − ζ ij
)2

Γ2
(

1 + 1
βij

)[Γ
(

1 +
2

βij

)
− Γ2

(
1 +

1
βij

)]
(11)

Each route in the hypernetwork has a route-specific variance as a function of mean
route cost, location, and shape parameters. The larger the route cost, the higher the
perception variance.

4. MNW P-Hub Problem for P&R Facility Location

In this section, we propose a mathematical programming (MP) formulation for the
P&R facility location problem based on the MNW choice behavior [29]. This study considers
two choice alternatives for a journey, including (1) private vehicle (or auto) and (2) public
transport via a P&R facility [14,15,18]. We assume that congestion is moderate, and travelers
using public transport exclusively have no impact on the two choices.

The MNW route choice probability of travelers choosing to use a P&R facility n on
route k between O-D pair ij can be expressed as

Pij
k(n) =

xn(gij
k(n) − ζ ij)

−βij

∑
m∈N

∑
r(m)∈RT(m)

ij

xm(gij
r(m)
− ζ ij)

−βij

+ ∑
s∈RA

ij

(gij
s − ζ ij)

−βij (12)

where RT(n)
ij is a set of routes between O-D pair ij interchanging between private vehi-

cles and public transport at P&R facility n∈N; RA
ij is a set of routes for private vehicles

between O-D pair ij; and xn is a binary variable for the P&R facility n∈N, which has
route k(n) ∈ RT(n)

ij , n∈N passing through. If P&R facility n is selected (open), xn = 1 and

Pij
k(n) ∈ (0,1]. If P&R facility n is not selected (close), xn = 0 and Pij

k(n) = 0. On the other hand,
the probability of selecting a journey from i to j with a private vehicle with the route travel
cost of gij

a is

Pij
a =

(gij
a − ζ ij)

−βij

∑
m∈N

∑
r(m)∈RT(m)

ij

xm(gij
r(m)
− ζ ij)

−βij

+ ∑
s∈RA

ij

(gij
s − ζ ij)

−βij (13)

Consider the following MP formulation:

max Z = ∑
ij∈I J

∑
n∈N

∑
k(n)∈RT(n)

ij

qijP
ij
k(n) (14)

s.t.
∑

n∈N
xn = p (15)
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∑
n∈N

∑
k(n)∈RT(n)

ij

Pij
k(n) + ∑

a∈RA
ij

Pij
a = 1, ∀ij ∈ I J (16)

xn ∈ {0, 1} , ∀n ∈ N (17)

and Equations (12) and (13), where qij is a given travel demand between O-D pair ij. The ob-
jective function in Equation (14) is to maximize the number of P&R users, and hence reduce
the overall number of private vehicles in the study area [14,15]. Equation (15) constrains
the number of P&R facilities to p. Equation (16) is the route choice probability conservation
and Equation (17) declares the P&R facility location decision variables are binary.

To develop a mixed integer linear program (MILP) for the above MP, Equations (12)
and (13) were linearized as follows. Like the MNL model, the MNW model also exhibits
the IIA property, i.e.,

Pij
r

Pij
l

=

(
gij

r − ζ ij
)−βij

∑
∀l∈Rij

(
gij

l − ζ ij
)−βij

/ (
gij

l − ζ ij
)−βij

∑
∀l∈Rij

(
gij

l − ζ ij
)−βij =

(
gij

r − ζ ij
)−βij

(
gij

l − ζ ij
)−βij (18)

The probability Pij
a is always greater than zero. Meanwhile. the probability Pij

k(n) has a
value between 0 to 1. This probability will be greater than 0 only if xn = 1 as presented in
Figure 1. We can state the following condition:

Pij
k(n) ≤ xn, ∀k(n) ∈ RT(n)

ij , n ∈ N, ij ∈ I J (19)

Figure 1. P&R facility location and MNW probability (index ij is omitted for simplicity).

Hence, we can rewrite the probability ratio as follows:

Pij
b =

(
gij

b − ζ ij
)−βij

(
gij

a − ζ ij
)−βij Pij

a for all private vehicle routes. (20)

Pij
s(m)

=

(
gij

s(m)
− ζ ij

)−βij

(
gij

k(n) − ζ ij
)−βij Pij

k(n) if xm = 1 and xn = 1. (21)

Pij
a =

(
gij

a − ζ ij
)−βij

(
gij

k(n) − ζ ij
)−βij Pij

k(n) i f xn = 1. (22)
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Since the private vehicle route choice probability is greater than zero, the IIA property
in Equation (20) is always satisfied. In contrast, the IIA property for the routes using
the P&R facility is related to xn. Equation (21) is satisfied only when the P&R locations
m and n are both selected. If only one of them is selected, all probabilities will be zero.
Similarly, Equation (22) is satisfied only when the P&R location n is selected. If not,
Pij

k(n) = 0 and Pij
a = 0 cannot simultaneously occur. Therefore, the term (1 − xn) was added

to Equations (21) and (22) [14,15,32], and we have

Pij
b =

(
gij

b − ζ ij
)−βij

(
gij

a − ζ ij
)−βij Pij

a , ∀a, b ∈ RA
ij , ij ∈ I J (23)

Pij
s(m)
≤

(
gij

s(m)
−ζ ij

)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n) + (1− xn),

∀k(n) ∈ RT(n)
ij , s(m) ∈ RT(m)

ij , m, n ∈ N, ij ∈ I J

(24)

Pij
a ≤

(
gij

r −ζ ij
)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n) + (1− xn),

∀k(n) ∈ RT(n)
ij , n ∈ N, a ∈ RA

ij , ij ∈ I J,

(25)

Pij
k(n) ≤

(
gij

k(n)−ζ ij
)−βij

(
gij

a−ζ ij
)−βij Pij

a ,

∀k(n) ∈ RT(n)
ij , n ∈ N, a ∈ RA

ij , ij ∈ I J

(26)

The maximization of the P&R users in the objective function would work with
Equations (24)–(26) to obtain the MNW IIA property in Equations (21) and (22). A number
of equations for each O-D pair according to Equations (23)–(26) can be determined by

|Rij |P2 −|RA
ij |

C2 =

∣∣Rij
∣∣!(∣∣Rij

∣∣− 2
)
!
−

∣∣∣RA
ij

∣∣∣!
2!
(∣∣∣RA

ij

∣∣∣− 2
)

!
(27)

The second term is according to Equation (23) with an equal sign. Thus, under the
same number of routes, the O-D with more private vehicle routes has a fewer number of
equations for these constraints.

Proposition 1. The mixed integer linear program (MILP) in Equations (14)–(17) and (19), and
Equations (23)–(26) generates the maximum number of P&R facility users under the MNW travel
choice behavior.

Proof. Assume that there are at least two routes connecting each O-D pair, one for the
private vehicles only and the other for the vehicles using the P&R facility locations. We
separate them into two cases: (a) xn = 0 and (b) xn = 1. �

Case (a): When xn = 0, Pij
k(n) = 0, Pij

a ≤ 1 from Equation (25), Pij
s(m)

≤ 1 from

Equation (24), and Pij
a ≥ 0 from Equation (26). With the probability conservation for each

O-D pair in Equation (16) and the IIA property, we have the MNW travel choice behavior, i.e.,
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(
gij

r(m)
−ζ ij

)−βij

(
gij

s(m)
−ζ ij

)−βij Pij
s(m)

+ · · ·+
(

gij
a−ζ ij

)−βij

(
gij

s(m)
−ζ ij

)−βij Pij
s(m)

+ · · ·

+

(
gij

s(m)
−ζ ij

)−βij

(
gij

a−ζ ij
)−βij Pij

a + · · ·+
(

gij
b−ζ ij

)−βij

(
gij

a−ζ ij
)−βij Pij

a + · · · = 1,

∀r(m), s(m) ∈ RT(m)
ij , m ∈ N, a, b ∈ RA

ij , ij ∈ I J

(28)

This equation provides the MNW travel choice model in Equations (12) and (13).

Case (b): When xn = 1, Pij
a ≤

(
gij

a−ζ ij
)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n), Pij
k(n) ≤

(
gij

k−ζ ij
)−βij

(
gij

a−ζ ij
)−βij Pij

a , and

Pij
s(m)
≤

(
gij

s(m)
−ζ ij

)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n).

This results in the IIA property of the MNW model in Equation (18). From Equation (16),

(
gij

r(n)−ζ ij
)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n) + · · ·+
(

gij
l(m)
−ζ ij

)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n) + · · ·

+

(
gij

a−ζ ij
)−βij

(
gij

k(n)−ζ ij
)−βij Pij

k(n) + · · ·+
(

gij
k(n)−ζ ij

)−βij

(
gij

a−ζ ij
)−βij Pij

a + · · · ,

+

(
gij

r(m)
−ζ ij

)−βij

(
gij

a−ζ ij
)−βij Pij

a + · · ·+
(

gij
b−ζ ij

)−βij

(
gij

a−ζ ij
)−βij Pij

a + · · · = 1,

∀r(n), k(n) ∈ RT(n)
ij , l(m) ∈ RT(m)

ij , m, n ∈ N, a, b ∈ RA
ij , ij ∈ I J.

(29)

Similarly, we have the MNW travel choice model in Equations (12) and (13). Hence, the
MILP in Equations (14)–(17) and (19), and Equations (23)–(26) gives the optimum number
of the P&R facility users under the MNW choice behavior. This completes the proof.

5. Numerical Results

In this section, some features of the proposed MNW-based P-hub location model for
determining optimal locations of P&R facilities were investigated through two networks.
A small network was used to examine the features of the MNW-based model embedded in
the P-hub location model. A real-size network in the city of Chiang Mai, Thailand, was
employed to test the location of P&R facilities under different fare structures. Without loss
of generality, the MNL parameter θ was set to 0.1 and the MNW parameters were set as
βij = 3.7 and ζ ij = 0 unless specified otherwise. IBM-ILOG CPLEX 12.10.0 [33] was used to
solve the problem.

5.1. Small Network

Two small networks in Figure 2 were used to compare the MNL and MNW choice
models for locating the P&R facility and investigate the effect of MNW model’s parameters.
These two networks have one O-D pair from node A to node D with a travel demand
of 1000 travelers and two candidate P&R facility sites at node B and node C. There are
4 private vehicle routes (on the street) and 2 routes for each P&R facility. The link travel
cost is 2 units larger in the long network.
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Figure 2. Short and long networks and their available routes.

5.1.1. Comparison between MNL-Based and MNW-Based Models

We begin with a comparison between the MNW-based model and the MNL-based
model [15]. With p = 1, both models give the same optimal P&R facility location at
node C for both short and long networks shown in Table 4. According to the identically
distributed assumption, the MNL-based model cannot account for the overall trip length of
the two networks (i.e., the MNL probabilities only depend on the absolute cost difference in
Equation (5)) and allocate the same number of P&R users to both short and long networks.
On the other hand, the MNW model assigns different numbers of P&R users to the two
networks. It provides a higher number of P&R users at node C in the short network due to
a smaller perception variance (see Equation (11)). As reflected in Figure 3, the difference in
the perceived travel cost probability density function (PDF) seems to be more obvious in
the short network (Figure 3b) than in the long network (Figure 3d) for the MNW model.

Table 4. Optimal solution of MNL and MNW for both short and long networks.

Choice Model

Short Network Long Network

P&R Facility
Location

Number of
P&R Users

P&R Facility
Location

Number of
P&R Users

MNL C 244.02 C 244.02

MNW C 210.21 C 180.44



Sustainability 2021, 13, 7928 10 of 16

Figure 3. Route perceived travel cost of MNL and MNW models for both short and long networks.

5.1.2. Effect of the MNW Model Parameters

In this section, we investigate the effect of the MNW model parameters βij and ζ ij on
the optimal locations of P&R facilities. It appears that the change in both parameters has
no significant impact on the optimal location results in the two small networks as shown in
Figure 4. The optimal location of a P&R facility remains at node C for all values of βij and
ζ ij. However, the number of P&R users varies as βij or ζ ij increases. In general, increasing
either βij or ζ ij decreases the route perception variance and subsequently decreases the
number of P&R users. Since all private vehicle routes are shorter than the routes through the
P&R facility, this reduction on the route-specific perception variance would also decrease
the number of P&R users.

Figure 4. Effect of βij and ζij for both short and long networks.
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In addition, parameter βij seems to have a larger influence on the number of P&R
users. From Equation (11), βij governs the overall perception variance. With ζ ij= 0, the
coefficient of variation (CoV) κ of all routes is solely dependent on βij, i.e.,

κ =
σ

ij
r

gij
r
=

√
Γ
(

1 + 2
βij

)
− Γ2

(
1 + 1

βij

)
Γ
(

1 + 1
βij

) (30)

The increasing βij decreases the CoV κ of all routes. Meanwhile, ζ ij affects the CoV κ
of each route as follows:

κ =
σ

ij
r

gij
r
=

(
gij

r − ζ ij
)

gij
r Γ
(

1 + 1
βij

)√Γ
(

1 +
2

βij

)
− Γ2

(
1 +

1
βij

)
(31)

As ζ ij > 0, the shorter route has a smaller CoV κ.

5.2. Chiang Mai Transportation Network

The Chiang Mai public transportation master plan, Thailand [34,35] shown in Figure 5
was used to demonstrate the proposed model in a real-world setting. This transportation
network has 3 light rail transit (LRT) lines: red line (line 1), green line (line 2), and blue line
(line 3). The service distance of each LRT line is approximately 15 km. There are 304 O-D
pairs with a potential daily travel demand of 38,314 travelers using the P&R facilities in the
opening year 2024. Each O-D pair has an origin outside the city and a destination in the
downtown area, i.e., the central business district (CBD). Eight candidate sites are proposed
for constructing the P&R facilities along the LRT corridors. The total number of routes is
1841 routes, including 1233 private vehicle routes and 608 routes for public transport via
P&R facilities.

Figure 5. Chiang Mai transportation network and potential P&R sites.

Two fare structures are under consideration for implementation: (1) distance-based
and (2) zone-based. The distance-based fare has an entrance fee of 15 Baht (33 Baht
is approximately 1 USD) with an additional 1 Baht for each kilometer travelled. The
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maximum charge for the distance-based fare is capped at 40 Baht. The zone-based fare
divides the city of Chiang Mai into 3 zones. Zone 1 covers the historical area and the tourist
popular spots. Zone 2 is the CBD area, including the commercial area, several universities,
and high-rise residential buildings. Zone 3 is in the outskirts of the CBD with low-rise
residential buildings. The fare is 10 Baht for a journey within the same zone. An additional
15 Baht is charged for a journey between zones as presented in Table 5.

Table 5. Zone-based fare structure in Thai Baht.

From/To 1 2 3

1 10 25 40
2 25 10 25
3 40 25 10

The results of the MNL-based and MNW-based models are presented in Table 6.
A larger number of P&R facilities (p) can potentially provide a higher number of P&R
users. The resulting number of P&R users from the MNL-based model is less than that of
the MNW-based model. The identically distributed assumption embedded in the MNL
model assigns more traffic flow to the shorter routes, and most of the shorter routes are
the private vehicle routes. As such, the routes passing through the P&R facilities receive
less traffic flow, and hence fewer P&R users. Further, each model can result in different
P&R facility locations irrespective of the fare structure scheme. The identically distributed
assumption and the multiple O-D pairs are combined to generate different optimal P&R
facility locations for the MNL-based and MNW-based models. This confirms that the
travelers’ heterogeneity is an important factor for the P&R facility location selection [28].

Table 6. Number of P&R facilities, their corresponding locations, and P&R users for the Chiang Mai
transportation network under two fare structures.

p
Fare Structure Distance-Based Zone-Based

Choice Model MNL MNW MNL MNW

4
P&R users 30.05% 39.53% 31.56% 40.44%

P&R facility site 3, 5, 6, 7 3, 5, 6, 8 3, 4, 5, 7 3, 5, 6, 7

3
P&R users 28.61% 35.23% 30.06% 36.28%

P&R facility site 3, 5, 7 3, 5, 6 3, 5, 7 3, 5, 6

2
P&R users 24.17% 27.13% 26.39% 28.81%

P&R facility site 3, 5 3, 6 3, 5 3, 5

1
P&R users 14.84% 17.66% 14.17% 17.58%

P&R facility site 6 6 3 6

In addition, each model may obtain different locations of P&R facilities under different
fare structure schemes. In the distance-based fare structure, travelers need to pay more for
a longer journey while they are encouraged to make a journey within the same zone for the
zone-based fare structure. As a result, each fare structure scheme has different P&R users
at the optimum solution shown in Figure 6. When p = 1, the P&R facility is located at site 6
for both fare structures. For p > 1, site 6 and site 5 seem to dominate in the distance-based
scheme and the zone-based scheme, respectively. This is because most potential travelers
are commuting from the east to the CBD. Site 6 offers a smaller travel cost to the CBD area.
Meanwhile, site 5 is in zone 2, where the majority of such travelers are commuting to.
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Figure 6. P&R facility locations under two fare structures for the MNW-based model.

Apart from the number and locations of P&R facilities, the travel response is different
for each fare structure. We use p = 3 to explain this issue through the travel distance
probability density function (PDF) in Figure 7. Despite the same three P&R locations (i.e., 3,
5 and 6) being selected for both fare structures, the P&R users travel longer on the average
under the zone-based fare structure. Furthermore, the travel distance variance is also
higher under this fare structure. This can be explained by the fact that zone 2 covers about
20 km of the LRT network, allowing the travelers to make a journey within the CBD area
without incurring an additional charge. All these results reveal that the choice model and
fare structure can have a significant impact on not only the P&R facility locations but also
the number of P&R users.

Figure 7. Travel distance PDF for p = 3.
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Next, the impact of βij and ζ ij was investigated. Unlike the small network, these MNW
parameters affect the optimal solution as shown in Figure 8. The contour line presents the
ratio of P&R users to the potential daily travel demand under p = 3. Both the P&R facility
locations and the number of P&R users are altered when the values of βij and ζ ij are varied.
A smaller value of βij and/or ζ ij tends to give a larger number of P&R users for each fare
structure. However, the distance-based fare structure seems to be more sensitive to changes
in βij and ζ ij than the zonal-based fare structure. This is because the MNW model can
consider travelers’ heterogeneous perception variance. The difference in distance travelled
is explicitly accounted for. Meanwhile, the zonal-based fare structure does not rely on the
trip length, hence less impact on the MNW parameter changes.

Figure 8. Impact of βij and ζ ij on the P&R location and number of users for p = 3.

6. Conclusions and Suggestions

This study developed a Weibit-based mathematical programming (MP) formulation to
consider the park and ride (P&R) facility locations under moderate traffic congestion. The
multinomial Weibit (MNW) model [29] was adopted to account for travelers’ heterogeneity.
Its independence of irrelevant alternatives (IIA) property was explored and used to linearize
the MNW choice probability. The numerical experiments demonstrated that the Weibit-
based choice model could alleviate the homogeneous perception variance due to the
identically distributed assumption embedded in the well-known multinomial Logit (MNL)
model. The resulting differences between the MNL-based and MNW-based models could
be presented not only from the optimal P&R facility location, but also the number of P&R
users. Furthermore, a real-world case study was conducted to show the applicability of
the proposed mixed integer linear programing (MILP) in a public transportation master
plan in the city of Chiang Mai, Thailand. The trip-length-based route-specific perception
variance in the MNW model provided a higher impact on the P&R facility location decision
under a distance-based public transport fare scheme.

The number of constraints to account for the MNW IIA property increases exponen-
tially with respect to the number of routes for each O-D pair. The correlation between the
travel routes is another important factor that affects the route choice behavior [36]. Some
other (route) choice models could be considered for future study, such as the cross nested
Logit (CNL) model and paired combinatorial Logit (PCL) model [27,31,37–39]. Note that
the IIA property may not hold for such models. Alternative approaches may be required.
In addition, a smart parking system could be considered in the future P&R facility [40–45]
as it could affect the travelers’ perception and hence the P&R facility location. To consider
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such travel behavior, an advanced behavioral choice model capable of accounting for the
features of smart parking systems should be considered in future research [46–48].
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