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Abstract: Seismic fragility analysis is an efficient method to evaluate the structural failure probabil-

ity during earthquake events. Among the existing fragility analysis methods, the probabilistic seis-

mic demand model (PSDM) and the joint probabilistic seismic demand model (JPSDM) are gener-

ally used to compute the component and system fragility, respectively. However, the statistical sig-

nificance behind the parameters related to the current PSDM and JPSDM are not comparable. Aside 

from that, when calculating the system fragility, the Monte Carlo sampling (MCS) method is time-

consuming. To solve the two flaws, in this paper, the logarithm piecewise functions were used to 

generate the PSDM and the JPSDM, and the MCS was replaced by the univariate conditioning ap-

proximation (UCA) method. The concepts and application procedures of the proposed fragility 

analysis methods were elaborated first. Then, the UCA method was illustrated in detail. Finally, 

fragility curves of a steel arch truss case study bridge were generated by the proposed method. The 

research results indicate the following: (1) the proposed methods unify the data sources and statis-

tical significance of the parameters used in the PSDM and the JPSDM; (2) the logarithmic piecewise 

function-based PSDM sensitively reflects the changing trend of the component’s demand with the 

fluctuation of the seismic intensity measure; (3) under transverse seismic waves, major injuries hap-

pen on the side bearings of the bridge, while slight damage may occur on each pier, and as the 

seismic intensity measure increases, the side bearings are more likely to be damaged; (4) for the 

severe damage and the absolute damage of the studied bridge, the system fragility curves are closer 

to the upper failure bounds; and (5) compared with the MSC method, the accuracy of the UCA 

method can be guaranteed with less calculation time. 

Keywords: bridge engineering; seismic fragility; logarithm piecewise function; probabilistic seismic 

demand model; joint probabilistic seismic demand model; steel truss arch bridge 

 

1. Introduction 

Since the Pacific Earthquake Engineering Research Center (PEER) proposed perfor-

mance-based earthquake engineering (PBEE), seismic fragility analysis has been widely 

promoted and applied in earthquake-resistant structures [1–6]. So far, seismic fragility 

analysis has mainly adopted the empirical method and the theoretical method [7,8]. The 

empirical method is limited in use because its data come from real earthquakes [9], while 

the theoretical method is user-friendly and widely used in structural seismic risk assess-

ment because it is based on the structural finite element model, whose data are controlla-
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ble [10–14]. Aside from that, with the development of deep learning, many artificial intel-

ligence methods [15–17] have been applied to civil engineering [18–21] and related seismic 

fragility evaluation [22–24]. 

In the theoretical method, to consider the uncertainties of the ground motion and the 

structure, the probabilistic seismic demand model (PSDM) is generally used. Meanwhile, 

Cornell et al. [10] first assumed that both the structural demand and the structural capac-

ity obey the log-normal distribution. Based on the above assumption, many scholars con-

ducted seismic fragility analysis on different types of bridges. For example, Li et al. [25] 

investigated the seismic fragility of a typical multi-span reinforced concrete continuous 

girder bridge experiencing chloride ion-induced corrosion. They concluded that non-uni-

form chloride-induced corrosion may change the vulnerable position and damage mech-

anisms of RC columns. Zakeri et al. [7] discussed how the skew angle influenced the seis-

mic fragility of the skewed single-frame, concrete, box-girder bridges. Different compo-

nent responses were studied. Their calculation results revealed that older bridges are par-

ticularly susceptible to column damage and are not sensitive to skew. Zhong et al. [26] 

generated seismic fragility curves of a cable-stayed bridge using various spatial variables. 

The results indicated that the section ductility demands at the base of the pylon are sig-

nificantly affected by the spatial variabilities of the ground motion. Wu et al. [27] devel-

oped both the component and system fragility curves of a concrete cable-stayed bridge. 

This research concluded that the fragility functions are sensitive to the stiffness of the ca-

ble restrainer, and the longitudinal constraint system performs better than the totally 

floating system and the totally rigid system. Yılmaz et al. [28] studied the seismic fragility 

of a railway truss bridge with tension capacity as the damage index (DI) of the load-car-

rying ability and lateral displacement as the DI of serviceability. The results showed that 

the velocity limit of this bridge must be reduced. Herath et al. [29] studied how soft soil 

conditions influenced the distribution of peak ground accelerations (PGAs), and the re-

sults were informative when generating the PSDM. 

It is noteworthy that current seismic fragility analysis mainly focuses on the main 

components of the bridge. In other words, the fragility of the pier or the main tower is 

used to represent the fragility of the whole bridge. However, the damage to other compo-

nents like the deck, cable, and abutment will affect the performance of the bridge too. For 

example, a falling beam would occur if the support displacement exceeds the limitation. 

Additionally, the bridge must be closed for maintenance if the cable is broken. All these 

conditions will cause traffic interruption and economic losses. Seismic fragility analysis is 

the major foundation of performance-based seismic design (PBSD). One purpose of this 

analysis is to conduct risk assessment for the whole structure; therefore, it is very im-

portant to obtain not only the component fragility curves but also the system fragility 

curves. 

The calculation of system fragility is a sophisticated reliability problem. In structural 

reliability theory, when calculating the system failure, there are three types of systems: 

series systems, parallel systems, and mixed systems. It is obvious that the parallel system 

is not appropriate for bridge structures because the failure of its main component will lead 

to the whole bridge failing (e.g., piles or main towers), and this is against the definition of 

the parallel system. The mixed system highly corresponds with reality. However, bridges 

have many components, and how these components influence the responses of the whole 

bridge has not been clearly studied yet. Therefore, the difficulty of establishing a convinc-

ing mixed system model leads to the mixed system rarely being used. In the series system, 

components are connected in a single-chain order, and thus this system is easier to estab-

lish and more conservative than the mixed system. By the two advantages, the series sys-

tem is generally used when computing the system fragility of bridges [30–42]. 

Among the existing system fragility methods, the first-order or second-order relia-

bility method is commonly used due to their simple structures [30–33]. Chen [30] calcu-

lated the system fragilities of several tall-pier bridges subjected to near-fault ground mo-

tions by the first-order reliability method. Wu et al. [31] evaluated the system vulnerability 
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of a high-pier long-span bridge with the same method. Pan et al. [32] and Gao et al. [33] 

obtained the system fragilities of girder bridges by the second-order reliability method. 

However, these two methods can only determine the lower and upper failure bounds, 

rather than specify an exact failure curve. The reason for this is that the above methods 

make very strong assumptions about the correlation of different components’ responses 

which are different from reality. In order to determine the exact failure curve, Qin et al. 

[34] established the limit state function of a contemporary house when it was subjected to 

wind uplift and calculated the system fragility by the Monte Carlo Sampling (MCS) 

method. Mangalathu et al. [35] used the lasso logistic regression technique to derive the 

multi-dimensional system fragility function of skewed concrete bridge classes. Zhou et al. 

[36] established the system response model by copula functions with different copulas 

and conducted the system failure assessment of a typical seismically isolated reinforced 

concrete (RC) frame structure. Xu et al. [37] proposed a multi-variate, non-stationary ran-

dom field theory to determine the system fragility of a transportation system while con-

sidering six different deterioration levels. 

Aside from the methods mentioned above, a group of scholars represented by Niel-

son [38], Wang et al. [39], and Wu et al. [27,31] directly extended the component level 

fragility to the system level fragility by proposing the joint probabilistic seismic demand 

model (JPSDM). The JPSDM originates from the PSDM, and compared with other meth-

ods, there are two advantages to apply the JPSDM: (1) the calculation process of the sys-

tem fragility curves becomes very similar to that of the component fragility ones, and (2) 

conceptually, the calculation of the component fragility and system fragility forms a 

closed loop. Therefore, the JPSDMs were generated and the system fragility curves were 

calculated by some scholars [40–42]. Nevertheless, there are still two flaws of the current 

JPSDM: (1) although the PSDM and the JPSDM are merged into a single system concep-

tually, when conducting the calculations, the JPSDM ignores the statistical significances 

behind parameters related to the PSDM, which means the two models cannot be merged 

into a general system mathematically, and (2) when calculating the system fragility after 

the JPSDM is generated, the generally used MCS method is time-consuming. 

In this paper, to merge the PSDM and JPSDM conceptually and mathematically and 

to reduce the system fragility calculation time, component and related system fragility 

analysis methods using a logarithmic piecewise function were proposed, and the MSC 

method was replaced by an alternative method. A steel truss arch bridge was used as an 

example to illustrate the calculation process, and its transverse component and system 

fragility curves were generated. More specifically, by fitting the PSDM and the JPSDM 

with a logarithmic piecewise function, the corresponding parameters of the PSDM and 

JPSDM are matched. Simultaneously, the traditional MCS method is replaced by the uni-

variate conditional approximation (UCA) method to improve the computational effi-

ciency. The traditional and proposed fragility analysis methods are introduced in Section 

2 and Section 3, respectively. In Section 4, how to apply the UCA method is illustrated. In 

Section 5, the modeling details of the studied bridges, the used seismic waves, and the 

damage indexes are described. In Section 6, the transverse components and system fragil-

ity curves are generated and analyzed. Section 7 is the conclusions. 

2. The Traditional Fragility Analysis Methods 

2.1. The Component Fragility Analysis Method 

According to the classical reliability analysis theory, structure fragility is described 

as the conditional probability under a given ground motion intensity. The following for-

mula can be established according to the definition: 

1d
f

c

S
P P

S

 
  

 
 (1) 
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where Pf is the conditional probability of failure, Sd is the structural seismic demand, and 

Sc is the structural seismic capacity. Sd and Sc are assumed to follow the log-normal distri-

bution. Equation (1) can be rewritten as follows: 

ln ln1d
f

c

S
P P

S

 
  

   

(2) 

 ln ln 0f d cP P S S  
 (3) 

because 

2 2ln ~ ( , ), ln ~ ( , )d d d c c cS N S N     (4) 

where λ is the mean and β is the standard deviation of the normal distribution. 

It is known that 

2 2ln ln ~ ( , )d c d c d cS S N        (5) 

 
2 2

ln ln 0 ( )d c
f d c

d c

P P S S
 

 


    


 (6) 

2 2

ln l  n
( )

d c

f

d c

S S
P

 


 


 (7) 

where Φ is the standard normal cumulative distribution function and dS  and cS  are 

the predicted (i.e., the conditional median) values of the seismic demand and capacity, 

respectively. 

In the PSDM, the monitored engineering demand parameter (EDP) is combined with 

the corresponding intensity measure (IM) to build the power PSDM [10]: 

  or  ln ( ) ln ln ( ) ln( )b
d dS EDP aIM S EDP a b IM       (8) 

where a and b are the estimated parameters from the linear regression analysis. To account 

for the uncertainties of the PSDM, the dispersion (standard deviation) of the seismic de-

mand (βd) is calculated by the following formula: 

2

ln ln

2

i

d

D EDP

n


  



 (9) 

where Di is the ith realization of the structural demand and n is the number of the used 

ground motions. 

Figure 1 shows the components PSDM generated by the cloud approach [43] and the 

incremental dynamic analysis (IDA) method [44]. 
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ln
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

2
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Figure 1. The PSDM based on (a) the cloud approach [43] and (b) the IDA method [44]. 

2.2. The System Fragility Analysis Method 

2.2.1. System Fragility Analysis Based on the First-Order Reliability Method 

The first-order reliability method assumes that once one of the components fails, the 

entire system fails (i.e., the series system). This method finds the upper and lower bounds 

of the system failure as show in Equation (10): 

1 1

max[ ] 1 [1 ]
mm

i sys i
i i

P P P
 

     (10) 

where Psys is the system failure probability and Pi is the failure probability of the ith com-

ponent. This method makes very strong assumptions of the dependency among compo-

nents. The lower bound treats components as completely related; that is, the failure of one 

component will trigger the failure of all other components. On the contrary, the upper 

bound regards each component as completely independent, and the failure of any com-

ponent has no influence on the remaining ones. 

2.2.2. System Fragility Analysis Based on the Joint Probabilistic Seismic Demand Model 

Similarly, in a series system, the corresponding failure probability can be obtained 

by the Monte Carlo method if the joint probabilistic density functions (PDFs) of both the 

demand and the capacity are known. Figure 2 shows the joint PDF and related failure 

range (the shaded area) of a two-component system [40]. In this method, the dependencies 

among all components are determined by calculation and not by assumptions. 

 

Figure 2. The PDF of the demand and the related failure domain for a 2D case [40]. 
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The principle of this method is as follows. For a system composed of n components, 

assume the system demand under a fixed ground motion intensity measure (IM) is X = 

(X1, X2…, Xn). If the PSDM of each component follows the log-normal distribution, each 

edge distribution of ln (X) should distribute normally (i.e., Yi = ln (Xi) follows the normal 

distribution). By calculating the correlation coefficients of all Yi and combining the re-

sponse variance of all components, the covariance matrix of the demand can be set up. 

Aside from that, each element of the mean vector of the demand under a set IM can be 

obtained by Equation (8). With both the mean vector and the covariance matrix, the joint 

PDF of the demand (or the JPSDM) at a set IM is established [38]. 

The correlative coefficient is calculated by the following formula: 

[Y ,Y ]

[Y ] [Y ]

i j

ij

i j

Cov

D D
   (11) 

in which ρij is the element in the ith row and jth column of the correlation coefficient ma-

trix, Cov[Yi,Yj] is the sample covariance of vector Yi, and Yj, D[Yi] represents the sample 

variance of vector Yi. 

Theoretically, in the method proposed by Nielson [38], only one correlation coeffi-

cient matrix is used for all IMs, while in reality, with different ground motion IM, the 

response relationship between components will change, resulting in different correlation 

coefficient matrixes. In addition, statistically, the parameters of the correlation coefficient 

matrix do not match the parameters of the corresponding edge distribution if the correla-

tion coefficient matrices under all IMs are represented by the correlation coefficient matrix 

under a certain IM. A detailed explanation is shown in the following paragraph. Assume 

that this system was composed of two components, and four seismic waves were inputted 

into the system accordingly (each seismic wave was amplified to three IM by the IDA 

method), using A and B to represent the component responses, and the same subscript 

suggests the responses under the same seismic wave as displayed in Figure 3. 

ln
(B
)

ln(IM)

B

ln( ) ln( ) ln( )B B BS a b IM  

2(ln( ), )BN B 

B

B1

B2

B3

B5

B6

B7

B12

B11B10

ln
(A
)

ln(IM)

A

ln( ) ln( ) ln( )A A AS a b IM  

2(ln( ), )AN A 

A

A1

A2

A3

A7

A5

A6

A12

A11

A10

Component 1 Component 2

IM1 IM2 IM3
IM1 IM2 IM3

A4
A8

A9

B4

B8

B9

 

Figure 3. The PSDM of a two-component system by the IDA method. 

Suppose the data at IM1 are used to calculate the sample covariance matrix, whose 

diagonal elements are taken from Equation (12) as 

4 4
2 2 2 2
11 22

1 1

( ) 4 1     ( ) 4 1i i
i i

A A B B 
 

        (12) 

in which 
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1 2 3 4 1 2 3 4( ) / 4      ( ) / 4A A A A A B B B B B         (13) 

Similarly, data at IM2 or IM3 can also be used to generate the sample covariance ma-

trix. However, since the diagonal elements of the correlation coefficient matrix are one, 

when calculating the covariance matrix by the variances of the correlation coefficient ma-

trix and the marginal distributions, the corresponding diagonal elements are 

12 122 2

2 2 2 21 1
11 22

[ln( ) ] [ln( ) ]
= =

12 2 12 2

A i B ii i
A B

S A S B
    

 
 

 

 
     (14) 

It can be seen that the final results and physical meanings of Equations (12) and (14) 

are different. The results obtained from Equation (12) are sample variances of all responses 

of the components at a certain IM, while Equation (14) calculates the error variances of the 

regression function of the components. 

In the traditionally used method [38], the covariance matrix (matrix one) and the cor-

relation coefficient matrix (matrix two) are first calculated by Equation (11), and then a 

new covariance matrix (matrix three) is generated by combining the correlation coefficient 

matrix (matrix two) with the variances taken from Equation (14). In other words, the sam-

ple variances obtained from Equation (12) are replaced by the error variances of the re-

gression function when generating the covariance matrix of the JPSDM. Such a replace-

ment changes the statistical meaning of the original covariance matrix so that the newly 

used covariance matrix (matrix three) does not reflect the statistical significance of the 

original components’ responses, which is to say that this replacement does not match the 

traditional process of using a covariance matrix to calculate the failure probability and 

may cause calculation errors. 

3. The Proposed Fragility Analysis Methods 

In this section, a logarithmic piecewise function-based component and related system 

fragility analysis methods are proposed. The proposed methods could solve the problem 

of mismatch in statistical significances between the PSDM and JPSDM and improve the 

fitting accuracy of the PSDM. 

3.1. The Component Fragility Analysis Method Based on the Logarithmic Piecewise Function 

To solve the problem of a mismatch in statistical significances between the PSDM 

and JPSDM, the linear fitting function of the PSDM (Figure 1) needs to be replaced by a 

piecewise fitting function (Figure 4). The following paragraph illustrates the replacement 

process when the IDA method is used. It is worth noting that if not the IDA method, but 

the cloud approach is used, the seismic responses could also be transformed into the same 

format as shown in the literature [45], so the proposed method is still appliable. 

ln
(D

)

ln(IM)

2

1

1 1 1

1 1

ln( ) ln( )     for  

ln( )

ln( ) ln( ) for  

d

n nn n

a b IM IM IM IM

S

a b IM IM IM IM

 

 
 

    


 


   



2

2
d

1 1 1

1 1 1

ln( ) ln( )      for  

ln( ) ln( ) for   nn n n

c d IM IM IM IM

c d IM IM IM IM



 

 
  

    


 
    



 

Figure 4. The PSDM based on the logarithm piecewise function. 
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In Figure 1, the component demand in the whole IM domain followed a normal dis-

tribution with a linearly varying mean (in the whole logarithmic coordinate space) and a 

constant variance. If the mean and the variance were turned into values changing linearly 

with IM segments (not in the whole IM space but in different IM segments) as shown in 

Figure 4, the fitting accuracy and the sensitivity of the PSDM would be improved. 

The specific steps are as follows: 

Step 1. Transform the structural demands and the IM into the logarithmic coordinate 

space (so all parameters mentioned in Steps 2 and 3 are log coordinate-based). 

Step 2. At each IM, calculate the mean and the sample variance of the demands. 

Step 3. Use the linear interpolation to fit the calculated means and variances. 

In accordance with the above statements, when calculating the fragility of the com-

ponents, Equation (8) could be replaced by Equation (15) with 

2

3

1

1 1 1

2 2 2

1 1

ln( ) ln( )     for  

ln( ) ln( )     for  
ln( )

ln( ) ln( ) for  

d

n nn n

a b IM IM IM IM

a b IM IM IM IM
S

a b IM IM IM IM

 

 

 
 

    


   
 

    


 

(15) 

Equation (9) could be replaced by Equation (16) with 

2

2 3

1 1 1

2 2 2

1 1 1

ln( ) ln( )      for  

ln( ) ln( )      for  

ln( ) ln( ) for  

d

nn n n

c d IM IM IM IM

c d IM IM IM IM

c d IM IM IM IM



 

 

 
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    


   
 

    


 (16) 

where ia
, ib , ic , and id 

 (i = 1, 2, 3, …, n − 1) are the interpolation parameters, IMi (i = 

1, 2, 3, …, n) is the breakpoint, and n − 1 is the number of segments for the piecewise linear 

interpolation. 

3.2. The System Fragility Analysis Method Based on the Logarithmic Piecewise Function 

The proposed system fragility analysis method is illustrated by a two-component 

system. First, generate the logarithmic piecewise function-based PSDM of each compo-

nent as shown in Figure 5. 
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Figure 5. The PSDM of the components using the logarithmic piecewise function. 

Then, build the JPSDM at each IM. Take the moment of IM1 as an example. The mean 

vector of the joint distribution at this moment is 1 2( , )x Tx x , where 
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1 1 1 1 2 1 1 1ln( ) ln( )    ln( ) ln( )A A B Bx a b IM x a b IM       (17) 

When calculating the covariance matrix and the correlation coefficient matrix of IM1, 

only A1–A4 and B1–B4 are used; that is, the diagonal elements of the covariance matrix are 

the same as the sample variances of the marginal distributions, as shown in Equation (18), 

and the error variances of the linear regression are not applied: 

4 42 2

2 2 2 21 1
11 1 22 1

[ln( ) ] [ln( ) ]
( ) =    ( ) =

4 1 4 1

A Bi ii i
A B

S A S B
IM IM    

 
 

 

 
 (18) 

The above calculation process ensures that only one covariance matrix is used at IM1 

(i.e., only using matrix one without using matrix three), so the statistical significances of 

the covariance matrix and the components’ responses can be guaranteed. At IM2 and IM3, 

the results can be obtained by the same method. For the JPSDM between IM1 and IM2 (or 

IM2 and IM3), the mean vectors are also computed by Equation (17), and the non-diagonal 

elements of the correlation coefficient matrix are obtained by linear interpolation between 
2
12 1( )IM  and 

2
12 2( )IM  (the diagonal elements of the correlation coefficient matrix are 

always one). Therefore, with the mean vectors, the variances of all components, and the 

correlation coefficient matrices, the joint distributions between IM2 and IM3 (or IM2 and 

IM3) can be determined. 

In general, regardless of the variation of the seismic IM, a set of corresponding mean 

vectors and covariance matrices can always be found (i.e., the multivariate normal distri-

bution describing the JPSDM can be determined for any seismic IM). As can be seen, the 

proposed method does not apply the regression error variances throughout the calcula-

tion, and the statistical significances behind the parameters related to the PSDM and the 

JPSDM are comparable. 

4. The Univariate Conditioning Approximation Method 

When calculating the system failure probability at different IMs using the method 

proposed in Section 3.2, there are infinite multivariate joint log-normal distributions for 

the demand. Thus, using the Monte Carlo sampling (MCS) method is computationally 

intensive. According to the additivity of the multivariate normal distribution, the univari-

ate conditional approximation (UCA) method [46] was used to calculate the values of the 

cumulative distribution function (CDF) for the target distributions, and this method both 

improved the computational efficiency and ensured the calculation accuracy. 

The calculation steps are as follows. First, transfer the problem of finding the system 

failure probability into the problem of finding the CDF value of a multivariate normal 

distribution with the following steps: 

Step 1. Obtain the multivariate log-normal distribution function (name it function A) 

of the structural demand at a certain IM (i.e., obtain the JPSDM of A). 

Step 2. Find the multivariate log-normal distribution function (name it function B) of 

the structural capacity, and then the system failure probability can be expressed as 

 ln ln 0sP P  A B  (19) 

where Ps is the conditional probability of system failure, ln A is a multivariate normal 

distribution function with the mean vector μA and the covariance matrix A , and ln B is 

a multivariate normal distribution function with the mean vector μB and the covariance 

matrix B  such that 

ln ~ ( , )    ln ~ ( , )A BA A B BN N    (20) 
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Step 3. Assume that the demand and the capacity are independent of each other. Ac-

cording to the additivity of the multivariate normal distribution, the system failure prob-

ability can be expressed by Equation (21): 

1 ( | )0s A B A BP G   ,     (21) 

where 

 ( | , ) , )0 0A B A B A B A BG P N     （        (22) 

Then, directly replace the MCS method with the UCA method to calculate the failure 

probability sP . The comparison between the two methods is shown in Table 1 (in this 

study, 50,000 demand and capacity samples were generated individually at each IM when 

using the MCS method [47]). As shown below, the accuracy of the univariate conditioning 

approximation method was guaranteed with less calculation time. 

Table 1. Comparison between the Monte Carlo sampling method and the univariate conditional approximation method. 

Intensity Measure (PGA) Time Ratio Relative Error of the Calculated Failure Probability 

0.2 g 22.60 0.04% 

0.4 g 13.34 0.02% 

0.6 g 20.47 0.02% 

0.8 g 12.39 0.02% 

1.0 g 28.16 0.01% 

1.2 g 17.84 0.03% 

1.4 g 18.44 0.02% 

1.6 g 11.22 0.03% 

1.8 g 15.79 0.02% 

2.0 g 11.76 0.03% 

PGA: peak ground acceleration; time ratio: calculation time of the Monte Carlo sampling method/calculation time of the 

univariate conditional approximation method. 

The specific steps of the UCA method are as follows: 

Step 1. Transfer the non-standard normal distribution problem to the standard nor-

mal distribution problem (i.e., transfer Equation (22) to Equation (23)): 

 n n( | , ) ( | , ) ( , )A B A B D D D DG P      0 D D        (23) 

where D  is the correlation coefficient matrix of +A B  , μD is a zero vector, 

and the ith element of vector D is expressed by the ith element of μB − μA divided by the 

ith diagonal element of matrix ( D )1/2. 

Step 2. Mathematically, the failure probability can be calculated by integrating the 

PDF of n  at ( , ] D . However, a corresponding analytical formula to perform the 

integration does not exist, so the UCA method is used. It is worth noting that the   

from ( , ] D  is replaced by vector a here, whose elements are a set of very small con-

stants. The relevant calculation process is shown in Figure 6, where C  is the lower tri-

angular matrix obtained by the Chebyshev decomposition of matrix D , and the value 

of the PDF and the CDF are represented by   and  , respectively. 

Step 3. Repeat the above steps at the next IM until the calculation is completed. 
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Figure 6. Procedure of calculating the CDF value of the multivariate normal distribution by the univariate conditioning 

approximation method. 

5. Numerical Analysis 

5.1. The Modeling Details of the Bridge 

A steel truss bridge with a span of 100 m + 400 m + 100 m was used as an example to 

illustrate the proposed component and the related system fragility analysis methods. The 

upper structural truss members of this bridge were made of Q345 and Q420 steel. The arch 

ribs of the main truss plates were box-shaped. The bracing and the web rods were box-

shaped and I-shaped. The tie rods were box-shaped and H-shaped. The suspenders were 

composed of parallel steel wire with a standard strength of 1680 MPa. The bridge deck 

adopted a steel–concrete composite structure. The elevation layout of the bridge and the 

corresponding support restraint system of the bearings are shown in Figure 7 (details of 

the support restraint system are shown in the following paragraphs), and the heights of 

piers 1–4 were 19.5 m, 10.3 m, 10.3 m, and 20.5 m, respectively. 
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Figure 7. The elevation layout and the support restraint system of the bridge. 

The finite element (FE) model of the studied bridge was established by OPENSEES 

[48]. The deck beams and the deck slabs were simulated by elastic elements. The suspen-

sion rods and the tie rods were simulated by truss elements. The truss members, piers, 

and caps were simulated by elastic–plastic fiber section elements, and each truss member 

was modeled with a single element with five integration points. The supports and the 

dampers were simulated by zero-length elements, and the friction coefficient of the sup-

ports was set as 0.03. The effects of the group piles were simulated by the six-spring damp-

ers model. According to Chinese guideline JTG-B01-2014, the design highway lane loads 

(Figure 8) were applied to all traffic lanes during the nonlinear time history analysis. 

10.5kN/m
360kN

 

Figure 8. Design highway lane loads. 

It is important to note that when simulating the pier–beam connections, three consti-

tutive models were used to present the mechanical characteristics of the bearing, the steel 

damper, and the displacement limiter, as shown in Figure 9. LS1–LS4 in the constitutive 

model of the displacement limiter represent the displacements corresponding to slight, 

moderate, severe, and absolute damage. The Fy in the constitutive model of the displace-

ment limiter represents the designed maximum transverse force, as presented in Table 2. 

In the transverse direction, the LS3 of the fixed bearing was set as a very small value (be-

cause the bearing is unmovable in the fixed direction), and LS1–LS4 of the remaining bear-

ings are displayed in Section 5.3.1. Aside from that, the vertical direction of the pier–beam 

connections was restricted, and the rotational stiffnesses of the zero-length elements were 

not considered. 
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Table 2. The Fy in the constitutive model of the displacement limiter. 

Bearing Number 1 2 3 4 

Left-span-Fy (kN) 900 21,000 4200 900 

Right-span-Fy (kN) 900 21,000 21,000 900 
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Figure 9. The established bridge model and the used constitutive model. 

5.2. Determination of the Random Variables 

5.2.1. The Seismic Uncertainties 

Earthquakes exhibit strong randomness. Even at the same location, the recorded time 

history curves can be different. In time history analysis, structure ground motion samples 

should be selected to satisfy the site condition, fortification intensity, magnitude, epicen-

tral distance, and so on. The Applied Technology Council (ATC) conducted a project en-

titled “Quantification of Building System Performance and Response Parameters” in 2009, 

in which they established the suggested ground motions for evaluating the structure re-

sponses [49]. The 20 far-field ground motions used in this paper were selected from the 

above ATC-63 database. The main purpose of this paper was to introduce the proposed 

fragility analysis methods, so only the transverse components of the ground motions were 

considered. In addition, inputting one component of the ground motions is common in 

bridge engineering. The transverse direction of bridges is vulnerable during earthquakes, 

so studying the influences caused by the transverse components of the ground motions is 

necessary. The selected ground motions are listed in Table 3. The peak ground accelera-

tion (PGA) of each ground motion was adjusted from 0.2 g to 2 g (setting the interval as 

0.2 g) by the IDA method. 
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Table 3. The ground motion inputs. 

ID No.NGA Seq. No.Mag. Name Recording Station Selected Component (Component H1)

1 953 6.7 Northridge, USA Beverly Hills-Mulhol RSN953_NORTHR_MUL009 

2 960 6.7 Northridge, USA Canyon Country-WLC RSN960_NORTHR_LOS000 

3 1602 7.1 Duzce, Turkey Bolu RSN1602_DUZCE_BOL000 

4 1787 7.1 Hector Mine, USA Hector RSN1787_HECTOR_HEC000 

5 169 6.5 Imperical Valley, USA Delta RSN169_IMPVALL.H_H-DLT262 

6 174 6.5 Imperical Valley, USA EI Centro Array#11 RSN174_IMPVALL.H_H-E11140 

7 1111 6.9 Kobe, Japan Nishi-Akashi RSN1111_KOBE_NIS000 

8 1116 6.9 Kobe, Japan Shin-Osaka RSN1116_KOBE_SHI000 

9 1158 7.5 Kocaeli, Turkey Duzce RSN1158_KOCAELI_DZC180 

10 1148 7.5 Kocaeli, Turkey Arcelik RSN1148_KOCAELI_ARE000 

11 900 7.3 Landers, USA Yermo Fire Station RSN900_LANDERS_YER270 

12 848 7.3 Landers, USA Coolwater RSN848_LANDERS_CLW-LN 

13 752 6.9 Loma Prieta, USA Capitola RSN752_LOMAP_CAP000 

14 767 6.9 Loma Prieta, USA Gilroy Array #3 RSN767_LOMAP_G03000 

15 1633 7.4 Manji, Iran Abbar RSN1633_MANJIL_ABBAR--L 

16 721 6.5 Superstition Hills, USA EI Centro Imp. Co. RSN721_SUPER.B_B-ICC000 

17 1244 7.6 Chi-Chi, Taiwan CHY101 RSN1244_CHICHI_CHY101-E 

18 1485 7.6 Chi-Chi, Taiwan TCU045 RSN1485_CHICHI_TCU045-E 

19 68 6.6 San Fernando, USA  LA—Hollywood Stor FF RSN68_SFERN_PEL090 

20 125 6.5 Friuli, Italy Tolmezzo RSN125_FRIULI.A_A-TMZ000 

5.2.2. The Structural Uncertainties 

Uncertainties of the material properties and load effects will affect the bridge re-

sponses under earthquake conditions; therefore, these uncertainties must be considered 

(Table 4). Generally, the concrete compressive strength, the coefficient of the rebar strain 

hardening ratio, and the yield strength of the rebar are assumed to follow the normal or 

log-normal distribution [50–53]. In this research, the means of the concrete compressive 

strengths and the rebar yield strength were selected from related Chinese designed codes, 

and the coefficients of variation (CoVs) were picked from [35,50,51]. The uncertainty pa-

rameters of the rebar strain hardening ratio were adopted from [52,53]. It is worth noting 

that when the dead load (Phase I dead load + Phase II dead load) is considered as an 

uncertainty parameter, researchers generally assume it follows uniform distribution 

[52,54]. However, in Table 4, the Phase I dead load is ignored, and the Phase II dead load 

follows a normal distribution. The reason for this is that for the case study bridge, all truss 

members and bridge deck plates were well fabricated in factories, which meant the devi-

ation of the actual and the design Phase I dead load was not significant. Therefore, the 

uncertainty of the Phase I dead load was not considered. While the Phase II dead load 

represents the dead load of prefabricated components, assuming it follows the normal 

distribution is also reasonable, and the relevant mean and COV were chosen from [50]. 

Table 4. Random variables incorporated in the analytical bridge models. 

Modeling Parameter 
Probability 

Distribution 
Mean 

Coefficient of 

Variation 

Compressive strength of concrete C45/MPa Normal 40.8 0.17 

Compressive strength of concrete C50/MPa Normal 44.6 0.17 

Magnification factor of the Phase II dead load Normal 1.06 0.074 

The coefficient of the rebar strain hardening ratio Normal 0.0012 0.05 

The yield strength of rebar HRB335 Lognormal 335 0.08 
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5.2.3. The Uncertainties of the Seismic Capacity 

The seismic capacity of the structural components is affected by a lot of factors. For 

example, the attitude of the workers and the concrete quality can affect the physical prop-

erties of the constructed bridge, and these factors influence the seismic capacity of the 

bridge components. Therefore, the seismic capacities were considered random variables 

as well. In bridge engineering, the seismic capacities of bridges are generally assumed to 

follow the log-normal distribution [38]. The used coefficient of variation (COV) of the 

slight damage (LS1) and the moderate damage (LS2) was 0.25, and the COV of the severe 

damage (LS3) and the absolute damage (LS4) was 0.5. The relationship between the COV 

and βc is shown in Equation (24): 

2

COV 1ce   (24) 

According to Equation (24), the used βc for each LS was 0.246 (LS1), 0.246 (LS2), 0.472 

(LS3), and 0.472 (LS4). 

5.3. Determination of the Damage Index 

5.3.1. The Damage Index of the Support 

In this study, the maximum displacement was selected to represent the damage index 

(DI) of the movable bearing (support). Figure 10 displays the installed movable supports. 

The shadowed area represents the cushion stone, X and Y represent the longitudinal and 

transverse directions of the bridge, respectively, Y1 and Y2 represent the transverse length 

of the top plate and the base plate of the support, respectively, Y3 represents the transverse 

length of the cushion stone, X1 and X2 represent the longitudinal length of the top plate 

and the base plate of the support, respectively, and X3 represents the longitudinal length 

of the cushion stone. When the displacement of the bearing exceeds the design value but 

is within the support base plate, the bearing will be damaged slightly (LS1). When the 

edge of the support’s top plate exceeds the edge of the support’s base plate but does not 

exceed half of the distance from the edge of the support’s base plate to the edge of the 

cushion stone, the support will be damaged moderately (LS2). When the edge of the sup-

port’s top plate exceeds half of the distance from the edge of the support’s base plate to 

the edge of the cushion stone but is within the cushion stone, the support will be damaged 

severely (LS3). Once the edge of the support’s top plate exceeds the edge of the cushion 

stone, the support will be damaged absolutely (LS4). The support damage in the fixed 

direction was not considered. Tables 5 and 6 display the DIs of the movable bearing in the 

transverse direction. 
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Figure 10. Appearance of the movable bearings. 
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Table 5. Illustration of the damage indexes of the bearing in the transverse direction. 

Damage State Transverse Displacement of The Support (x) 

Slight Damage (LS1) 2 1Design Displacem
1

X X
2

ent x  （ ） 

Moderate Damage (LS2) 3 2
2 1 2 1

X X1 1 1
X X X X

2 2 2 2 2
x     （ ） （ ） （ ） 

Severe Damage (LS3) 3 2
2 1 3 1

X X1 1 1
X X X X

2 2 2 2 2
x     （ ） （ ） （ ） 

Absolute Damage (LS4) 3 1

1
X X

2
x  （ ） 

Table 6. The displacement damage indexes of the movable bearings in the transverse direction. 

Damage State 
Displacement of the Side Pier Support 

(mm) 

Displacement of the Main Pier Support 

(mm) 

Slight Damage (LS1) 200 300 

Moderate Damage (LS2) 250 400 

Severe Damage (LS3) 500 700 

Absolute Damage (LS4) 750 1200 

5.3.2. The Damage Index of the Pier 

In this paper, the curvature was selected as the DI of the pier [12], and corresponding 

criteria to define the damage indexes are displayed in Table 7. The specific steps to deter-

mine the DI were as follows. First, obtain the maximum axial force of each pier by input-

ting the selected seismic waves (i.e., the seismic waves in Table 3 amplified by the IDA 

method) into the established FE model. Then, apply the maximum axial force and perform 

bending moment curvature analysis to each pier. Finally, determine the DI by matching 

the numerical results and the limit states in Table 7. The transverse curvature damage 

indexes of the studied bridge piers are listed in Table 8. 

Table 7. Criteria to define the curvature damage indexes of the piers. 

Damage State Description of the Corresponding Damage 

Slight Damage (LS1) The first yield of the longitudinal reinforcement 

Moderate Damage (LS2) The first equivalent yield of the pier section 

Severe Damage (LS3) 

the concrete cover fails

the strain of the confined concrete reaches 0.004

the strain of the section reaches 55% of LS4'

Min c

s sta

urvature when

in













 

Absolute Damage (LS4) The failure of the confined concrete 

Table 8. The transverse curvature damage indexes of the studied bridge piers. 

Target Pier 

Transverse Curvature (m−1) 

Slight Damage Moderate Damage Severe Damage Absolute Damage 

(LS1) (LS2) (LS3) (LS4) 

Pier 1 
Left span 0.00031 0.00175 0.00556 0.01011 

Right span 0.00031 0.00175 0.00556 0.01010 

Pier 2 
Left span 0.00024 0.00089 0.00463 0.00841 

Right span 0.00024 0.00090 0.00464 0.00843 

Pier 3 
Left span 0.00024 0.00089 0.00463 0.00841 

Right span 0.00024 0.00090 0.00464 0.00843 

Pier 4 
Left span 0.00032 0.00163 0.00540 0.00982 

Right span 0.00030 0.00168 0.00547 0.00994 
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5.3.3. The Damage Index of the Steel Truss Member 

Based on the structural characteristics of steel truss bridges, it can be known that 

damage caused by the transverse earthquake are mainly concentrated in the bridge sup-

ports and bridge piers. Therefore, only the slight (LS1) and moderate (LS2) damage states 

were set for the steel truss members. In accordance with [12], the yield strain and 10% of 

the ultimate elongation rate were set as LS1 and LS2 for the steel truss members individ-

ually. 

6. Results and Discussion 

6.1. Damage of the Steel Truss Members 

Table 9 shows the damage states of the steel truss members after inputting a trans-

verse seismic wave (the used wave was extended to 10 seismic waves with PGA ranges 

from 0.2 g to 2.0 g by the IDA method). It can be observed that no matter how strong the 

earthquake was, only a few truss members were damaged. Even when the PGA reached 

2.0 g, only 1 truss member was damaged moderately. This means that the superstructure 

of the studied bridge was relatively strong under transverse seismic waves. Therefore, 

only the fragility of the piers and the supports were studied for the following section. 

Table 9. The damage states of the steel truss members under a transverse seismic wave. 

PGA 
Number of the Element 

Damage Ratio 
Member's maximum strain

The ultimate elongation rate
 No Damage* 

Slight Damage Moderate Damage 

(g) (LS1) (LS2) 

0.2 811 0 0 0.00% 0.22% 

0.4 811 0 0 0.00% 0.96% 

0.6 808 3 0 0.37% 3.80% 

0.8 804 7 0 0.86% 5.05% 

1 800 11 0 1.36% 6.22% 

1.2 796 15 0 1.85% 7.73% 

1.4 794 17 0 2.10% 8.84% 

1.6 792 19 0 2.34% 9.51% 

1.8 788 22 1 2.84% 10.62% 

2 786 24 1 3.08% 11.81% 

* There were 811 truss members in general, and the ultimate elongation rate was 0.15. 

6.2. Component Fragility 

Figure 11 displays the proposed and original PSDM of the No. 1 left bearing. Figure 

12 shows the related fragility curves. P and OG stand for the fragility curves generated by 

the proposed and the original PSDM, respectively. As can be seen, compared with the 

original PSDM, the proposed PSDM sensitively reflected the changing trend of the com-

ponent demand with the fluctuation of the seismic intensity measure. In addition, for 

slight and moderate damage, when the PGA was between 0.5 g and 1.0 g, the fragility 

curves generated by the proposed PSDM (logarithmic piecewise function-based) was 

slightly lower than that of the original PSDM (logarithmic linear function-based). For se-

vere and absolute damage, by increasing the PGA, the fragility curves generated by the 

proposed PSDM was first slightly lower than that of the original PSDM and then became 

slightly higher than it. In general, the fragility curves generated by the proposed and orig-

inal PSDM were close to each other, and the proposed PSDM could solve the problem of 

mismatches in statistical significances between the PSDM and the JPSDM. 



Sustainability 2021, 13, 7814 18 of 24 
 

(a) (b)

Proposed PSDM
Mean Response
Seismic Response

Original PSDM

Proposed PSDM
Variance

Original PSDM

−

−

−

−1

0

1

−2

ln
(D

)

−3

−4

−5
−2 −1.5 −1 −0.5 0 0.5 1 −2 −1.5 −1 −0.5 0 0.5 1

0.2

0.25

0.3

0.15

0.1

0.05

0

β
d2

 
Figure 11. (a) Logarithmic mean and (b) logarithmic variance of the PSDM of the No. 1 left bearing. 
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Figure 12. Transverse component fragility curves of the No. 1 left bearing obtained by the proposed method and the 

original method. 

Figure 13 shows the transverse fragility curves of the bridge piers obtained by the 

proposed method. It can be observed that (1) the side piers were more likely to be dam-

aged than the main piers, (2) the failure probabilities of the severe damage and absolute 

damage were low, (3) for the side piers, because pier 4 was slightly higher than pier 1, the 

failure probability of pier 4 was slightly higher than that of pier 1, and (4) for the main 

piers, the constrains of the left span’s supports were weaker than those of the right span’s 

supports, so the failure probability of the right span’s piers were slightly higher than those 

of the left span’s piers. 
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Figure 13. The transverse fragility curves of (a) the side piers and (b) the main piers. 

Figure 14 shows the transverse fragility curves of the bridge bearings obtained by the 

proposed method. By comparing Figures 13a and 14a, it can be seen that except for the 

slight damage, the failure probabilities of the side piers were lower than those of the cor-

responding bearings, which means the bearings on the side piers were more likely to have 

moderate or higher levels of damage than the side piers themselves. Aside from that, in 

Figure 14a, the fragility curves of LS1 were near those of LS2. The reason for this was that 

LS1 and LS2 of the side bearings were close to each other (Table 6). 
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Figure 14. The transverse fragility curves of (a) the side bearings and (b) the main bearings. 

Since the damage of the fixed direction of the bearing was not considered, only the 

fragility curves of the left span’s main bearings were calculated, as shown in Figure 14b. 

By comparing Figure 14a,b, it was concluded that the main bearings had lower failure 

probabilities than those of the side bearings. The reason for this was that the restricted 

forces provided by the displacement limiters of the main bearings were much larger than 

those of the side bearings, as can be seen in Table 2. Therefore, in the same seismic event, 

the main bearing should have a smaller displacement (smaller failure probability). Aside 

from that, even when the main bearing and the side bearing reach the same displacements, 

the main bearings will have less of a chance to fail because the LSs of the two types of 

bearings are different, as displayed in Table 6. In addition, the failure probabilities of the 

main bearings were smaller than those of the main piers, which means by increasing the 

intensity measure, the main bearings were less likely to be damaged than the main piers. 

From Figures 13 and 14, it can be concluded that under transverse seismic waves, 

major damage happened to the side bearings of the bridge. Meanwhile, slight damage 

may have occurred on each pier. As the seismic intensity measure increases, the side bear-

ings may be the first ones to break. 
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6.3. The System Fragility 

Figure 15 displays the transverse system fragility curves generated by the proposed 

method, where “LB-P” and “UB-P” are the lower and upper bounds of the system failure, 

respectively. They were calculated by combining the first-order reliability method with 

the components’ fragility curves generated by the logarithmic piecewise function-based 

PSDM. The “SYS-P” represents the system fragility curves. Figure 16 shows the transverse 

system fragility curves generated by traditional methods. Similarly, “LB-OG”, “UB-OG”, 

and “SYS-OG” represent the related lower, upper, and system fragility curves, respec-

tively. 
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Figure 15. The transverse system fragility curves generated by the proposed method. 
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Figure 16. The transverse system fragility curves generated by the traditional method. 

As can be seen, no matter what the state of the damage was, “LB-P” and “LB-OG” 

(or “UB-P” and “UB-OG”) were close to each other. This happened because the compo-

nent fragility curves generated by the proposed and the original methods were close to 

each other. Therefore, when calculating the failure bounds with Equation (10), the results 

should also be similar. 

For severe and absolute damage, the proposed and traditional system fragility curves 

were close to the relevant failure upper bounds (i.e., SYS-OG was close to UB-OG, and 

SYS-P was close to UB-P). The reason for this was that the severe and absolute damage of 

the studied case were mainly determined by the damage to the supports. By checking the 

PSDM of those supports, it could be found that the standard deviation of each support 

(i.e., the standard deviation of the demand) was much smaller than the standard deviation 

of the relevant damage thresholds (i.e., the standard deviation of the capacity, which was 

0.472 here). Therefore, when calculating the system failure probability, the diagonal ele-

ments of the generated covariance matrix of the multivariate joint normal distribution 

would be much larger than the other non-diagonal elements (i.e., the diagonal elements 

of matrix A B   were larger than other non-diagonal elements). This means that this 

covariance matrix exhibited similar characteristics as the components were independent 

of each other, so the system failure probabilities were close to the corresponding failure 

upper bounds. 

7. Conclusions 

In this paper, the traditionally used logarithmic linear function-based probabilistic 

seismic demand model (PSDM) was replaced by the logarithmic piecewise function-based 

PSDM. This replacement made the sources and statistical significance of the parameters 

used in the PSDM and the JPSDM comparable and improved the fitting accuracy. Addi-

tionally, to improve the efficiency when calculating the system failure probabilities, the 
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MCS method was replaced by the UCA method. The transverse seismic responses of a 

steel truss bridge were used to illustrate the feasibility of the proposed component and 

system fragility analysis methods. The results showed the following: 

1. The proposed methods unified the data sources and statistical significances of the 

parameters used in the PSDM and the JPSDM. 

2. The logarithmic piecewise function-based PSDM sensitively reflected the changing 

trend of the component demand with the fluctuation of the seismic intensity meas-

ure. 

3. Under transverse seismic waves, major damage happened to the side bearings of the 

bridge. Meanwhile, slight damage may have occurred on each pier. As the seismic 

intensity measure increased, the side bearings were more likely to be damaged. 

4. For the severe damage and the absolute damage of the studied bridge, the system 

fragility curves were close to the upper failure bounds. 

5. Compared with the Monte Carlo sampling method, the accuracy of the univariate 

conditioning approximation method could be guaranteed with less calculation time. 
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