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Abstract: The Sichuan province is a key area for forest and grassland fire prevention in China. 

Forest resources contribute significantly not only to the biological gene pool in the mid latitudes 

but also in reducing the concentration of greenhouse gases and slowing down global warming. To 

study and forecast forest fire change trends in a grade I forest fire danger zone in the Sichuan 

province under climate change, the dynamic impacts of meteorological factors on forest fires in 

different climatic regions were explored and a model between them was established by using an 

integral regression in this study. The results showed that the dominant factor behind the area 

burned was wind speed in three climatic regions, particularly in Ganzi and A’ba with plateau cli-

mates. In Ganzi and A’ba, precipitation was mainly responsible for controlling the number of forest 

fires while it was mainly affected by temperature in Panzhihua and Liangshan with semi-humid 

subtropical mountain climates. Moreover, the synergistic effect of temperature, precipitation and 

wind speed was responsible in basin mid-subtropical humid climates with Chengdu as the center 

and the influence of temperature was slightly higher. The differential forest fire response to mete-

orological factors was observed in different climatic regions but there was some regularity. The 

influence of monthly precipitation in the autumn on the area burned in each climatic region was 

more significant than in other seasons, which verified the hypothesis of a precipitation lag effect. 

Climate warming and the combined impact of warming effects may lead to more frequent and 

severe fires. 
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1. Introduction 

Fire is one of the most important disturbances on the earth affecting most terrestrial 

ecosystems [1] and it plays a key role in determining the landscape structure and plant 

community composition [2]. The evidence suggests that since the last glaciation there 

have been substantial interactions between fire and the stand structure [3], the fuel 

characteristics [4–6], biological invasion [7], human activities [8,9], the terrain conditions 

[10,11], changes in land uses [9,12] and the climate [1,13–16]. Among these, the climate is 

considered to be a key factor attributed to medium and large scale forest fires [14–16]. 

Within the context of prospective climate change during the 21st century, the relation-

ship between forest fires and climate change has become a focal research topic [12,15–18] 

and middle and subtropical latitudes will see an increased fire danger risk and an exten-

sion of the fire-hazardous period whereas the high altitudes will undergo more limited 

changes in the risk [9,19]. Mathematical modeling is an effective method for studying a 

forest fire response to climate change, particularly at large scales, and has provided many 

resources for forest fire ecology and it has accelerated the relevant research as well. For 
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instance, Chen et al. (2015) analyzed the link between forest fire occurrence and the cli-

matic variables in the Yunnan province by using a logistic equation and found that the 

precipitation regimes showed a significant relationship with the fire activities in different 

ecoregions [20]. Groisman et al. (2004) showed a significant (sometimes a two-fold) in-

crease in the indices that characterized that weather conditions were conducive to forest 

fires using meteorological information for the past century [21]. Wotton et al. (2010) used 

two general circulation models (GCMs) to develop projections of future fire occurrence 

across Canada and projected fire climate scenarios derived from the Hadley Centre 

GCM, indicating that fire occurrence would increase by 140% by the end of this century 

in Canada [22]. Lasslop and Kloster (2013) analyzed the response functions including 

other important drivers of the area burned, e.g., temperature, net primary productivity, 

precipitation, tree cover and population density, using generalized additive models 

(GAMs) [23]. Varela et al. (2019) used the Fire Weather Index (FWI) to demonstrate that 

fire occurrence and behavior in Mediterranean-type ecosystems strongly depend on air 

temperature and wind conditions and that the amount of fuel load and drought condi-

tions leads to a drastic increase in inflammability, particularly during the summer [24]. 

Climate warming and the combined influence of its effects may lead to more frequent 

and severe fires and the fire risk period may be extended in the western United States 

[25]. According to above-mentioned studies, precipitation, wind speed, relative humidity 

and temperature have proved to be the main meteorological factors affecting forest fires; 

however, most of the results identified correlations between single factors and forest fires 

based on the linear correlation over the entire research period. The impacts of climate 

change on wildfire are varying and are coupled with several other factors; however, 

there is only limited research on the synergistic effects of continuous variability with 

multi-temporal multi-factors. Forest fires are climate-driven and climate-relevant pro-

cesses; thus, a realistic response of a modeled fire occurrence with respect to different 

climate variables is crucial [23]. 

The integral regression proposed by Fisher not only revealed the relationship be-

tween pre-measurements (a dependent variable) and influence factors (an independent 

variable) but also clarified which variables are the main influencing factors and which are 

secondary [26]. Simultaneously, the equation also took into account the temporal varia-

bility of the independent variables because their values in different periods (such as 

every month) affect the predicted quantity; thus, the influence in one period may be 

negative and the influence in another may be positive [27]. More importantly, the re-

gression parameter of the integral regression analysis method is a function of time and its 

value can quantitatively reflect the contribution rate of the unit change of a certain factor 

to the dependent variable. The greater the contribution rate, the more sensitive the de-

pendent variable to the change of a certain factor in a certain period [26]. The integral 

regression equation has been widely used in the study of climate change and forests, 

such as by Qiu and Jiang (1989) [28], Jiang et al. (1990) [29] and Wu et al. (2020) [30]. 

At present, the Sichuan province is a key area for forest and grassland fire preven-

tion in China. Eighty-one counties (cities, districts) are listed as high-risk areas, account-

ing for 23% of China’s high-risk forest fire areas [31]. From 1979 to 2008, there was an 

average of 2674 fire incidents per year with an annual average area burned of 111.85 

million ha and annual casualties involving the deaths of dozens of people, incurring an 

average economic loss of more than USD 10 million directly related to forest fires in the 

Sichuan province [32]. Larger forest fires occurred in Liangshan in 2019 and 2020. In 

particular, the area burned was about 90 ha in 2020 when the wind speed at the fire site 

was 10 m·s−1, the temperature was 13–30 °C, the relative humidity was 10–25% and there 

was no rainfall (http://www.sc.gov.cn/10462/wza2012/scgk/scgk.shtml, accessed on 15 

March 2020). Since 2019, the Sichuan province has experienced many rounds of high 

forest and grassland fire risk tests, particularly to the west of Panzhihua and the western 

plateau of the Sichuan province where the fire risk is still high, thus the prevention and 

control are more challenging. Moreover, the forest area is 18.40 million ha and the forest 
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volume is 186.1 million m3, which ranks fourth and third place in China, respectively, 

and is overall the nation’s third largest forest area 

(http://www.sc.gov.cn/10462/10464/10797/2018/4/18/10381665.shtml, 15 March 2020). 

Forest resources contribute significantly not only to the biological gene pool in the mid 

latitudes but also to reducing the concentration of greenhouse gases and slowing down 

global warming. Their rise and fall significantly impact the global environment and even 

human survival. In order to minimize the damage caused by forest fires, it is necessary to 

know how meteorological factors affect the occurrence and timing of forest fires. Con-

tinuous monitoring is required that can help repair forest ecosystems in the region and 

aid in providing a comprehensive understanding of the history of forest fires and their 

development. Recently, the research on forest fires in the Sichuan province has focused 

on the temporal and spatial distributions [32], forest fuel distribution, canopy fire 

mechanisms and relationship between regional climate change and fire [7], for example. 

The results have described the relationship between forest fires and meteorological fac-

tors on an annual scale and proved that meteorological conditions are significantly im-

portant factors in Sichuan province forests, which also impact on forest fires [32]. How-

ever, most wildfire studies have ignored the impacts of month-by-month meteorological 

influences during the fire prevention period in different climatic regions. Therefore, the 

study of the relationship between forest fires and monthly climate change in the Sichuan 

province provides a useful guideline in the context of global warming for forest fire 

prevention measures in low and middle latitude areas. 

In this study, it was hypothesized that fire severity increases with global warming 

and a lag in the impact of precipitation on forest fires. The estimation was done in the 

following steps: first, the influence of temperature, wind speed and precipitation on the 

number and area burned by forest fires was analyzed by using an integral regression in 

the Sichuan province; second, a statistical model relating the number of fires and the area 

burned to meteorological factors in different regions was established. The research con-

clusion has a theoretical significance for the establishment of scientific and accurate pre-

diction models of forest fire occurrence and development in the Sichuan province. 

2. Materials and Methods 

2.1. Study Area 

The Sichuan province is located in southwestern China (between 97°21′–108°12′ E 

and 26°03′–34°19′ N) (Figure 1). With comparatively advantageous natural environments, 

a vast spatial territory, rich land resources, a complex and varying climate and thriving 

resources, it has good preconditions for studies related to the environment, forest fires 

and climate change. The study site is composed of 77.2% mountains, 12.9% hills, 5.3% 

plains and 4.7% plateaus and is divided into three parts: the Sichuan Basin, the North-

west Sichuan plateau and the southwest Sichuan mountainous area with a corresponding 

humid climate in the middle subtropics of the basin (including Chengdu, Ya’an, Leshan, 

Mianyang, Guangyuan, Nanchong, Bazhong, Dazhou, Yibin and Luzhou), a subtropical 

semi-humid climate in the mountainous areas of southwest Sichuan (including Liang-

shan and Panzhihua) and an alpine climate in northwest Sichuan (including A’ba and 

Ganzi). The annual average temperatures are between 16 and 18 °C, there are 1600 av-

erage sunshine hours and average annual precipitation is between 1000 and 1200 mm. 

There are more than 10,000 plant species associated with 145 wild animals for national 

priority protection, making up 33.33% and 39.60% of China’s totals, respectively. The 

forest coverage rate was 38.83% in 2018. 
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Figure 1. Study area. 

The study area was divided into four fire danger zones: grades I, II, III and others by 

the Sichuan Forestry and Grassland and Administration based on the Forest Fire Pre-

vention Regulations and the Rank of the Regionalization on Nationwide Forest Fire Risk 

(LY/T1063-2008), combining the forestland area, the standing stock of the trees, precipi-

tation, temperature and wind speed. The Grade I fire risk area (with a high risk) included 

A’ba, Ganzi, Chengdu, Ya’an, Leshan, Mianyang, Guangyuan, Nanchong, Bazhong, 

Dazhou, Yibin, Luzhou, Liangshan and Panzhihua (Figure 1). 

2.2. Data Collection 

Historical data on forest fires (the number of fire incidents and area burned) be-

tween 1984 and 2011 were correlated with the climatic parameters (temperature, wind 

speed and precipitation) acquired monthly from 33 weather stations across the studied 

area in the Sichuan province, China. 

2.2.1. Fire Data 

The fire data were provided by Forest Fire Prevention Office of the Sichuan province 

from 1984 to 2011 along with supporting attribute information (fire location, start date, 

cause, area burned, fire suppression costs and point coordinates). In this study, the fire 

season was defined as the period from November to May of the following year according 

to the Forest Fire Prevention method for the Sichuan province.  

2.2.2. Meteorological Data 

A ‘nowcast’ from China’s Meteorological Data Sharing Service System was used to 

obtain up-to-date meteorological data from 1984 to 2011 

(http://data.sheshiyuanyi.com/WeatherData/, accessed on 5 March 2020). It included a 

total of 33 meteorological sites in the Sichuan province (Figure 1). The meteorological 

data included the daily average temperature, maximum temperature, minimum tem-

perature, average wind speed and daily rainfall from 1984 to 2011. 

The daily temperature data were preprocessed by using the Laiyite Criterion [33] 

and the daily average temperature was replaced with the average of the daily maximum 

temperature and the minimum temperature when the daily average temperature was 

abnormal but the daily maximum temperature and minimum temperature were normal. 

In case the daily maximum and minimum temperatures were also abnormal, the daily 

China 
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average temperature was replaced with a five-day moving average and the daily tem-

perature data were corrected by the moving average method [34]. Combined with his-

torical precipitation in the Sichuan province, daily precipitation at 600 mm was set as the 

threshold and it was directly removed as the abnormal value when higher than this val-

ue was observed [35]. Data were then available for 324 station months at 33 meteorolog-

ical stations in different climatic regions including wind speed (WS) (m·s−1), temperature 

(°C) and precipitation (mm). 

2.3. Data Analysis 

Herein, an integral regression was used to evaluate the area burned and the number 

of forest fires. The integral regression model is represented as follows:  

� = � + ∑ ∫ ��(�)��(�)�
��

�
��� . (1)

If a forest fire (area burned and the number of fires) is y and meteorological factors 

(T, WS and P) are X1, X2 and X3, respectively, they are functions of time. If each year is 

divided into 12 periods by month, the integral regression formula is as follows: 

� = � +� [��(�)��(�) + ��(�)��(�) + ��(�)��(�)
��

�

]�� (2)

where y is the forest fire (the number of fires and area burned) and a1(t), a2(t) and a3(t) are 

the influence coefficients or changes in the number or area burned when the temperature 

and wind speed increase by one unit at t + Δt. The influence coefficient units are hectare 

and time and are also known as the sensitivity index. X1(t), X2(t) and X3(t) are the meas-

ured values of T, WS and P, respectively, and c is a constant. 

a1(t), a2(t) and a3(t) are time functions; thus, they are transformed by using the or-

thogonal polynomial regression as the following formulae: 

��(�) = ����

�

Ф�(�) 

��(�) = ����

�

Ф�(�) 

��(�) = ����

�

Ф�(�) (3)

where Фj(t) is an orthogonal polynomial of time and j is time. The study considered five 

times [36]. The α1j, α2j and α3j are the following Equation (4). 

Where temperature is T, wind speed is WS and precipitation is P, then: 

��(�) = � Ф�(�)��(�)
��

�

�� 

���(�) = � Ф�(�)���(�)
��

�

�� 

��(�) = ∫ Ф�(�)��(�)
��

�
��. (4)

If Equation (3) is substituted into Equation (2), then Equation (2) is written as a re-

gression equation, as follows: 

y = c + ����� + ����� + ⋯+ ����� + ����� +⋯+ ����� + ������ + ⋯+ ������ (5)

where y is the predicted value of the area burned or number of fires. First, the inde-

pendent variables X1(t), X2(t) and X3(t) (t = 1, 2…12) are converted to Tj, WSj and Pj (T is 

temperature, WS is wind speed and P is precipitation; j = 0, 1…5), respectively. Second, 
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Equation 5 is solved by the least square method and α1j, α2j, α3j and c are calculated sim-

ultaneously. Third, by substituting it into Equation (3), the influence coefficient a1(t), a2(t) 

and a3(t) can be obtained. a(t) represents the area burned (number of fires) of forest fires 

that increases or decreases by adding a meteorological unit to the temperature, wind 

speed and precipitation. Finally, considering a1(t), a2(t) and a3(t) and measuring the av-

erage values of temperature (°C), wind speed (m·s−1) and precipitation (mm) during the 

period of forest fires into Equation (2), both the number of fires and the area burned can 

be predicted by using an equation in the format of Equation (2) and finally Equation (5). 

The statistical analyses were performed by using R software (2.15.2) and differences 

were considered significant at the level of 0.05. 

3. Results 

3.1. Variations in the Number of Fires and the Area Burned in Different Climatic Regions 

In summary, from 1984 to 2011, a total of 7103 forest fires occurred between January 

to December in the Sichuan province with an area burned of 103,389.27 ha. 

Figure 2 shows that the number of fires and the area burned in Panzhihua and 

Liangshan—which have the semi-humid, subtropical mountain climate of southwest 

Sichuan—were higher than those in the other two climatic zones (Figure 2A,B). There 

were on average 68 and 62 fire incidents per year with an annual average area burned of 

125.85 and 437.81 ha and average individual fire areas of 1.99 and 6.94 ha, respectively. 

There was only one particularly serious forest fire (1091 ha) in Panzhihua in 1985 but 

there were six fires in Liangshan that burned 1230.20, 1239.06, 1078.00, 1118.00, 1787.00 

and 1434.94 ha, respectively. It is the largest region in the study area and forest fire pre-

vention deserves attention. 
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Figure 2. The changing trend of the number of fires and area burned in the grade I wildfire danger region of the Sichuan 

province during the period 1984–2011. 

Ganzi and A’ba have a plateau cold mountain climate in northwest Sichuan (Figure 

2C,D). The average annual number of forest fires was 14 in Ganzi, which was only 20.59% 

of that in Panzhihua; however, the mean annual average area burned was 299.17 ha, 

which was twice that of Panzhihua. Compared with Ganzi, the average annual number 

(six), total area burned (34.02 ha) and each area (5.02 ha) burned in A’ba decreased sig-

nificantly. The results showed lower fire numbers in the plateau cold mountain climate 

region compared with those in other regions; however, the area burned was larger each 

time with an average of more than 5.0 ha. Therefore, this is also a focal area in terms of 

forest fire prevention. 

Finally, there was the basin mid-subtropical humid climate with Chengdu as the 

center. On the whole, the number and area burned by forest fires were the lowest except 

in Ya’an; however, the number increased after 2000 (Figure 2F–N). There were on aver-

age 17 fire incidents per year with an annual average area burned of 19.05 ha. This was 

only 3.03% in Ganzi and the average area of individual fires was 0.88 ha. Pang (2012) 

showed that the temperature in Ya’an city has increased in the past 50 years at a rate of 

0.05 °C/10a, which was slightly higher than that of the entire country [37]. The warming 

trend was most obvious in the autumn and winter and the precipitation reduction rate 

was 11.65 mm/10a, which may have been one reason for the high occurrence frequency of 

forest fires in Ya’an City. There were similar changes in the number and area in Cheng-

du, Bazhong and Nanchong (Figure 2B,G,H); however, the increasing trend in Bazhong 

after 2005 was more obvious. There was no clear trend in the frequency of occurrence or 

area burned in other regions. 

3.2. The Influence of Meteorological Factors on Forest Fires 

Temperature and precipitation affect the moisture content of fuel and the distribu-

tion of vegetation, influencing the occurrence and development of forest fires. Wind 

speed is the decisive factor that restricts the rate of spread, fire intensity, area burned and 

fighting difficulty of forest fires. Figures 3 and 4 show that the influence coefficients of 

wind speed, temperature and precipitation from January to December and their leading 

roles were different in the grade I wildfire danger region of the Sichuan province. The 

impact on the number and areas burned by forest fires in different climatic regions varied 

and the dominant meteorological factors were constantly changing. In a given period, it 

was mainly affected by temperature while in other periods it was affected by precipita-

tion or wind speed. The increase or decrease in the number and area burned due to the 

influence of wind speed, temperature and precipitation depended on meteorological 

factors that played a leading role for a given month or on the results of the interaction 

among precipitation, temperature and wind speed. There were differences in the re-

sponses of the number and area burned to monthly changes of wind speed, temperature 

and precipitation in the same administrative region. 

At the same time, Figure 3 clearly illustrates that the influence of monthly dynamic 

changes in wind speed, temperature and precipitation on the area burned and number of 



Sustainability 2021, 13, 7773 9 of 19 
 

forest fires in the Sichuan province was both regular and different. All administrative 

regions were affected by precipitation, temperature and wind speed, indicating that the 

changes of wind speed, temperature and precipitation were closely related to the number 

of fires and the area burned. During the fire prevention period (November to May of the 

following year), the area burned was more sensitive to wind speed changes in winter and 

spring and was especially positively correlated with wind speed. At the same time, 

abundant precipitation in the autumn directly affected the area burned, which demon-

strated that the precipitation effect exhibited a lag. The number of forest fires was more 

affected by temperature than by precipitation and was closely related to changes in pre-

cipitation and temperature during the dry-wet transition period in the autumn.  

During the study period, the number of fires in Panzhihua and Liangshan (with a 

semi-humid subtropical, mountain climate) was mainly affected by temperature while 

the synergistic effect of wind speed impacted the area burned. There was a short inter-

mission period in November and December. After that, both the number and area burned 

increased significantly until the end of the fire prevention period (Figures 3A,B and 

4A,B). This also showed a lag in the impact of precipitation in the autumn on fire. During 

this study, if the average monthly temperature increased by 1 °C, precipitation increased 

by 1 mm and wind speed increased by 1 m·s−1, the number of forest fires increased three 

times and the area burned increased by 130 and 134 ha in November, respectively. 
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Figure 3. The influences of a 1 °C rise in air temperature, a rise in 1 m·s−1 in wind scheme 1 mm increase in precipitation 

on the area burned of forest fires in a grade I forest fire danger region of the Sichuan province. 

In Ganzi and A’ba (with a plateau cold mountain climate), wind speed was the main 

factor causing the fluctuation of the area burned (Figure 3C,D) and the number clearly 

responded to precipitation (Figure 4C,D). This area was the largest part of the study area 

with an annual average wind speed of 1.85 m·s−1 and the seasonal difference was clear: 

the annual average wind speed was 2.18 m·s−1 in winter and spring and the minimum 

was 1.13 m·s−1 in summer. It had the least precipitation with an annual average rainfall of 

714.52 mm in the Sichuan province and the monthly average rainfall during the fire 

prevention period was only 26.95 mm. With the increase of the autumn precipitation, the 

number of forest fires decreased in November and December, which also showed a lag in 

the impact of precipitation on forest fires. When the temperature increased by 1°C, wind 

by 1 m·s−1 and precipitation by 1 mm, the area burned changed dramatically in Novem-

ber (Figure 3D) with an increase of 334 ha in Ganzi. Therefore, the risk of major forest 

fires is high once a forest fire has occurred.  
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Figure 4. The influences of a 1 °C rise in air temperature, a rise in 1 m·s−1 in wind Scheme 1 mm increase in precipitation 

on the number of forest fires in a grade I forest fire danger region of the Sichuan province. 

The response of forest fires to climatic factors in the basin climate region was regular 

and also different. The main factor controlling the number in the Chengdu basin and its 

eastern region (Nanchong, Dazhou, Bazhong, Mianyang, Guangyuan and Ya’an) was 

temperature, particularly in the Bazhong region. Zhang et al. (2010) found that the tem-

perature has increased by 0.3 °C on average over the past 15 years and annual precipita-

tion has decreased at a rate of 13.813 mm/10a in Bazhong, which may be one of the rea-

sons for the increase in fire numbers in recent years [38]. The number of forest fires in 

southern Chengdu (including Yibin, Luzhou and Leshan) was the result of the synergy 

among temperature, precipitation and wind speed. Similar to the other two climatic re-

gions, wind speed played a leading role in the area burned in this region as well. During 

this study, if the average monthly temperature increased by 1 °C, precipitation increased 

by 1 mm and wind speed increased by 1 m·s−1, the annual fire number in total increased 

three-fold and the area burned increased by 100 ha in the entire basin climate region. 

Therefore, with an increasing impact of global climate change, the region will gradually 

become a focus for forest fire prevention and control in the Sichuan province. 

3.3. An Integral Regression Model for the Number and Area Burned 

Table 1 summarizes that the coefficients of determination (R2) of the fitting function 

for the number and area burned in each administrative region were greater than 0.900. 

With the exception of the poor effect of the model significance in Chengdu, the other city 

models passed the significance test of p < 0.05, which showed that the integral regression 

model showed a high accuracy in establishing a multivariate model for a forest fire re-

sponse to climate change. Figure 5 shows that the difference between the simulated and 

measured values of the integral regression model was small and basically distributed on 

or near the 1:1 line; however, the predicted values were slightly larger. The results 

showed that the integral regression was reliable for studying the response of the number 

and area burned to the changes of multi-meteorological elements in different months 

over 14 grade I forest fire danger regions in the Sichuan province and it could be used to 

predict the response of forest fires to future climate change. 
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Table 1. Integral regression model of the area burned and number of forest fires of 14 regions. 

Region  Integral Regression Model R2 p 

Panzhihua Area burned y = 167.2250 + 0.0254T1 + 0.1927T3 − 0.3553P2 − 0.6538P4 + 4.0347WS0 + 3.6740WS4 0.9967 0.0001 

 
Number of 

fires  
y = 43.2114 + 3.0319T0 + 2.1809T2 + 1.0007T5 − 0.0067P3 + 0.0634WS1 0.9981 0.0002 

Liangshan Area burned y = 274.9370 + 0.1859T0 + 1.1990T2 − 0.7153P3 − 0.1460P5 + 2.1770WS1 + 5.1770WS3 0.9900 0.0004 

 
Number of 

fires 
y = −41.8700 + 2.0275T1 + 2.6875T3 − 0.6800P3 − 0.1809P4 − 0.1612P5 + 0.0065WS3 0.9931 0.0005 

Ganzi Area burned y = 200.6600 + 0.0181T0 + 0.0675T4 − 0.0861P4 + 9.3573WS0 + 8.0212WS3 + 6.142WS4 0.9991 0.0023 

 
Number of 

fires 
y = −9.4317 + 0.6994T1 + 0.3182T3 − 3.3573P0 − 2.4231P2 + 0.0174WS5 0.9992 0.0019 

A’ba Area burned y = 132.8521 + 0.3772T1 + 0.2290T5 − 1.7228P3 − 1.9472P5 + 5.4998WS0 + 9.4841WS1 0.9978 0.0001 

 
Number of 

fires 
y = −2.3857 + 0.0246T0 + 0.0509T4 − 3.1362P1 − 2.2360P4 + 0.0053WS1 + 0.0502WS5 0.9956 0.0001 

Ya’an Area burned y = 70.1155 + 0.3200T0 − 0.3300P0 − 0.0544P3 + 1.9939WS4 0.9998 0.0002 

 
Number of 

fires 
y = 8.6500 + 0.3253T0 − 1.0261P3 + 0.0175WS0 + 0.0208WS5 0.9957 0.0001 

Dazhou Area burned y = 6.6421 + 0.9502T1 + 0.7562T3 − 0.0295P0 − 0.0155P3 + 0.2467WS2 + 0.0862WS5 0.9998 0.0004 

 
Number of 

fires 
y = 24.2100 + 3.6677T0 + 1.5600T2 + 0.2300T4 − 1.001P3 − 0.0095P4 + 0.0541WS0 + 0.WS4 0.9997 0.0003 

Guangyuan Area burned y = 117.4290 + 0.9313T1 + 1.7334T3 − 0.3009P3 − 0.4663P5 + 0.8553WS2 + 0.0368WS5 0.9995 0.0002 

 
Number of 

fires 
y = 48.1379 + 0.0745T0 + 0.4673T5 − 0.2009P2 − 0.0301P4 − 0.003P5 + 0.1475WS3 0.9987 0.0018 

Bazhong Area burned y = 169.3035 + 0.2538T3 + 0.1108T5 − 0.7263P0 − 0.7159P4 + 2.5576WS2 + 1.9237WS5 0.9997 0.0023 

 
Number of 

fires 
y = 66.9078 + 0.2158T3 + 1.9512T5 − 0.4178P0 − 1.0154P3 + 0.7424WP4 0.9995 0.0017 

Nanchong Area burned y = 54.7800 + 0.8065T0 + 0.2228T3 − 0.6244P1 − 0.3348P3 + 1.8859WS2 + 2.5352WS5 0.9996 0.0023 

 
Number of 

fires 
y = 23.100 + 0.7300T1 + 0.2234T4 − 0.3001P4 − 0.4501P5 + 0.2998WS4 0.9994 0.0020 

Mianyang Area burned y = 137.9300 + 0.2397T0 + 0.0374T3 − 0.3457P2 − 0.0234P5 + 0.9901WS1 + 1.0901WS1 0.9995 0.0019 

 
Number of 

fires 
y = 53.2300 + 0.9099T2 + 0.0801T3 − 0.0342P2 − 0.0789T4 + 0.5698WS3 0.9991 0.0018 

Luzhou Area burned y = 65.8439 + 0.0038T2 + 0.0369T3 − 0.7203P2 − 0.5118P5 + 2.0426WS2 + 0.7255WS5 0.9997 0.0001 

 
Number of 

fires 
y = 8.9971 + 0.3435T3 + 0.3755T5 − 0.0426P2 − 0.0947P5 + 0.5856WS3 0.9998 0.0001 

Yibin Area burned y = 21.4600 + 0.0900T0 + 0.0844T3 − 0.5589WS1 + 2.2310WS3 0.9996 0.0021 

 
Number of 

fires 
y = 1.1100 + 0.0788T0 + 0.1238T4 − 0.4579P3 − 0.0079P5 + 0.1129WS0 0.9993 0.0018 

Leshan Area burned y = 70.1155 + 0.03053T2 + 0.4590T5 − 0.0304P3 − 0.0123P5 + 2.0978WS4 0.9995 0.0019 

 
Number of 

fires 
y = 33.1100 + 0.1124T1 + 0.2314T4 − 0.0897P0 − 0.2398P3 + 0.1123WS3 0.9997 0.0015 

Chengdu Area burned y = 25.5379 + 1.6466T0 + 0.7584 T2 − 0.2901P2 + 6.4084WS2 + 3.6583WS3 + 2.7286WS5 0.9530 0.0789 

 
Number of 

fires 
y = 48.1139 + 7.0694T1 + 6.487T3 + 8.8075 T5 − 4.0083P1 − 3.0083P2 + 4.7307WS2 + 0.9664WS3 0.9461 0.0889 

Note: p-values indicate the significance based on an F-test. Pj is a new variable indicating that the original monthly pre-

cipitation was formed by jth orthogonal transformations. Tj is a new variable indicating that the original monthly precip-

itation was formed by jth orthogonal transformations. WSj is a new variable indicating that the original monthly precip-

itation was formed by jth orthogonal transformations. 



Sustainability 2021, 13, 7773 15 of 19 
 

 
 

Figure 5. Comparison between the measured and modeled values of 14 grade I forest fire danger regions in the Sichuan 

province based on an integral regression model. 

4. Discussion and Conclusions 

In this study, the number of forest fires and the area burned along with influencing 

factors were analyzed by using an integral regression based on forest fire data and me-

teorological data for every month from 1984 to 2011. The results showed that areas with a 

high incidence of forest fires in the Sichuan province included the Ganzi, Liangshan, 

Panzhihua and A’ba areas, in particular, including the total number of fires and the total 

area burned due to the influence of a 1 °C rise in air temperature, a 1 m·s−1 rise in wind 

speed and a 1 mm increase in precipitation on the number of forest fires in a grade I forest 

fire danger region of the Sichuan province. Zhao (2005) also considered the climate 

anomalies caused by global warming that have aggravated the occurrence and devel-

opment of forest fires in middle and low altitudes and also reported that these anomalies 

continue to increase [39]. Honnay et al. (2010) investigated and reported that global cir-

culation models have predicted an increase in the mean annual temperature between 2.1 

and 4.6 °C by 2080 in the northern temperate zone [40]; this undoubtedly will exacerbate 

the outbreak of forest fires. In general, forest fires were found to be closely related to 

wind speed, precipitation and temperature; nonetheless, several differences were ob-

served across the climatic regions. Temperature played a dominant role in Panzhihua 

and Liangshan with their semi-humid, subtropical mountain climate while Ganzi and 

A’ba with a plateau cold mountain climate were more sensitive to wind speed. In the 

basin area with Chengdu as the center, temperature was the main factor or the result of 

the synergy of temperature, precipitation and wind speed. This proved that the impact of 

an increasing wind speed was more severe on high altitude areas than on low altitude 

areas and the fire danger rating in a higher altitude area was more severe. Zhao (2005) 

also came to the same conclusion [39]. At the same time, the abrupt change of precipita-

tion in dry and wet seasons and the influence of precipitation in the autumn on the area 

burned were more significant than the number of fires, which also proved that precipi-

tation exhibits a lag effect on forest fires. 

Temperature is an important factor for forest fires to occur [16,32]. The frequency 

was the highest in the Panzhihua and Liangshan areas; however, temperature was the 

main controlling factor. Both the frequency and area were not the largest but there has 

been an upward trend in recent years with Chengdu as the center. Lu (2011) reached the 

same conclusion by following another method and revealed that forest fires increased 

with the decrease of precipitation and the increase of temperature and there was a posi-

tive correlation between the forest fire area in southwest China (R = 0.327, p < 0.05) [41]. 

Moreover, Guan et al. (2018) concluded that the number of particularly serious forest 

fires was the highest when the temperature was in the range of 16–20 °C [42]. The annual 

average temperature in Panzhihua was the highest in the Sichuan province, particularly 

in the valley area where temperatures were between 19 and 21 °C and the average tem-
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perature in the Liangshan area was 17.16 °C. Furthermore, Zeng et al. (2013) showed that 

the temperature of the Liangshan Prefecture increased significantly in each season, par-

ticularly in winter (+0.8 °C), spring (+0.7 °C) and the autumn (+0.6 °C) based on annual, 

seasonal and monthly average temperature and precipitation records from 1961 to 2010 

[43]. These may be the meteorological reasons for the larger number and area burned by 

forest fires in the two regions. Furthermore, Zhang et al. (2020) analyzed the characteris-

tics of a total of 56 years of daily maximum temperatures, minimum temperatures, pre-

cipitation and average temperature data for 12 observation stations in the Chengdu plain 

from 1961 to 2016 based on M–K tests and found that temperature first decreased and 

then increased [44]. It continued to increase with fluctuation; the temperature was 

slightly higher to the east and southeast and the interannual precipitation in the Chengdu 

plain decreased with a large interannual fluctuation. Chen et al. (2011) found that pre-

cipitation in most areas of the basin decreased based on the daily meteorological data 

from 36 meteorological stations from 1961 to 2009 [45]. The increase of temperature and 

the decrease of precipitation directly reduced the forest fuel moisture and the synergistic 

effect of temperature, precipitation and wind speed would further increase the risk of the 

number of fires in Chengdu and its surrounding areas. However, the influence of tem-

perature was slightly higher. It may be related to complex landforms and climatic condi-

tions. 

Wind speed is also a non-negligible component of forest fires. In this study, the area 

burned was affected by wind speed in three climatic regions, particularly in Ganzi and 

A’ba. The average wind speed in A’ba and Ganzi reached 2.18 m·s−1 during the fireproof 

period (from November and May the next year). Other scholars have proven that the area 

burned can reach a maximum when the wind speed exceeds 2 m·s−1. For instance, the 

relationship between particularly serious forest fires and meteorological factors in the Ji-

lin province was studied by Guan et al. (2018) and they demonstrated that wind speeds 

at levels of 3–5 could contribute to particularly serious forest fires and the fire number 

and the area of serious fires were the highest when wind speed was at level 4 [42]. He 

(2018) pointed out that forest fires occurred most frequently at a 2 m·s−1 wind speed 

based on forest fire data, meteorological data and spatial data from Guangxi from 2011 to 

2015 [46]. Lasslop et al. (2015) considered other drivers and confirmed the increase in the 

area burned with an increasing wind speed up to a certain threshold. They found that the 

area burned peaked with mean wind speeds of about 2 m·s−1 [23]. Dimitrakopoulos (2002) 

classified forest fires according to the prevailing conditions of air temperature, relative 

humidity, wind speed, wind direction, elevation, aspect and slope from 1980–1997 in 

Greece and showed that two-thirds (66.94%) of total fires occurred under a moderate 

wind speed (1–4 BF) and the fires (18.2%) that burned under strong winds (5–7 BF) were 

responsible for most of the area burned (43.16%) [47].  

In addition to meteorological factors, forest fires are also affected by many other 

factors such as forest fuels, vegetation type, economics, landforms and physiognomy, the 

distribution of population and the national structure [9,16,22]. He (2018) pointed out that 

a larger minority population led to higher proportions of forest fires in ethnic autono-

mous regions based on the forest fire data, meteorological data and spatial data of 

Guangxi from 2011 to 2015 [46]. Wang et al. (2012) also showed that the top three impact 

factors were the road factor, population quality and residential factor by following the 

AHP method of Panzhihua city. The Sichuan province is the largest Yi inhabited area, the 

second largest Tibetan area and the only Qiang inhabited area in China; thus, the impact 

of human activities on forest fires is an important research direction in the future [48].  

Owing to the complex terrain, complex and diverse vegetation types and clear mi-

croclimates in Sichuan, a regional three-dimensional climate has been formed. Regional 

precipitation fluctuates significantly and the seasonal differences are obvious. Therefore, 

it was a great challenge to accurately predict forest fire disasters due to the lack of future 

climate change predictions. There were many climatic factors that impacted forest fires; 

thus, it was necessary to consider the influence of many factors comprehensively. How-
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ever, at the background of global warming, the research community together with the 

fire service (in particular, in counties heavily affected by wildfires) has begun to realize 

that landscape management may be the only viable tactic toward fire safety [49,50]. Alt-

hough the simulation results of the model were good, the importance of interactions 

among other factors (such as topography, vegetation, type and continuity of fuel and 

population) remains unknown [4,6,51]. Undeniably, many more systematic explorations 

are still demanded to investigate how to use integral regression to analyze the response 

of forest fires to various climatic and biological factors and characteristics of synergistic 

change. It is also an important aspect of our future study based on the Canadian Fire 

Weather Index and other theoretical bases. 
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