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Abstract: In this study, support vector machine (SVM) and Gaussian process regression (GPR)
models were employed to analyse different rubbercrete compressive strength data collected from
the literature. The compressive strength data at 28 days ranged from 4 to 65 MPa in reference
to rubbercrete mixtures, where the fine aggregates (sand fraction) were substituted with rubber
aggregates in a range from 0% to 100% of the volume. It was observed that the GPR model yielded
good results compared to the SVM model in rubbercrete strength prediction. Two strength reduction
factor (SRF) equations were developed based on the GPR model results. These SRF equations can
be used to estimate the compressive strength reduction in rubbercrete mixtures; the equations are
provided. A sensitivity analysis was also performed to evaluate the influence of the w/c ratio on the
compressive strength of the rubbercrete mixtures.

Keywords: rubbercrete; strength reduction factor (SRF); artificial intelligence methods; Gaussian
process regression (GPR); support vector machine (SVM)

1. Introduction

Waste tyre disposal represents a growing environmental problem, not to be overlooked.
Globally, more than 500 million units of waste tyres are discarded every year without any
treatment [1] and their increasing number has raised concerns worldwide due to the threat
they pose directly and indirectly to human health and the environment. For this reason,
recycling of waste tyres has been implemented in many countries.

The possibility of recycling scrap tyres as aggregates in concrete gained acceptance
worldwide in the engineering sector, and positive results have already been achieved,
preserving natural resources and helping to maintain ecological balance.

Scrap tyres undergo several processes to separate the steel wires from the rubber
and to reduce the rubber to smaller crumbs. This crumb rubber can then be added into
concrete mixture as partial replacement of the natural aggregates [2], modifying the concrete
properties [3–11].

In some cases, cleaned, shredded rubber can be used. For example, the textile com-
ponents are removed, steel fibres are pulled out, and the rubber surface is sometimes
subjected to pre-treatments to consolidate the adhesion with the cement paste, improving
the final properties of the modified concrete. The size, shape, and level of cleanliness of the
fragments of rubber are essential factors in defining the final characteristics of the material.

The resulting material is called rubbercrete, a lightweight concrete with specific me-
chanical, thermal, acoustic, and rheological characteristics. Rubbercrete exhibits numerous
benefits compared to conventional concrete, such as lower density [12], increased ductil-
ity [13], enhanced plastic capacity [14], higher toughness [15], higher impact resistance [16],
better resistance to chloride penetration [17], lower thermal conductivity [2], higher noise
reduction [18], and better electrical resistivity [19].
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Rubbercrete is also known to have better energy dissipation, durability, and damping
ratios compared to normal concrete [20,21]. Such features enable rubbercrete to be used in
impact resistance structures, such as road bumpers and sound barriers [22]. Despite such
advantages, a reduction in the compressive strength is observed throughout the literature.
This reduction in strength is caused by the weak bond between the cement matrix and the
crumb rubber due to the hydrophobic properties of rubber [23]. Rubber repels water and
traps air, causing the formation of micro air pockets between the rubber and the cement,
which thicken the interfacial transition zone [13]. This weak chain within concrete leads to
micro-cracks due to stress concentration and induces structural failure [18]. Furthermore,
aggregate properties have a strong effect on concrete compressive strength [24]; when
aggregates of higher density and strength are replaced with less dense rubber aggregates,
the compressive strength decreases.

In different studies, authors noticed that the size, proportion in concrete, and different
surface textures of the rubber particles have a significant effect on concrete strength proper-
ties. Generally, the reduction in compressive strength is observed to be larger when coarse
aggregates are replaced with crumb rubber compared to fine aggregates [6,12,13,25–27].
Concrete containing coarse rubber aggregates exhibits a reduction in strength but also
significant energy absorption [28].

It was found that replacing less than 5% in volume of the natural aggregates with waste
tyre rubber does not induce any particular change in the performance of the material [5].

Compared to bending and tensile strength, compressive strength decreases more [3,29–31].
To enhance the compressive strength of rubbercrete, the adhesion between the rubber

particles and the cement matrix can be increased by operating natural or chemical pre-
treatments on the rubber particles [3,5,8,13,18,30,31]. Certain studies [18,29] reported
that rubber particles washed in water exhibited a 16% increase in compressive strength
compared to untreated rubber, and a further improvement (higher than 57%) when rubber
particles were treated with carbon tetrachloride.

Although this material has been used for a wide variety of construction applications,
clear design guidelines for rubbercrete mixtures have not been developed. Especially for
structural applications, in which the use of rubber particles is allowed as replacement of
fine aggregates in small percentages (up to a maximum of 10%), and only under severe
quality control processes [32,33], specific studies are required to better understand the
phenomenon of strength reduction compared to the obvious reduction that occurs when
coarse aggregates are replaced.

The main purpose of this study is to develop a simple model that can predict the com-
pressive strength reduction of concrete containing crumb rubber as a partial replacement
for fine aggregates (sand fraction). For this purpose, advanced modelling techniques were
employed on various rubbercrete compressive strength data gathered from the literature;
experimental campaigns and predictive equations of the strength reduction factor (SRF)
are provided.

2. Methodology of the Study

In this study, the reduction in compressive strength in rubbercrete mixtures is inves-
tigated, concerning the following mix design parameters: percentage of rubber, size of
crumb rubber, cement content, water content, additions, pre-treatments on crumb rubber,
fine aggregate content, and coarse aggregate content.

In Appendix A, experimental data from different literature studies concerning rubber-
crete mixtures, where natural fine aggregates (sand fraction) were substituted with rubber
of the same size [28,32,34–42], are reported.

For each mixture considered, the mix design parameters are indicated, and the re-
spective compressive strength values are reported in relation to the amount of aggregates
substituted. The percentages of substitution refer to the type of aggregate considered (fine).

To better understand the global trend, the compressive strength values are reported
in the form of the strength reduction factor (SRF) and are plotted in Figure 1, where the
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percentages of rubber reference the total volume of aggregates in the mixture. The strength
reduction factor is defined as the ratio between the compressive strength of the concrete
with a certain percentage of rubber and the compressive strength of the concrete without
rubber: SRF = fc/fc0.
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Figure 1. Experimental data from the literature (Appendix A). Strength reduction factor (SRF) values
are reported with reference to the percentage (in volume) of the natural fine aggregates substituted
with rubber.

The values in Figure 1 show a decrease in the compressive strength. This reduction is
higher when the amount of rubber particles replacing the natural sand increases.

An accurate study of the mix design procedures is useful to better understand the
rubbercrete behaviour under load and to set conditions for the starting concrete mix design
to obtain the required performance from the rubbercrete.

Artificial Intelligence Modelling Techniques

In this study, two different artificial intelligence (AI) models were employed to conduct
a sensitivity analysis and to create a uniform platform for analysis of the collected literature
data (provided in Appendix A). The AI models used were support vector machine (SVM)
and Gaussian process regression (GPR). The rubbercrete strength models were developed
using MATLAB software and their performances were compared using test data. The
best-performing model was used for the evaluation of the influence factors in rubbercrete
strength prediction.

SVMs are based on the structural risk minimization principle [43], which can find a
hypothesis with the lowest true error. This learning method performs non-linear classifica-
tion, regression, and outlier detection with an intuitive model that can be approximately
represented by Figure 2, which is adapted from Meyer’s work [44]. Figure 2 shows the
optimal separating hyperplane between two classes, which is obtained by maximizing the
margin between the classes’ closest points. The points lying on the boundaries are called
support vectors and the middle of the margin is the optimal separating hyperplane [44].
SVM is the statistical learning theory that can rather precisely identify the factors that must
be taken into account to learn successfully [45].
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GPRs capture a wide variety of relations between inputs and outputs by utilizing a
theoretically infinite number of parameters and letting the data determine the level of com-
plexity through the means of Bayesian inference [46,47]. GPR models are nonparametric
kernel-based probabilistic models. Consider the training set {(xi, yi); i = 1, 2, ..., n}, where
xi ∈ Rd and yi ∈ R, drawn from an unknown distribution. A GPR model addresses the
question of predicting the value of a response variable ynew given the new input vector
xnew and the training data. A linear regression model is in the form y = xTβ + ε, where
ε∼N (0, σ2). The error variance σ2 and the coefficients β are estimated from the data. A
GPR model explains the response by introducing latent variables f (xi), i = 1, 2, ..., n, from a
Gaussian process (GP) and explicit basis functions h. The covariance function of the latent
variables captures the smoothness of the response, and basic functions project the inputs x
into a p-dimensional feature space [48].

In this study, 89 different mixtures were used as a test set. The training data were
developed based on experimental data in the literature, as shown in Appendix A. The input
parameters included cement content (v1), fine aggregate content (v2), coarse aggregate content
(v3), aggregate pre-treatment condition (v4) (1 for soaked and 0 for non-soaked), water-to-
cement ratio (v5), fine aggregate replacement percentage (v6), and coarse aggregate replacement
percentage (v7). The corresponding output was set as the compressive strength of the concrete.

Based on artificial intelligence models literature and our experience, a typical data
division between testing and training data is identified in a range of 10–20% for testing
and 90–80% for training. In this study, the developed SVM and GRP models’ performances
were evaluated using 15 testing data (about 17%) and 74 training data (about 83%). Figure 3
shows the models’ performance based on original compressive strength values. A compari-
son of these two models, based on the strength reduction factor (SRF), was performed; this
is discussed in the next section.
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3. Results and Discussion
3.1. Comparing GPR and SVM Model Performance

To test the performance of GPR and SVM models, simulations of mix design proce-
dures were carried out, starting from a reference mixture with cement 400 kg/m3, sand
800 kg/m3, and gravel 1100 kg/m3. While keeping these three parameters constant, the
w/c ratio was considered, ranging from 0.25 to 0.65, in both treated and non-treated rubber
particles (treated rubber particles were soaked in water before their use in the mixture).
Substitutions of sand aggregates were then operated with percentages of rubber ranging
from 0% to 100%, as summarised in Table 1.

Table 1. Mix design proportions for GPR and SVM models’ predictions.

v1
Cement
Content
kg/m3

v2
Fine

Aggregate
Content
kg/m3

v3
Coarse

Aggregate
Content
kg/m3

v4
Aggregate

Pre-Treatment

v5
Water/Cement

Ratio

v6
Replacement

of Fine
Aggregate

%

v7
Replacement

of Coarse
Aggregate

%

400 800 1100 1 or 0 0.25–0.65 0–100 0

Hence, 98 mixtures were generated, and data were analysed with GPR and SVM
models to predict the compressive strength and respective SRF values. The results are
graphed in Figures 4–7, where the two models (GPR and SVM) are distinguished, and the
rubber pre-treatments operated (soaked and non-soaked).
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Figure 4. SRF values of different rubbercrete mixtures predicted with the GPR model at different
w/c ratios and soaked rubber particles.

Comparing Figures 5 and 7 with the trends in the experimental data from the literature
in Figure 1, we observed that, in this study, the SVM model predictions were not repre-
sentative of the compressive strength behaviour in rubbercrete mixtures. Experimental
data in the literature state a reduction in the compressive strength when the rubber content
increases (Figure 1). In Figure 5, the SRF values, which correspond to substitutions greater
than a 50%, increase instead of decreasing further. This is not physically significant because
when the amount of rubber particles in the mixture increases, the compressive strength
must decrease [27,49–52].

For non-soaked rubber mixtures (Figure 7), a greater reduction in compressive strength
is expected compared to soaked rubber mixtures. No negative values of the SRF are
physically admitted, as the greatest reduction that can be obtained is reporting a zero
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value for the compressive strength, not a negative value. In this case, the SVM model is
not representative of the rubbercrete mixture’s behaviour under compressive strength for
this reason.
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Figure 6. SRF values of different rubbercrete mixtures predicted with the GPR model at different
w/c ratios and non-soaked rubber particles.

The GPR model, instead, well-represented the behaviour of these rubbercrete mix-
tures, both for the soaked rubber mixtures and the non-soaked rubber mixtures. Following
previous studies [35,38,40], rubber particles that were pre-treated (soaked in water) pre-
sented a lower reduction in the compressive strength (Figure 4) compared to the rubber
particles without pre-treatments (Figure 6). This was demonstrated for each w/c ratio
considered. In this study, the percentage of rubber, the w/c ratio, and the condition of
rubber (soaked or non-soaked) were the most influential parameters in the models. Among
these, we observed that the w/c ratio was the predominant factor influencing the model
performance, so, for this reason, it was deeply investigative, as described in Section 3.2.



Sustainability 2021, 13, 7729 7 of 16

Sustainability 2021, 13, x FOR PEER REVIEW  7 of 16 
 

 

 
Figure 6. SRF values of different rubbercrete mixtures predicted with the GPR model at different 
w/c ratios and non-soaked rubber particles. 

 
Figure 7. SRF values of different rubbercrete mixtures predicted with the SVM model at different 
w/c ratios and non-soaked rubber particles. 

Comparing Figures 5 and 7 with the trends in the experimental data from the litera-
ture in Figure 1, we observed that, in this study, the SVM model predictions were not 
representative of the compressive strength behaviour in rubbercrete mixtures. Experi-
mental data in the literature state a reduction in the compressive strength when the rubber 
content increases (Figure 1). In Figure 5, the SRF values, which correspond to substitutions 
greater than a 50%, increase instead of decreasing further. This is not physically significant 
because when the amount of rubber particles in the mixture increases, the compressive 
strength must decrease [27,49–52].  

For non-soaked rubber mixtures (Figure 7), a greater reduction in compressive 
strength is expected compared to soaked rubber mixtures. No negative values of the SRF 
are physically admitted, as the greatest reduction that can be obtained is reporting a zero 
value for the compressive strength, not a negative value. In this case, the SVM model is 
not representative of the rubbercrete mixture’s behaviour under compressive strength for 
this reason. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

SR
F

% Rubber

GPR model_SRF of the non-soaked rubber mixtures at different w/c ratios

w/c = 0.25
w/c = 0.35
w/c = 0.45
w/c = 0.50
w/c = 0.55
w/c = 0.60
w/c = 0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

SR
F

% Rubber

SVM model_SRF of the non-soaked rubber mixtures at different w/c ratios

w/c = 0.25
w/c = 0.35
w/c = 0.45
w/c = 0.50
w/c = 0.55
w/c = 0.60
w/c = 0.65

Figure 7. SRF values of different rubbercrete mixtures predicted with the SVM model at different
w/c ratios and non-soaked rubber particles.

3.2. Influence of w/c Ratio on the Compressive Strength: Calibration Laws

As graphed in Figures 4 and 6, different values of the SRF were obtained, varying
the w/c ratio in the range of 0.25–0.65. Regressions were operated to fit the SRF values
obtained at different percentages of substitution for each w/c ratio considered, both in the
case of soaked and non-soaked rubber particles. The equation of the regression curves is
expressed in the exponential and polynomial form:

SRF = exp−kx (1)

where x represents the amount of rubber in volume expressed in %, and k is the parameter
depending on the w/c ratio.

SRF = a + b • (1− x)m (2)

where x represents the amount of rubber in volume; a, b, and m are the parameters depend-
ing on the w/c ratio; and a + b = 1.

For each w/c ratio considered, the parameter k and the parameters a, b, and m, together
with the respective R2 coefficients, were summarised and are reported in Table 2.

Table 2. Parameters of Equations (1) and (2) obtained for the GPR model, with soaked and non-soaked
rubber particles included in the mixture.

Pre-Treatment w/c a b m R2 k R2

Soaked

0.25 0.546 0.454 1.261 0.965 0.006 0.997
0.35 0.451 0.549 1.439 0.965 0.008 0.994
0.45 0.418 0.582 1.435 0.969 0.009 0.995
0.50 0.426 0.574 1.383 0.971 0.009 0.996
0.55 0.477 0.523 1.311 0.971 0.008 0.997
0.60 0.448 0.552 1.334 0.972 0.008 0.997
0.65 0.512 0.488 1.310 0.976 0.007 0.997

Non-soaked

0.25 0.495 0.505 1.133 0.959 0.007 0.995
0.35 0.342 0.658 1.163 0.943 0.010 0.989
0.45 0.180 0.82 1.248 0.921 0.016 0.979
0.50 0.139 0.861 1.304 0.923 0.018 0.978
0.55 0.152 0.848 1.350 0.930 0.017 0.983
0.60 0.178 0.822 1.450 0.944 0.017 0.987
0.65 0.224 0.776 1.555 0.956 0.015 0.990
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As noticed from Table 2, both polynomial and exponential laws fit well with the SRF
values obtained from the GPR model, both with an R2 value-approximating unit.

To better understand how the w/c ratio influences the rubbercrete mechanical behaviour,
procedures were adopted to calibrate the parameter k and parameters a, b, and m. In the graph
in Figure 8, the values of parameter k are reported in relation to the corresponding w/c ratio.
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Regression analyses were conducted to obtain the equations of the parameter k:

• for soaked rubber particles in the mixture

k = −0.0592x2 + 0.0556x − 0.0042 (3)

• for non-soaked rubber particles in the mixture

k = −0.5588x3 + 0.6368x2 − 0.1916x + 0.0237 (4)

where x represents the value of the w/c ratio considered in the mixture.
For the mixtures with soaked rubber particles, it can be noted that for very low or very

high w/c ratio values, the decrease in the compressive strength is lower than for middle
values of 0.45–0.50. In contrast, for mixtures with non-soaked rubber particles, a general
greater decrease in compressive strength was observed for w/c ratio values higher than 0.45.

For the parameters a, b, and m, a calibration procedure was also carried out, con-
sidering the cases of soaked and non-soaked rubber particles. The results are plotted in
Figures 9 and 10.

Regression analyses were then operated to obtain the equations of the parameters a, b,
and m:

• for soaked rubber particles in the mixture

a = −3.4442x3 + 7.1842x2 − 4.3403x + 1.236 (5)

b = 3.4442x3 − 7.1842x2 + 4.3403x − 0.236 (6)

m = 22.351x3 − 33.572x2 + 15.883x − 0.9615 (7)

• for non-soaked rubber particles in the mixture

a = 4.4419x2 − 4.7362x + 1.4179 (8)

b = −4.4419x2 + 4.7362x − 0.4179 (9)

m = 2.5408x2 − 1.2552x + 1.2902 (10)
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where x represents the value of the w/c ratio considered in the mixture.
Polynomial and exponential prediction laws for SRF values of rubbercrete mixtures

with different w/c ratios were obtained, both for soaked rubber particles and non-soaked
rubber particles.
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Figure 10. Calibration laws for the parameters a, b, and m, with non-soaked rubber particles included
in the mixture.

3.3. Validation of the Predicted Results

The obtained mathematical laws were validated by comparing SRF values obtained
from the GPR model predictions with the experimental results obtained by Eldin and
Senouci [35] and Khatib and Bayomy [40], who used mix design proportions of the mixtures
similar to those adopted in this study for model prediction. The results are presented in
Table 3.

The final predicted SRF values are very close to those found by the authors in their
experimental campaigns, thus confirming the validity of GPR model predictions and that the
calibration laws obtained are suitable for mix design procedures of the rubbercrete mixtures.
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Table 3. Validation of calibration laws for the w/c ratio and the SRF of the rubbercrete mixtures.

Mixtures Cement
kg/m3

Sand
kg/m3

Gravel
kg/m3

Water
kg/m3

Pre-
Treatments

of
Rubber

w/c
Total Volume
of Aggregates

/m3

% Fine
Aggregates

/Total Volume
of Aggregates

% Substitution
of Fine

Aggregates
(Referred to the
Volume of Fine

Aggregates)

Compressive
Strength

MPa

SRF
(Experi-
mental)

a b m
SRF

(Polyno-
mial)

k SRF
(Exponential)

Eldin and
Senouci [35] 447 629 1116 214 Soaked in

water 0.48 0.72 36.11 0 35 1.00 0.427 0.573 1.399 1.00 0.009 1.00

25 23.4 0.67 0.81 0.80
50 19.2 0.55 0.64 0.64
75 14.7 0.42 0.51 0.51
100 12.4 0.35 0.43 0.41

Khatib and
Bayomy [40] 388 786 1024 186 non-

soaked 0.48 0.68 42.65 0 37.5 1.00 0.168 0.832 1.273 1.00 0.017 1.00

5 35 0.93 0.95 0.92
10 30.5 0.81 0.90 0.85
15 29 0.77 0.84 0.78
20 25.7 0.69 0.79 0.72
40 18 0.48 0.60 0.51
60 9 0.24 0.43 0.37
80 4.8 0.13 0.28 0.26
100 3 0.08 0.17 0.19
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4. Conclusions

In this paper, a comprehensive study was performed on different mix design parame-
ters that influence rubbercrete compressive strength: cement content (v1), fine aggregate
content (v2), coarse aggregate content (v3), aggregate pre-treatment condition (v4) (one for
soaked and zero for non-soaked), water-to-cement ratio (v5), fine aggregate replacement
percentage (v6), and coarse aggregate replacement percentage (v7). Advanced modelling
techniques, i.e., SVM and GRP models, were employed to predict rubbercrete compressive
strength behaviour. In this study data, we observed that the GPR model performed better
compared to the SVM model. Simple equations were proposed to calculate the strength
reduction factor. Calibration of the parameters of these equations was carried out consid-
ering the influence of the water/cement ratio. The accuracy of the developed equations
and the predicted results was verified using experimental data in the literature. This study
can aid in the study of rubbercrete and assist in promoting its usage among professionals
without needing to perform preliminary experimental tests on the material.
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Appendix A

Table A1. Experimental data in the literature.

Mixtures Cement
kg/m3

Sand
kg/m3

Gravel
kg/m3

Water
kg/m3

Type of
Additions

Pre-
Treatments
of Rubber

w/c
Total Volume of

Aggregates
/m3

% Fine
Aggregates

(/Total Volume
of Aggregates)

% Coarse
Aggregates

(/Total Volume
of Aggregates)

% Substitution of Fine
Aggregates (Referred

to the Volume of
Fine Aggregates)

Compressive
Strength

MPa
SRF

Eldin and
Senouci [35] 447 629 1116 214 Soaked in

water 0.48 0.72 36.11 63.89 0 35 1.00

25 23.4 0.67
50 19.2 0.55
75 14.7 0.42
100 12.4 0.35

Topcu [41] 357.5 609 1148.1 222.4 0.62 0.66 34.85 65.15 0 23.48 1.00

15 23.22 0.99
30 19.7 0.84
45 14.77 0.63

Khatib and
Bayomy [40] 388 786 1024 186 0.48 0.68 42.65 57.35 0 37.5 1.00

5 35 0.93
10 30.5 0.81
15 29 0.77
20 25.7 0.69
40 18 0.48
60 9 0.24
80 4.8 0.13
100 3 0.08

Batayneh
et al. [34] 446 585 961 0.56 0.69 37.68 62.32 0 25.33 1.00

20 18.96 0.75
40 12.27 0.48
60 8.07 0.32
80 4.47 0.18
100 2.5 0.10

Aiello and
Leuzzi‘[28] 335 279 +

1116 465 200 superplasti
cizer 0.60 0.79 74.68 25.32 0 27.11 1.00

3 23.97 0.88
6 20.41 0.75

10 19.45 0.72
15 17.06 0.63

El-Gammal
et al. [36] 350 588 980 0.35 0.77 37.66 62.34 0 26.9 1.00

50 5.29 0.20
100 4.94 0.18
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Table A1. Cont.

Mixtures Cement
kg/m3

Sand
kg/m3

Gravel
kg/m3

Water
kg/m3

Type of
Additions

Pre-
Treatments
of Rubber

w/c
Total Volume of

Aggregates
/m3

% Fine
Aggregates

(/Total Volume
of Aggregates)

% Coarse
Aggregates

(/Total Volume
of Aggregates)

% Substitution of Fine
Aggregates (Referred

to the Volume of
Fine Aggregates)

Compressive
Strength

MPa
SRF

Godfrey [38] 475 775 950 Soaked in
water 0.38 0.73 44.52 55.48 0 58.39 1.00

20 27.55 0.47
40 16.13 0.28

Grinys et al. [39] 451 875 949 superplasti
cizer 0.35 0.75 48 52 0 64 1.00

10.4 48.3 0.72
20.8 40.3 0.53
41.7 19.6 0.30
62.5 10.5 0.16

Tung-Chai
Ling [42] 328 1246.4 590.4 superplasti

cizer 0.45 0.82 56.7 43.3 0 31.1 1.00

10 42.5 1.37
20 15.6 0.50
30 11.7 0.38

Mohammed and
Azmi [32] 556.1 803.58 697.32 228 0.41 0.66 53.03 46.97 0 35.5 1.00

10 25.7 0.72
15 21.2 0.60
20 18.2 0.51
30 14.3 0.40

Mohammed and
Azmi [32] 400 887.16 769.84 228 0.57 0.73 53.42 46.58 0 29.56 1.00

10 20.21 0.68
15 17.5 0.59
20 14.5 0.49
30 11.13 0.38

Mohammed and
Azmi [32] 335.29 921.8 799.9 228 0.68 0.75 53.33 46.67 0 23.4 1.00

10 18.2 0.78
15 15.6 0.67
20 12.43 0.53
30 10.5 0.45

Mohammed and
Azmi [32] 592.68 775.96 673.35 243 0.41 0.63 53.54 46.46 0 44.3 1.00

10 34.21 0.77
15 24.56 0.55
20 22.19 0.50
30 18.56 0.42



Sustainability 2021, 13, 7729 14 of 16

Table A1. Cont.

Mixtures Cement
kg/m3

Sand
kg/m3

Gravel
kg/m3

Water
kg/m3

Type of
Additions

Pre-
Treatments
of Rubber

w/c
Total Volume of

Aggregates
/m3

% Fine
Aggregates

(/Total Volume
of Aggregates)

% Coarse
Aggregates

(/Total Volume
of Aggregates)

% Substitution of Fine
Aggregates (Referred

to the Volume of
Fine Aggregates)

Compressive
Strength

MPa
SRF

Mohammed and
Azmi [32] 426.32 865.03 750.65 243 0.57 0.71 53.54 46.46 0 36.5 1.00

10 26.2 0.72
15 21.74 0.60
20 18.45 0.51
30 12.3 0.34

Mohammed and
Azmi [32] 357.35 901.96 782.69 243 0.68 0.74 53.54 46.46 0 30.12 1.00

10 19.39 0.64
15 17.24 0.57
20 15.5 0.51
30 11.1 0.37

Mohammed and
Azmi [32] 629.27 748.35 649.39 258 0.41 0.61 53.54 46.46 0 48.1 1.00

10 37.2 0.77
15 27.1 0.56
20 24.5 0.51
30 20.1 0.42

Mohammed and
Azmi [32] 452.63 842.92 731.45 258 0.57 0.69 53.54 46.46 0 40.1 1.00

10 28.8 0.72
15 23.2 0.58
20 20.1 0.50
30 14.3 0.36

Mohammed and
Azmi [32] 379.41 882.12 765.47 258 0.68 0.72 53.54 46.46 0 34.2 1.00

10 22.5 0.66
15 19.6 0.57
20 17.1 0.50
30 13.4 0.39
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39. Grinys, A.; Sivilevičius, H.; Daukšys, M. Tyre rubber additive effect on concrete mixture strength. J. Civ. Eng. Manag. 2012, 18,

393–401. [CrossRef]
40. Khatib, Z.K.; Bayomy, F.M. Rubberized Portland Cement Concrete. J. Mater. Civ. Eng. 1999, 11, 206–213. [CrossRef]
41. Topçu, I.B. The properties of rubberized concretes. Cem. Concr. Res. 1995, 25, 304–310. [CrossRef]
42. Ling, T.-C. Effects of compaction method and rubber content on the properties of concrete paving blocks. Constr. Build. Mater.

2012, 28, 164–175. [CrossRef]
43. Sain, S.R.; Vapnik, V.N. The Nature of Statistical Learning Theory. Technometrics 1996, 38, 409. [CrossRef]
44. Meyer, D. Support vector machines. R News 2001, 1, 23–26.
45. Hearst, M.; Dumais, S.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their. Appl. 1998, 13, 18–28.

[CrossRef]
46. Gershman, S.J.; Blei, D.M. A tutorial on Bayesian nonparametric models. J. Math. Psychol. 2012, 56, 1–12. [CrossRef]
47. Williams, C.K.I. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond. In Learning in

Graphical Models; MIT Press: Cambridge, MA, USA, 1998; pp. 599–621.
48. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Dietterich, T., Ed.; MIT Press: Cambridge, MA, USA,

2006; Volume 14, ISBN 978-0-262-18253-9.
49. Huang, W.; Huang, X.; Xing, Q.; Zhou, Z. Strength reduction factor of crumb rubber as fine aggregate replacement in concrete. J.

Build. Eng. 2020, 32, 101346. [CrossRef]
50. Gregori, A.; Castoro, C.; Mercuri, M.; Angiolilli, M. Modeling the Mechanical Response of Rubberised Concrete. In Developments

and Novel Approaches in Biomechanics and Metamaterials. Advanced Structured Materials; Abali, B., Giorgio, I., Eds.; Springer: Cham,
Switzerland, 2020; Volume 132, pp. 341–352. [CrossRef]

51. Gregori, A.; Castoro, C.; Mercuri, M.; Angiolilli, M. Numerical modelling of the mechanical behaviour of rubbercrete. Comput.
Struct. 2021, 242, 106393. [CrossRef]

52. Ahmad, H.S.; Abendeh, R.M.; Hunaiti, Y.M. Evaluation of concrete–steel interfaces in steel tubes filled with chipped rubber–
concrete. Proc. Inst. Civ. Eng. Struct. Build. 2020, 1–23. [CrossRef]

http://doi.org/10.1016/j.cemconres.2004.04.005
http://doi.org/10.1016/j.cemconres.2006.05.015
http://doi.org/10.1007/s11709-014-0265-7
http://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)
http://doi.org/10.1016/j.wasman.2007.09.035
http://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
http://doi.org/10.1061/(ASCE)MT.1943-5533.0002117
http://doi.org/10.3846/13923730.2012.693536
http://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
http://doi.org/10.1016/0008-8846(95)00014-3
http://doi.org/10.1016/j.conbuildmat.2011.08.069
http://doi.org/10.1080/00401706.1996.10484565
http://doi.org/10.1109/5254.708428
http://doi.org/10.1016/j.jmp.2011.08.004
http://doi.org/10.1016/j.jobe.2020.101346
http://doi.org/10.1007/978-3-030-50464-9_19
http://doi.org/10.1016/j.compstruc.2020.106393
http://doi.org/10.1680/jstbu.20.00162

	Introduction 
	Methodology of the Study 
	Results and Discussion 
	Comparing GPR and SVM Model Performance 
	Influence of w/c Ratio on the Compressive Strength: Calibration Laws 
	Validation of the Predicted Results 

	Conclusions 
	
	References

