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Abstract: Previous studies have shown that when a crime occurs, the risk of crime in adjacent
areas increases. To reflect this, previous grid-based crime prediction studies combined all the cells
surrounding the event location to be predicted for use in model training. However, the actual land is
continuous rather than a set of independent cells as in a geographic information system. Because
the patterns that occur according to the detailed method of crime vary, it is necessary to reflect the
spatial characteristics of the adjacent land in crime prediction. In this study, cells with similar spatial
characteristics were classified using the Max-p region model (a spatial clustering technique), and
the performance was compared to the existing method using random forest (a tree-based machine
learning model). According to the results, the F1 score of the model using spatial clustering increased
by approximately 2%. Accordingly, there are differences in the physical environmental factors
influenced by the detailed method of crime. The findings reveal that crime involving the same
offender is likely to occur around the area of the original crime, indicating that a repeated crime is
likely in areas with similar spatial features to the area where the crime occurred.

Keywords: crime prediction; machine learning; spatial clustering; smart city; GIS

1. Introduction

Today, with the enhancement of computer performance and data analysis techniques,
it has become possible to process large amounts of data with ease. Pre-processed big data is
used for prediction and analysis in various fields, such as stock price predictions [1,2] and
financial analysis [3,4], using machine learning or artificial neural networks. In the field of
crime prediction, various studies related to online crime detection [5] and the identification
of crime hotspots [6] are being actively conducted.

Many government authorities across the world are already making efforts to prevent
crime by applying crime prediction systems. In the case of PredPol, a crime prediction
system for the Santa Cruz Police Department in the United States, the number of breaking
and entering cases dropped by 27% from July 2010 to July 2011, when the system was
in place, and fell by 25–29% in June and July 2013 compared to the same months of the
previous year, which demonstrated the consistency in its effect. In Korea, GeoPros and
CLUE are being used as part of the Smart City initiative. As a result of the GeoPros pilot
run in 2013, robbery cases declined by 44.4%, while rape and theft decreased by 22.1% and
13.1%, respectively. Meanwhile, CLUE provides similar cases and investigation clues based
on police investigation records, as well as crime prediction. Other crime prediction systems
such as HunchLab and COMPStat, used in the Miami and New York Police Departments,
are also contributing meaningfully to crime reduction, with reliable results.

In order to effectively carry out crime prevention activities through crime prediction,
it is important to accurately set the prediction range, as well as making precise predictions,
so that crime prevention resources such as CCTVs and police personnel can be properly
allocated. Recently, researchers have actively studied machine learning-based crime predic-
tion using grids as the units of analysis. In this regard, because grids have a uniform shape
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and size compared to administrative districts or census output areas, statistical information
can be objectively examined. Moreover, because grids can be flexibly applied to changes in
map scale, microscopic analysis is also possible. Yu et al. [7] predicted residential burglaries
by training an algorithm using the crime records of each cell, based on the crime’s spa-
tiotemporal concentration characteristics. To reflect the effects of crimes in an adjacent land
and the physical environment during training, Lin et al. [8] predicted vehicle theft crimes
by using 84 types of landmark data through Google API, along with crime information
from adjacent cells for learning. Here, in the landmark data of Google API, the purposes
and addresses of establishments such as schools, pubs, and restaurants are indicated, and
these were used to reflect the geographical characteristics of the study site. As an extension
of earlier research, the purpose of this study is to develop a crime prediction model that
reflects the influence of surrounding areas and geographic characteristics on crime.

An actual land is continuous, rather than independently divided like a grid, in a
geographic information system (GIS), and when a crime occurs, the risk of crime in the
adjacent areas increases [9–11]. According to studies analyzing the relationship between
spatial characteristics and crime, environmental factors such as patterns, establishments,
and land use were found to be different, depending on the detailed modus operandi of
crimes [12–15]. Even in the case of the same type of crime, the related factors were shown
to be different depending on the detailed modus operandi [16]. Therefore, in micro-scale
studies using a grid, there is concern regarding how to reflect the characteristics of the
adjacent land. When training with crime information, this issue can be solved by combining
all the cells adjacent to the point to be predicted and using it in the training. However, this
solution requires a focus on a specific method of crime, and if the cell to be predicted and its
adjacent cells vary greatly in spatial characteristics, the training may be negatively affected.
Accordingly, to distinguish cells with similar spatial characteristics for use in training,
this study proposes a crime prediction method that applies spatial clustering as shown in
Figure 1. To perform spatial clustering, high weights are assigned between geographically
adjacent cells, according to the distance between each instance in the vector space. Thus,
cells adjacent to the cell to be analyzed and with similar attributes are included in the same
cluster and, rather than training all the adjacent cells, only the cells with similar spatial
characteristics can be used for training.
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Figure 1. Proposed crime prediction using spatial clustering.

The flow of this study is shown in Figure 2. Dongjak District, Seoul, the target
analysis area, is divided into grids of 100 m × 100 m on GIS. After inserting data on the
physical environment in each cell, such as crimes, facilities, and land use that occurred
previously, the target sites are clustered according to spatial similarity, based on the physical
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environment data. Cells in which no crime occurred during the analysis period are removed
because they might negatively impact training. The remaining cells are then used for
training. Crime data are imbalanced because there is less data on where a crime occurred
than where it did not. Accordingly, resampling is used to solve the problems caused by
the data imbalance. The preprocessed data are trained using a random forest, a tree-based
machine learning algorithm, and the differences between the model with spatial clustering
and the general model are compared.
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2. Theoretical Review

Efforts have been made to prevent crime by identifying and mitigating its causes.
Environmental criminology seeks to explain the causes of crime using the surrounding
environment. The main theories employed are routine activity theory (RAT) [17] and
crime pattern theory (CPT) [18]. RAT states that a crime occurs when a motivated offender
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(a suitable target) and the absence of a capable guardian simultaneously intersect in time
and space. According to RAT, it is important to view individuals as motivated offenders
and minimize their opportunities to commit the crime. The CPT states that people move in
certain patterns because of their physical or social environment, such as their occupation.
During their routine activities, motivated offenders identify the characteristics of these
areas and suitable targets for crime, choose a suitable time and place, and then carry out
the crime. Hence, crimes do not occur randomly; however, they are concentrated in certain
locations, owing to specific factors, and are influenced by the surrounding environment
and living patterns of individuals and their neighbors.

Wolfgang, Figlio, and Sellin [19], and Sherman, Gartin, and Buerger [20] found that
approximately 50% of all crimes every year occur within 4% to 5% of the total street and
explained that crime is spatially concentrated. Studies have also shown that the areas
surrounding the place where a crime occurs are at risk of identical crimes, and the more
recent the crime, the greater its influence [9–11]. Notably, Bernasco [10] reported that,
among the crimes that occurred within 100 m of an earlier crime, 90% that occurred within
seven days involved the same offender. Moreover, the same offender was involved in 64%
of the crimes that occurred within 90 days, and 13% within nine years. This indicates that
offenders familiar with the surrounding area are more likely to commit other crimes in
neighboring locations.

Facilities and land use play a key role in the relationship between crime and the
physical environment. These factors provide the purpose of people’s movements and have
a close relationship with individuals’ living patterns. Brantingham and Brantingham [11]
analyzed the correlation between commercial theft and facilities. In their results, blocks
with supermarkets and department stores showed similar crime rates to blocks without
these landmarks, whereas blocks with fast-food restaurants, traditional restaurants, and
pubs had 2- to 2.5-times more commercial theft than blocks without these landmarks.
Lee, Yoon, and Kim [13] analyzed the causes of crime according to crime type in specific
cities in Korea. Visitor accommodation, restaurants, financial institutions, and homes in
non-residential buildings were highly correlated with theft crimes. In the case of CCTV,
it was found that the related factors were different depending on the type of crime, such
as showing a significant correlation only with rape and violence. Studies analyzing the
impact of land use on crime are also underway. As in the case of facilities, there were
differences in the factors affected by crime and, in the case of commercial areas, it was
discovered to be related to most crimes [14–16]. Stucky and Ottensmann [15] analyzed
the relationship between land use and crimes such as violent crime, homicide, robbery,
aggravated assault, and rape. The correlation between land use and crime type was shown
to be different, showing a significance in crime, homicide, and aggravated assault. Kwon,
Kwon, and Jung [16] examined the correlation between each crime type and land use
by clustering the theft crimes into detailed types according to the victim’s gender, the
time of the occurrence, and the place of the occurrence. It was shown that the associated
physical environment was different. As such, crimes do not occur randomly, but have
factors influencing them; in environments where crimes can occur with ease, it is important
to identify these related factors.

3. Data and Methodology
3.1. Research Area and Analysis Unit

Dongjak-gu, the research area, is one of the administrative districts of Seoul, the capital
of South Korea. Its population density is 24,190/km2, which is similar to that of Manhattan
in the United States. Residential areas are high-density areas comprising 84% of the total
population, and there are 8.5 cases of violent crime per 1000 people. Although this rate is
ranked 17 out of the 25 administrative districts, it is rather high because most of the areas
with high crime rates have a developed entertainment industry.

To effectively perform crime prevention activities using crime prediction, it is impor-
tant to precisely set the analysis unit so that crime prevention resources can be allocated
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to the appropriate locations. Accordingly, this study attempts to predict crime in the
microscopic range through grid-level analysis. Compared to the administrative districts
and census output areas, which are statistically spatial units used in existing statistical
map services, grids have a uniform shape and size, allowing statistical information to be
objectively examined. Moreover, the grids can be flexibly applied to changes in the map
scale. This study used GIS to divide the target area into a grid of 100 × 100 m cells, then
time- and space-related data were added to each cell to perform the analysis.

3.2. Crime Data

In the case of crime prediction, it is generally known that theft crimes are easier to
predict than other types of crimes. Crimes such as murder and assault are highly influenced
by ill feelings between the offender and the victim because the target is a specific individual.
In contrast, since the target of theft is a specific building or object, it is influenced more by
the surrounding environment and the behavioral characteristics of the criminal than by
personal feelings [21]. The analysis of this study focuses on theft. With the cooperation of
the police department with the relevant jurisdiction, data on incidents of theft in Dongjak-
gu from 2013 to 2017 were used in the analysis. Figure 3 shows the monthly distribution
of theft in Dongjak-gu. During this period, an average of 95 thefts occurred per month;
the most occurred in March 2013 (199), and the fewest occurred in November 2016 (31).
The theft data include the date, time, method, and exact location of the crime. Inaccurate
data (such as cases with incorrect addresses and duplicate reports on the same date) were
excluded. A total of 8023 theft cases were used for the analysis. Based on prior studies
showing that the more recent the crime, the greater its influence on future crimes, in order
to train the influence over time in a predictive model, this study calculated the average
number of crimes that occurred in each cell over the periods of two weeks, one month,
three months, six months, and one year, and used these values for the training. In the
grid-level analysis, cells in which crime never occurred were mainly those areas (such as
mountains or water) in which it was difficult for crime to occur. These data can easily
lead the model to predict that no crime incidents occur in areas with no previous record of
crime, which may negatively impact the predictions [7,8]. Therefore, before training, the
cells in which no crime occurred from 2013 to 2016 were removed. The 2017 crime record
was excluded, as it was used as the test set.
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3.3. Physical Environment Data

The data used in this study were provided by the National Spatial Data Infrastructure
Portal (http://www.nsdi.go.kr, 15 January 2020) and the Open Data Plaza (https://data.
seoul.go.kr/, 15 January 2020). The data on building usage comprise basic information on
location, size, etc., and are categorized into 152 types according to building use. However,
using data on all buildings for the training may degrade the model’s performance while
consuming extensive computing resources because the model would be trained on data
with an insufficient correlation with crime. Consequently, considering the training, this
study applied data on building use related to restaurants, pubs, accommodations, banks,
and residences, which have been demonstrated by previous studies as being related to
crime. Restaurants were categorized into general restaurants, where patrons stay for a
long time to eat, and rest-area restaurants, which sell simple meals such as fast food.
Residential buildings were categorized into single-family housing, multi-family housing,
and apartments, depending on the type of residence. Additionally, CCTV and streetlights,
which are factors influencing natural surveillance, and bus stops, known to induce crime
because of crowding, were added to the facility variables for the training.

Regarding the information on land characteristics, data on land usage and officially
assessed land prices (OALP) were used for the training. In South Korea, land use is divided
into eight categories: general commercial areas, neighboring commercial areas, circulating
commercial areas, first-class residential districts, second-class residential districts, third-
class residential districts, semi-residential areas, and natural green belt zones. The facilities
and allowable sizes that can be built according to each usage area have different legal
regulations. To apply the land usage data for the training, the area occupied by the usage
category in each cell of the grid was converted to a percentage. In addition to land use,
the average OALP of each cell was calculated and used as a variable. This is used as an
indicator to identify the geographic continuity in the spatial clustering analysis. Table 1
lists the variables used in the study. Finally, applying crime data from 2014 to that of 2016,
with the training set and crime data from 2017 as the test set, the data were used in training,
and the model’s performance was evaluated.

Table 1. Feature selection.

Feature Precision

Crime Average number of crimes in each cell over the previous 1, 3, 6, 9, and
12 months

Adjacent crime Average number of crimes within the same cluster over the previous
1, 3, 6, 9, and 12 months

Factors related to crime CCTV, streetlight, bus stop

Facility-related variables General restaurants, rest-area restaurants, pubs, accommodation,
banks, multi-family housing, single-family housing, apartments

Land-related variables

General commercial area, neighboring commercial area, circulating
commercial area, first-class residential district, second-class

residential district, third-class residential district, semi-residential
area, natural green belt zone, officially assessed land price (OALP)

3.4. Spatially Constrained Clustering Methods

Clustering is a data-mining technique that classifies the given data into multiple
clusters, based on the similarity of their attributes. Because it is difficult for general
clustering techniques to reflect the spatial continuity of data in a vector space such as
GIS, researchers have been studying spatially constrained clustering methods [21,22] to
solve this issue. One of them is the max-p regions model [23,24]; unlike the general
clustering techniques that classify data into a limited number of clusters, this model aims
to maximize the number of clusters that satisfy the minimum threshold of the constraint,
while minimizing spatial heterogeneity in each cluster. This constraint is the minimum

http://www.nsdi.go.kr
https://data.seoul.go.kr/
https://data.seoul.go.kr/
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value of the variables (population size, number of houses, etc.) included in each instance,
or the minimum number of instances that must be included in each cluster. To cluster the
cells that are spatially similar and adjacent in distance, this study sets the number of cells
that can be included in each cluster as the constraint. As a feature of the max-p regions
model, a specific cluster can be prevented from growing excessively larger than the other
clusters, and the land can be uniformly clustered while maintaining spatial continuity.
Thus, the model can be effectively used for microscale analysis.

The equation of the max-p regions model is as follows: first, A = {A1, A2, · · · , An},
(n = |A|) is defined as the set for the entire land area, and A is defined as the set divided
into p regions, Pp =

{
R1, R2, · · · , Rp

}
, (1 ≤ p ≤ n). In this study, li is the attribute that

must at least reach the minimum threshold in area Ai.
|Rk| > 0 f or k = 1, 2, · · · , p

Rk ∩ Rk′ = θ f or k, k′ = 1, 2, · · · , p ∧ k 6= k′

∪ p
k=1 Rk = A

∑ Ai∈Rk
li ≥ thershold > 0 f or i = 1, 2, · · · , n and k = 1, 2, · · · , p

(1)

Here, all the divisible sets of A are defined as Π. Thereafter, the max-p algorithm can
be defined as in Equation (2). H

(
Pp
)

is the sum of the heterogeneity of space over all of
Pp ∈ Π.  P∗p = max

(∣∣∣P∗p ∣∣∣ : Pp ∈ Π
)

@Pp ∈ Π :
∣∣Pp
∣∣ = ∣∣∣P∗p ∣∣∣ AND H

(
Pp
)
< H

(
P∗p
) (2)

In this study, facility and land data were inserted into the grid-divided area and used
as variables for the max-p regions model, through which cells with geographically similar
characteristics were clustered. Based on this, in the machine learning step, crimes that
occurred in the same cluster were used as a prediction variable to reflect the influence of
crimes that occurred in the adjacent land during the training. Figure 4 shows an example
of the max-p regions model, and Table 2 shows an example of average attributes for each
cluster. To ensure that the cell to be predicted and cells that are physically far away do not
belong to the same cluster, the number of cells n belonging to each cluster was set between
2 and 10.
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Table 2. Example of average attributes for each cluster in the max-p regions model.

Cluster
Number

General
Restaurant Alcohol Multiple

Housing
Single

Housing . . . Type 2
Residential Area

Type 3
Residential Area

Natural
Green Area

1 0 0 4.91 5.33

. . .

14.5 0.01 0

2 1.09 0.27 25.90 10.81 91.4 8.03 0

3 0 0 0 0 0 0 100

304 6.5 2 3.75 4.5 29.04 70.94 0

305 0 0 28.5 12.5 95.2 0.02 0

306 10.5 2.75 14.75 25.25 45.04 53.67 0

3.5. Resampling

Imbalanced data are those in which the distribution is overconcentrated in a specific
class. In imbalanced data, the minority classes are recognized as noise in the training
process, and the classification does not proceed correctly, which may adversely affect
performance [25]. The theft data used in this study are also imbalanced; only approximately
10% of the total data correspond to the theft class. Accordingly, this study used random
undersampling and the synthetic minority oversampling technique (SMOTE) to solve the
problems due to data imbalance.

Random undersampling is a resampling technique that randomly deletes instances
from the majority class to balance distribution with the minority class. When there are
many training sets, it is possible to increase the learning speed and reduce the data capacity
by decreasing the number of samples. However, because this technique involves deleting
data, there is a risk of information loss. The SMOTE is an oversampling technique that
interpolates data in the minority class to create new instances to balance the data. Whereas
this results in a slower training speed than undersampling, there is no risk of data loss, and
overfitting is less likely to occur than random oversampling, which randomly replicates
the minority data.

3.6. Model Training and Evaluation
3.6.1. Model Training

The data preprocessed via the above procedure were trained using a random forest,
a tree-based machine learning algorithm. Random forest, an ensemble technique widely
used in general classification problems, creates multiple decision trees and combines the
output of each decision tree. This study used the random forest technique to build a crime
prediction model and then compared each model.

First, as the range of values for each variable differed, the values of the data were
normalized using min-max scaling. The ratio between the training set and test set is
generally set to between 7:3 and 8:2; nevertheless, this is flexible, depending on the amount
of data and the research method. The purpose of crime prediction is to predict future
crimes based on those crimes that occurred in the past. As such, the data from 2014 to
2016 were used as the training set, and those from 2017 were used as the test set. K-fold
cross-validation was applied to each model in the training process to prevent the bias
and overfitting that might occur when repeatedly performing the training using only the
training and test sets [26,27]. In the k-fold cross-validation, the test set was divided into
k-folds, and training and validation were performed sequentially. The K value typically
ranges from five to ten. In this study, it was set to five. After the cross-validation, the
parameters of each model were adjusted to obtain the optimal performance. In this study,
the grid search CV of the Python scikit-learn library was used to adjust the parameters and
found those parameters with optimal performance for each model.
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3.6.2. Model Evaluation

Because the crime data used in the training were imbalanced, it was difficult to de-
termine how well the minority class was predicted by evaluating the model with any
accuracy, and this was a classification indicator for the entire dataset [28]. Therefore, suit-
able methods for evaluating imbalanced data must be considered. This study evaluated
the performance of each model using a confusion matrix [29,30], which is primarily used
when evaluating the performance of general algorithms and imbalanced data. The confu-
sion matrix compares the results predicted by the model with the actual class in the data,
and classifies them as TN, TP, FP, or FN. Using this, the precision and recall values were
obtained and harmonized in order to calculate the F1 score. The accuracy and F1 score of
each model were compared to evaluate prediction performance (Figure 5).
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4. Results
4.1. Model Prediction Results

Table 3 lists the model prediction results based on the difference between the clustering
and resampling methods. The model using spatial clustering showed higher F1 scores than
the calculation method that combined the adjacent cells. Accordingly, there are differences
in the physical environmental factors influenced by the detailed method of crime. Based
on the findings of previous studies, a crime involving the same offender is likely to occur
around the area of the original crime, indicating that a repeat of the crime is more likely
in areas with similar spatial features to the area where the crime occurred. For both the
SMOTE and random undersampling techniques, when the minimum threshold for a cell
was n = 6, the F1 score was the highest, at 33.85% and 34.90%, respectively, and the F1 score
increased by approximately 2% compared to the method combining the adjacent cells. In
the models using the max-p method, the SMOTE-based model showed a regular pattern in
which the F1 score gradually decreased as the distance from n = 6 increased, whereas the F1
score in the random undersampling-based model showed an irregular pattern according to
the p-value. The results show low stability because the random undersampling method
randomly deletes the instances. The pattern of the F1 score in the SMOTE-based model
indicates that the model’s performance may decrease if the p-value is too small or too large,
and that there is a value yielding the optimal performance.

Table 3. Model performance according to resampling method and minimum threshold.

Resampling Threshold Value Precision Recall Accuracy F1 Score

SMOTE

Surrounding grid 33.5727 30.1127 87.074 31.7487

n = 2 31.8462 33.3333 86.2279 32.5728

n = 4 35.8736 31.0789 87.5723 33.3046

n = 6 34.9315 32.8502 87.1865 33.8589

n = 8 32.4734 34.4605 86.3023 33.4375

n = 10 32.6466 33.1723 86.4952 32.9073
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Table 3. Cont.

Resampling Threshold Value Precision Recall Accuracy F1 Score

Random Un-
dersampling

Surrounding grid 22.81 57.48 76.33 32.66

n = 2 24.13 56.33 78.02 33.73

n = 4 22.35 59.09 75.41 32.43

n = 6 24.26 62.15 76.84 34.90

n = 8 24.15 56.52 77.94 33.84

n = 10 24.25 55.23 78.31 33.71

Comparing the average accuracy and F1 scores of the models according to the re-
sampling method, the SMOTE and random undersampling methods showed accuracies
of 86.81% and 77.14% and F1 scores of 32.97% and 33.54%, respectively. Therefore, the
SMOTE method had a 10% higher accuracy and a 0.5% lower F1 score than the random
undersampling method. The random undersampling-based model showed a recall of
approximately 55% to 62%, predicting many crime classes out of the total data. However,
the precision and accuracy values were generally lower than those of the SMOTE, showing
that its ability to accurately predict crime was inadequate. Figure 6 shows the models’
prediction results according to the resampling method using a confusion matrix (n = 6).
The value in the second quadrant is the number of data that correctly predicted cold spots
(i.e., where no crime occurred), and the value in the fourth quadrant is the number of
data that correctly predicted hot spots (i.e., where the crime occurred). The value in the
first quadrant is the number of data points that incorrectly predicted a hot spot where the
actual data were cold spots. The value in the third quadrant is the reverse (i.e., points that
incorrectly predicted a cold spot where the actual data were hot spots). Considering the
SMOTE method, 204 of the 584 data predicted as crime classes were correctly predicted,
and for the random undersampling method, 386 of the 1591 data were correctly predicted.
Because random undersampling deletes data from the majority class among all the data,
precise prediction is difficult because of information loss.

1 
 

 
Figure 6. Confusion matrix results according to the resampling method (n = 6).

4.2. Feature Importance

In the case of the random forest algorithm, the feature importance function can be
used to numerically express the influence of each variable for the prediction. Accordingly,
this study analyzed the relative importance of each variable using this function. According
to the analysis, the distribution of the feature importance varied with the resampling
method (Figure 7). The feature importance was more evenly distributed under the random
undersampling method than the SMOTE method. Because the random undersampling
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method reduces the size of the entire dataset for training, the model is more sensitive to
the features of the data with fewer samples.
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For both the random undersampling and SMOTE, time-related variables were the
highest. Among these, the variable related to the average number of crimes that occurred
in the cell over the previous year was the most important. In this regard, because crimes
generally do not occur frequently, when the analysis period is shorter, less information
can be learned from the variable. In contrast, crimes that occurred within the cluster
showed different patterns according to the resampling method. Considering the random
undersampling, the variables related to the average number of crimes during a particular
period showed a higher importance as the period increased to six months, nine months, and
1 year, respectively. However, with regard to the SMOTE method, the influence of recent
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crimes was high at three, six, and nine months. Because the SMOTE method generates
new instances by interpolating the data, a large amount of data can be trained. Moreover,
because the crime data created in the clustered instances are used together for the training,
sufficient crime-related information can be obtained, even for short periods. While more
recent crimes are known to generally have a greater influence on future crimes, in crime
prediction research using machine learning it is important to appropriately configure the
time-related variables, considering the training of the algorithm. Considering the physical
environment-related variables, when using random undersampling, general restaurants
showed the highest importance, followed by rest-area restaurants and pubs. When using
the SMOTE method, the order of importance was rest-area restaurants, general restaurants,
and pubs. However, the importance of residential buildings, banks, and CCTV-related
facilities is relatively low. As is similar to the findings of previous studies on the influence
of the surrounding environment, the likelihood of becoming a target of repeated crime
is high when there are insufficient factors that can deter crime in places where people
frequently engage in routine activities. Therefore, it is necessary to identify places where
crime is spatiotemporally concentrated based on crowded spaces, predict where crime is
likely to occur, and strengthen crime prevention activities in those places.

5. Conclusions

In previous grid-based crime prediction studies, information from all cells was com-
bined and used for training the data on crimes in adjacent land. However, the actual land
has a continuous flow, and the patterns and affected environmental factors vary with the
method of crime. This study proposes a spatial clustering technique to solve this problem.
The results showed that using reflecting spatial continuity to predict crime was effective
in enhancing the model’s performance. Moreover, by identifying the importance of each
variable, it was found that there were places where crimes were spatiotemporally concen-
trated. With regard to the time-related variables, more recent crimes are known to have
a greater influence on future crimes. However, it was difficult to significantly influence
the model training if the period set as a variable was too short. Considering the physical
environment-related variables, the feature importance of restaurants and pubs was high,
suggesting that spaces frequented by people in their daily lives are more related to crime.
Therefore, further in-depth analysis is required.

As part of the existing machine learning-based crime prediction research, this study
is important because it provides guidelines for future related studies to apply spatial
clustering in the crime prediction process and compare the results according to the cluster’s
configuration. Furthermore, this study attempted to predict the location of crimes more
microscopically, using a grid unit in the analysis. Once this study is supplemented and
practically applied in the future, it can help to improve the effectiveness of crime prevention
by distributing crime prevention resources more efficiently.

Regarding this study’s limitations, first, while the physical and environmental factors
described in environmental criminology are highly diverse, this study used only some of
them as variables. Second, because machine learning algorithms focus on prediction and
classification using the given data rather than identifying the correlation between each
variable, it is difficult to describe the correlation between each variable and the prediction
result in detail. This study performed spatial clustering based on the entire target area;
however, future studies can consider a method to derive cells with high similarity that is
based on each cell. Finally, this study is expected to serve as a basis for further studies that
use various variables and conduct both regression and statistical analyses.
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