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Abstract: The coordinated development of the environment and economy is the core of sustainable
development. This research investigated sustainable water-quality management by exploring the
impact of socioeconomic activities on water quality associated with a major global city. To achieve
this goal, a system dynamics (SD) model was developed to capture the feedback processes and
interactions between the water quality; population; water resource; and the primary, secondary,
and tertiary sectors of the Yangtze Delta area, especially Jiaxing City. More importantly, we further
subdivided and identified the nine key subindustries within three sectors as high-polluting factors.
Using this model, five scenarios based on different industrial restructurings were investigated. The
simulation results suggested that Jiaxing City’s water quality would conform to a steadily increasing
trend over 2021–2035. Changes in the farming industry have the most significant impact on water
quality, followed by those in the paper and paper production (PPP) industry and the livestock and
poultry breeding (LPB) industry. In terms of individual pollutant concentrations, the concentrations
of COD and TN were most sensitive to changes in the farming industry, while PPP and LPB were
identified as having the most influence on the concentrations of NH3-N and TP, respectively. It is
feasible for Jiaxing City to improve its water quality through collaborative optimization of three
industries. However, the effect of industrial structure adjustment is limited. Strategies comprising
cleaner production should be undertaken to reduce pollution generation.

Keywords: water quality; sustainability; system dynamics; Yangtze Delta area

1. Introduction

Water resources are not only the basic natural resources that constitute the ecological
environment, but also the important strategic economic resources that support the indus-
trial economy and social development. Declining water quality has been a serious issue
around the world. It threatens a range of sustainable-development targets by inhibiting
economic growth, worsening health conditions, and reducing food production. Over the
last decades, rapid urbanizing and industrializing, inefficient water usage, and the release
of raw and improperly treated wastewater have created severe and growing water-quality
deterioration in China [1]. People have gradually realized that water-quality degradation
has become an increasingly serious problem, and economic activities are one of the main
driving factors of water-quality degradation, especially the distribution of industrial struc-
tures that have significantly changed the hydrological situation. The government has made
progress tackling water pollution to ensure availability and sustainable management of
water resources for supporting socioeconomic activities in recent years, such as increasing
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investment in the treatment of industrial wastewater and imposing strict controls and
supervision on wastewater emission of industrial producers [2], but it still has a long way
to go.

Industrial structure is closely related to water-resource consumption and water qual-
ity [3]. Assuming that the intensity of water-resource consumption for relevant industrial
sectors remains unchanged, the adjustment of industrial structures can lead to changes
in water-resource supply and demand, and impacts water environments; for example,
by adjusting the industrial scale with lower water-resource consumption and higher
environmental-protection levels. Some changes could alleviate the water supply–demand
contradiction and improve water quality while maintaining a certain total economic return.
Therefore, the analysis of the relationship between industrial structure and water envi-
ronments is not only in line with the needs of industrial optimization and upgrading, but
also an inevitable choice to promote the sustainable use of water resources. However, the
relationship between industrial structure and water quality may vary with different time
and space scales. It is a complex system with multiple feedbacks, nonlinearity and high
order, which includes industrial-structure adjustment, pollution-control demand, treatment
input, and water-environment quality improvement. Because the relationship between the
factors is not a simple linear relationship, it is difficult to accurately quantify it by using the
general operational research and econometric models.

System dynamics (SD) modeling has been widely applied in exploring the nonlinear
dynamic and characteristics of complex systems; for example, in simulating and optimizing
water supply and demand balance [4,5]. Meanwhile, there are also studies using the SD
approach to understand both short-term and long-term impact of environment, actions,
and policies on system behavior over time [6–9]. In recent studies, the SD model was
combined with the Cobb–Douglas production function to assess the impact of economic ac-
tivities on urban industrial water supply and demand [6]; economic dimensions, especially
the agricultural irrigation system, were the main driving factors that influenced water
demand [7]. The potential future effects of climate change on water demand were also
investigated using the SD model in [8]. Many scholars have obtained valuable insights into
the relationship between industrial structure and water quality. Liu et al. [9] developed
an SD model that embedded a pollutant-load model and a lake water-quality model into
managing lake water quality at the watershed scale. However, most previous studies only
focused on one or two influential factors from the industry level and did not take into
consideration the impact of specialized divisions within different sectors, as well as the
quantitative evaluation of water-protection effects caused by industrial restructuring.

In this research, we systematically analyzed the water environment system and con-
structed a system dynamics model to explore the complex coupling mechanisms between
economic development and water environments. Taking the Yangtze River Delta, in par-
ticular Jiaxing, as our case study, we constructed a dynamic simulation model including
industrial structure, water-resource consumption, water environment, and their influenc-
ing factors. More importantly, we further subdivided and identified the key industries
within the primary, secondary, and tertiary sectors based on their potential to constitute a
high-polluting factor according to the Jiaxing City Statistical Yearbook. Then we developed
five representative scenarios that represented particular economic development patterns
in order to estimate the possible impact of industrial-structure adjustment. The main
goal of this research was to provide decision-makers with a tool to identify solutions for
achieving sustainable water-resource management through understanding the dynamic
effect between industrial-structure adjustment and water environments.

This research is organized as follows. Section 2 provides a brief description of the
application of SD in water-quality modeling. Section 3 gives a general overview of the SD
methodology. Section 4 describes the application of SD modeling in an integrated approach
by focusing on water-quality management. Section 5 adapts the SD model to the Jiaxing
case and presents the simulation results and scenario analysis. Section 6 concludes the
paper by summarizing our findings.
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2. Application of SD in Water-Quality Modeling

Many factors affect water quality, including urban agglomeration [10], economic
development [11], hydrology [12], climate change [13], water-purification engineering
technology [14], and so on. Therefore, water-environment management is a complex
problem that involves many factors such as population scale, industrial development,
management decision-making, etc. Each single factor is constantly changing dynamically,
and the interaction between the factors is mutual feedback. These interactions are complex,
not only because of the complexity of each system itself, but also because of the time-
varying nature of these systems. In order to study the evolution law of such a complex
system and make appropriate predictions and decisions, we need to find a reasonable and
feasible method to reveal the dynamic evolution behavior of the whole system. SD is a
method to study the change in a system’s state with time, which is suitable for simulating
and exploring the evolution of complex systems through modeling of system structure and
feedback mechanisms [15].

Few SD models have been developed to simulate the complex interactions among
various factors that drive the change of water environments. Karamouz et al. [16] used an
SD approach to simulate the bargaining process between different stakeholders involved
in a waste-load allocation problem, and proposed an SD-based conflict-resolution model
for river-quality management. By linking it with another water-quality simulation model,
they provided a method to effectively incorporate the preferences of various stakehold-
ers. Duran-Encalada et al. [17] presented an SD model to predict the variation in water
quantity/quality due to climate change and their effects on social and economic condi-
tions. Nozari and Abdolmajid [18] used SD to estimate the variation of many hydrological
variables, including water-table fluctuation and drain-water salinity. Park et al. [19] devel-
oped an SD model for achieving efficient operation and planning of capacity expansion
of activated-sludge wastewater-treatment plants. Wang et al. [20] built an integrated SD
model combined with a Bayesian network (BN) to simulate and diagnose water quality.

The above existing models show that the SD method can dynamically simulate the
feedback interactions between the system variables and behavior change of the complex
system over time and space and can comprehensively simulate various policy options
through scenario analysis, so the SD method has a lot of potential in the research of water
quality. At the same time, the SD method is good at dealing with the long-term dynamic
behavior and systems with multiple feedback and complex time-varying characteristics,
which makes it more suitable than the conventional mechanism model. Therefore, with the
SD model, which can represent dynamic and holistic features of the real-world systems,
we can more comprehensively simulate the interaction between multiple subsystems and
policy options. SD models have proven to be a useful tool for describing the combined
feedback effects that socioeconomic systems might exert on water environmental change,
and can facilitate stakeholders in their decision-making.

However, because most of the past models have been focused only on the influence
of natural factors or waste-load allocation, and because socioeconomic processes are not
coupled, the models cannot be used for assessing the long-term dynamic impact of socioe-
conomic development on water quality. The main source of contaminants contributing to
water pollution can be identified, and appropriate practices can be applied to water envi-
ronment management when pollutant loads and water-quality responses are coupled [21].
Moreover, when dynamic models of pollutant load from specialized industries are em-
bedded, reasonable scenarios can be developed and applied for simulating the impact of
industrial-structure change [22].

This research aims to fill this gap. Compared to current models, our SD modeling
framework clearly expressed the feedbacks among socioeconomic development, pollutant
load, and water quality, along with paying sufficient attention to the subdivisions of differ-
ent economic sectors. Jiaxing City, which has suffered high water pollution problems in the
past few years, was chosen as a case study for validating the model and testing the potential
use of the model in providing guidance on sustainable water-management policies.
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3. Methodology

This paper adopted an SD method to characterize the dynamic effect between industrial-
structure adjustment and water-resource consumption and water environments. SD was
proposed by Forrester in 1958, and its concept was first expressed in Industrial Dynam-
ics [23] as a computer-aided approach to policy analysis and decision-making in the
simulation of industrial supply-chain problems. Based on feedback control theory [24]
and system thinking concepts [25], the SD approach has proven to be suitable not only
for business and strategy problems [26–28], but also for the simulation of complicated
environmental and water-system problems [29–31].

SD is a method that constructs models based on system structure, often represented
by causal-loop diagrams and stock-and-flow diagrams [27]. Causal-loop diagrams are
causal diagrams that aid in visualizing how different variables are interrelated with each
other in a system. There are two fundamental kinds of feedback loops: reinforcing loops
(marked as R in Figure 1) and balancing loops (marked as B in Figure 1). Reinforcing loops
are processes that occur in feedback loops that tend to lead to runaway growth (or decay)
over time, while balancing loops are representative circles of cause and effect that counter
a change with a push in an opposite direction [32].

Figure 1. Feedback loops in system dynamics.

In Figure 1, note that a “+” means a positive relationship in which the effect changes
in the same direction as the cause, while a link with a “−” means a negative relationship in
which the effect changes in the opposite direction as the cause [33].

A stock-and-flow diagram is a calculable representation of a system, and captures the
relationship between the elements in a more profound and detailed manner with more
information than is shown in a causal-loop diagram. Stock variables describe the state of
the system at a given point of time; e.g., the water in a river (Figure 2). The amount of
water in a river increases as new water comes from precipitation and decreases as water
flows into another stream. Flow variables refer to the variables that are measured over an
interval of time. Stocks can only be changed via flows, and stocks themselves can affect the
flows at the same time (e.g., more water in a river will increase the evaporation, and more
evaporation leads to more precipitation, which completes the feedback loop).

Figure 2. Stock-and-flow structure in system dynamics.



Sustainability 2021, 13, 7696 5 of 20

SD is a powerful methodology to study complex socioeconomic systems based on
feedback-control theory. It offers a participatory approach for dealing with complexity
in social, economic, managerial, and ecological systems. SD modeling is also widely
applied in the field of water-resource management [34,35]. Based on the above model,
computer-simulation technology was used to analyze the evolving trend of the water
environmental system. Its characteristics were that it could effectively deal with decision-
support problems such as long-term, periodic, incomplete data and controllable precision
range. SD can help us make decisions, observe the results, and evaluate their effectiveness
in a simple and clear way.

4. SD Model of Water Quality
4.1. Research Scope and Research Goal

The research objective was to provide an experimental simulation platform for the
analysis of these strategic problems in their interconnected context through building an SD
model to investigate the feedback process and interaction among the population; water
resources; and primary, secondary, and tertiary sectors; and discuss the causal relationships
between water quality and industrial-structure adjustment. The water-quality system
includes the population subsystem, water-resource subsystem, economic sector (primary,
secondary, and tertiary sector) subsystem, and water-environment subsystem (Table 1).

Table 1. System elements of water/quality.

Subsystem Specific Key Parameters Unit

Population subsystem

Urban population 10,000 persons

Rural population 10,000 persons

Natural growth rate of urban population 1/year

Mechanical growth rate of urban population 1/year

Primary industry subsystem

Farming area 10,000 ha

Growth rate of farming area 1/year

Water consumption per RMB 10,000 output value 10,000 t/RMB 10,000

Proportion of wastewater generated Dimensionless

Proportion of wastewater discharged into river Dimensionless

Secondary industry subsystem

GDP RMB 10,000

Growth rate of GDP 1/year

Water consumption for per RMB 10,000 output value 10,000 t/RMB 10,000

Proportion of wastewater generated Dimensionless

Reuse rate of treated wastewater Dimensionless

Proportion of wastewater discharged into river Dimensionless

Tertiary industry subsystem

GDP RMB 10,000

Growth rate of GDP 1/year

Water consumption for per RMB 10,000 output value 10,000 tons/ RMB 10,000

Proportion of wastewater generated Dimensionless

Proportion of wastewater discharged into river Dimensionless
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Table 1. Cont.

Subsystem Specific Key Parameters Unit

Water resource subsystem

Water resources 10,000 t

Domestic water consumption 10,000 t

Production water consumption 10,000 t

Ecological water consumption 10,000 t

Precipitation 10,000 t

Evaporation 10,000 t

Water environment subsystem

COD (chemical oxygen demand) pollutant load t

NH3-N (ammoniacal nitrogen) pollutant load t

TN (total nitrogen) pollutant load t

TP (total phosphorus) pollutant load t

4.2. System Structure of Water Quality

After determining the scope and boundary of the model, the interactions between the
four main boundaries of population, economic activities, water supply and demand, and
water environment were analyzed. We established a causal-loop diagram for water quality,
as shown in Figure 3. The main causal loops in the model causal-loop diagram were based
on the following logic:

(1) The increase of population will increase the water demand, which will have a pos-
itive effect on wastewater discharge. More wastewater discharged will bring more
pollutant into rivers and lead to the decline of water quality. The deterioration of the
water quality has a negative effect on the increase of population. Loop B1: population
→ +water demand→ +wastewater discharge→ +pollutant load→ –water quality
→ +population (balancing loop)

(2) The development of economy will increase the water demand, which will have a
positive effect on wastewater discharge. More wastewater discharged will bring more
pollutant into rivers and lead to the decline of water quality. The deterioration of the
water quality has a negative effect on the growth of the economy. Loop B2: economic
development→ +water demand→ +wastewater discharge→ +pollutant load→
–water quality→ +economic development (balancing loop)

(3) The growth of the economy will lead to an increase in the local GDP, and the increase
in local GDP will increase the investment in water infrastructure. This will positively
affect the amount of wastewater treated. More wastewater treatment will contribute
to amount of water that can be reused. More water reused will positively affect the
water supply. Therefore, the gap between water supply and demand will decrease.
The reduction of water shortage will promote economic development. Loop R1:
economic development→ +GDP→ +water infrastructure investment→ +wastewater
treatment→ +wastewater reuse→ +water supply→ –water shortage→ –economic
development (reinforcing loop)

(4) The growth of the economy will lead to an increase in the local GDP, and the increase
in local GDP will increase the investment in water infrastructure. This will positively
affect the amount of wastewater treated. More wastewater treatment will contribute to
the amount of water that can be reused, which means the wastewater discharged into
the river will decrease. Therefore, the pollutant load will decrease and water quality
will improve. High water quality adversely affects water-environment pressure.
Less water-environment pressure will positively affect the economic development.
Loop R2: economic development→ +GDP→ +water infrastructure investment→
+wastewater treatment→ +wastewater reuse→ –wastewater discharge→ +pollutant
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load→ –water quality→ –water environment pressure→ –economic development
(reinforcing loop)

(5) The growth of the economy will lead to an increase in the local GDP, and the increase
in local GDP will increase the investment of water infrastructure. This will positively
affect the amount of wastewater treated. More wastewater treatment will reduce the
pollutant content in wastewater, which means the pollutant load discharged for the
river will decrease. Therefore, water quality will increase and water-environment
pressure will decrease. Less water-environment pressure will positively affect the
economic development. Loop R3: economic development→ +GDP→ +water infras-
tructure investment→ +wastewater treatment→ +pollutant treatment→ –pollutant
load→ –water quality→ –water environment pressure→ –economic development
(reinforcing loop)

(6) The higher the water quality, the higher the self-purification capacity of a water body.
Loop R4: water quality → +self-purification capacity → +water quality (reinforc-
ing loop)

Figure 3. Causal-loop diagram of water quality.

4.3. Stock-and-Flow Diagram of Water Quality

A stock-and-flow model was developed using Vensim software (Ventana System, Inc.,
Harvard, MA, USA). The model aimed to assist in the understanding of the coupling of
economy and environment. Figure 4 illustrates the key variables of the proposed model,
which have been organized in three main sets: the socioeconomic activities (e.g., population;
added value of primary, secondary, and tertiary industries), water supply and demand
(e.g., water demand of urban and rural life; water demand of primary, secondary and
tertiary industries), and the effects of socioeconomic activities on water quality (e.g., the
pollutant load of COD, TN, TP, and NH3-N).
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Figure 4. Simplified stock-and-flow diagram of water quality.

5. Model Adaption to Jiaxing Water Quality
5.1. Overview of the Study Area

Jiaxing is located in the northern part of Zhejiang Province, eastern China. Jiaxing is
in the center of the economically dynamic Yangtze River Delta region, and is situated on
the railway between Hangzhou and Shanghai. It is joined to the dense waterway network
that serves the northern Zhejiang plain (Figure 5). The location is at longitude 120.8106◦ E
and latitude 30.7539◦ N. It covers an area of 4230.05 km2.

Figure 5. Location of Jiaxing City.
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Jiaxing’s economy developed rapidly in the past 10 years (Figure 6). In 2020, the total
population of Jiaxing was 4.8 million, and the GDP was RMB 550.95 billion (USD 84.46 bil-
lion). Jiaxing’s economic activities are broadly categorized into three sectors: primary,
secondary, and tertiary industries. As shown in Figure 7, the primary industry’s contribu-
tion to GDP was estimated as 2.3%, with the secondary and tertiary industries accounting
for 51.9% and 45.8%, respectively, in 2020 (per the 2021 Jiaxing national economic and
social development statistical bulletin).

Figure 6. GDP and GDP growth rate of Jiaxing City (source: 2011–2020 Jiaxing national economic and social development
statistical bulletins).

Figure 7. Value added (% GDP) of the three sectors in Jiaxing City (source: 2011–2020 Jiaxing national economic and social
development statistical bulletins).

Jiaxing City is located in the lower reaches of Taihu Lake Basin, which is a typical plain
river network area. There are many rivers and lakes in the area. The total length of the
rivers is 13,805 km, and the water area is 273.24 km2. Among them, there are 57 main rivers
with a total length of 959 km, and 66 lakes with an area of more than 10,000 m2. The total
water area is 38.29 km2, with a water area ratio of 7.96%, and a river density of 3.5 km/km2.
Since the end of the 20th century, the economy of Jiaxing has developed rapidly, and the
five counties (cities) under its jurisdiction have entered the ranks of the top 100 counties
in the country. However, the quality of surface water has obviously deteriorated. On the
one hand, because it is located at the end of Taihu Lake Basin, it is obviously affected
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by the water quality. On the other hand, it is also affected by the endogenous pollution
brought by economic development, and the surface water quality is deteriorating. Since
the end of the 20th century, due to the economic development, the surface water quality
of Jiaxing has deteriorated year by year [36], and the main water bodies in the region are
inferior to grade V in 2010. Since the 12th Five Year Plan, with the implementation of
pollution reduction and other measures, the deterioration trend has been curbed, and the
surface water environment is slowly improving. At the end of 2020, the city’s total water
resources were 4.217 billion m3, and the annual average precipitation depth was 1640.7 mm
(equivalent to 6.929 billion m3 of precipitation). Among the 73 city-controlled sections, a
water quality of grade III and above accounted for 91.8%, an increase of 26.0% from the
previous year. A water quality of grade IV accounted for 6.8%, and the water quality of
grade V accounted for 1.4% (Figure 8). In general, during the 13th Five Year Plan period,
the water-environment quality of Jiaxing City has been improved significantly, and the
comprehensive improvement effect is remarkable. However, the water quality is still not
meeting its expected standard. Further efforts to improve the water quality will be more
difficult. This challenge is representative in many ways of other Chinese cities.

Figure 8. Water quality of surface water in Jiaxing from 2011 to 2020 (source: 2011–2020 Jiaxing water resource bulletins).

5.2. Detailed Setting of the Jiaxing Model
5.2.1. Construction of the Jiaxing Model

The spatial boundary of the Jiaxing SD model was the total administrative area of
Jiaxing City. The focus of the water quality was on surface water resources, with particular
focus on the impact of sensitive industries on water quality. Sensitive industries are
the industries that present the greatest threat to water-quality safety due to industrial
development in the region. In this research, we selected the sensitive industries according
to the amount of wastewater discharged. Table 2 shows the list of sensitive industries
and the proportion of sewage discharged in each industry. Among them, when choosing
sensitive industries in primary industry, there was lack of data on the amount of wastewater
discharged. Therefore, we considered three subindustries based on available data for the
pollutant discharge instead. Since mariculture has less impact on the surface water, our
model focused on freshwater aquaculture.
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Table 2. List of sensitive industries.

Sector Key Industries Proportion of Wastewater Discharged

Primary industry
Farming -
Livestock and poultry breeding (LPB) -
(Freshwater) aquaculture -

Secondary industry
Textile industry (TI) 53.63%
Paper and paper products (PPP) 16.74%
Raw chemical materials and chemical products (RCMCP) 8.01%

Tertiary industry
Wholesale and retail sale (WRS) 32.02%
Accommodation and catering services (ACS) 22.71%
Culture, sports, and entertainment (CSE) 26.36%

There were a total of 402 variables or constants, including 24 status variables, 32 rate
variables, 202 auxiliary variables, 142 constants, and 23 table functions, in the Jiaxing
SD model. With the year 2018 as the base year, the data from 2018 to 2020 were used
to test the authenticity of the system, and then to forecast the data for 2021–2035. The
data sources included: the 2018–2020 Jiaxing Water Resources Bulletin, the Jiaxing City
Statistical Yearbook, the Jiaxing City National Economic and Social Development Statistical
Bulletin, and the Zhejiang Province Water Resources Yearbook.

5.2.2. Main System Equations

The key equations in the flow diagram of the system dynamics model are listed
as follows:

(1) Pollutant load of COD into the river = pollutant load of COD from urban and rural
life + pollutant load of COD from primary industry + pollutant load of COD from
secondar industry + pollutant load of COD from tertiary industry

(2) Pollutant load of COD from primary industry = pollutant load of COD from farm-
ing + pollutant load of COD from livestock and poultry + pollutant load of COD
from aquaculture

(3) Pollutant load of COD from farming = wastewater discharged from farming into the
river × COD concentration of wastewater discharged from farming

(4) Wastewater discharged from farming into the river = wastewater discharged from
farming × (1 – ecological interception rate of irrigation tail water in farming)

(5) Wastewater discharged from farming = water demand of farming × proportion of
wastewater discharged from farming

(6) Water demand of farming = GDP of farming × water consumption per capita GDP
of farming

(7) GDP of farming = farming area × average output value per unit area of farming
(8) Farming area = INTEG (growth rate of farming area – declining rate of farming area,

initial value)

To evaluate water quality, we used water quality comprehensive pollution index
(WQCPI) evaluation method in this research. The WQCPI is an important method for
water-environment assessment, as it can fully depict general water quality [37]. It is
calculated based on the evaluation of individual pollution and comprehensive indices. The
calculation method for a single pollution index is shown as follows:

Pi = Ci/Si

where Ci is the measured concentration of the contaminant, and Si is the standard value
of the corresponding category. The pollutants measured in this research included COD
(chemical oxygen demand), TN (total nitrogen), TP (total phosphorus), and NH3-N (am-
moniacal nitrogen).
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The calculation method of the water quality comprehensive pollution index is
as follows:

P =
1
n

n

∑
i=1

Pi

The average values determined for P were evaluated to assess the water quality of the
surface water (Table 3).

Table 3. Grading standard for water-quality classification.

Comprehensive
Pollution Index Level Classification Basis

≤0.2 Cleanness Most of the items were not detected, and some items were detected
but within the standard.

0.21~0.40 Subcleanness The detection value was within the standard, and individual items
were close to or exceeded the standard.

0.41~0.7 Slight pollution Individual items were detected and exceeded the standard.

0.71~1.00 Moderate pollution Two of the detected values exceeded the standard.

1.01~2.0 Heavy pollution A considerable part of the detected values exceeded the standard.

≥2.01 Severe pollution A considerable part of the detected values exceeded the standard
several times or dozens of times.

5.3. Model Validation and Sensitivity Analysis
5.3.1. Model Validation

Models do not correspond exactly to the real world because no single model can
account for all the factors in a real system [38]. Therefore, SD modelers are more interested
in general dynamic tendencies than forecasting specific values of system variables at
specific times. Even if the models will never be entirely representative of reality, they can
be useful if the models are close enough. Confidence in SD models can be validated by
many tests of model structure and behavior. The former test can be compared directly to
descriptive knowledge of real-system structure, while the latter one can be conducted by
comparing the simulation results with actual data [39].

Both the structure and behavior test were performed in this research. We first con-
ducted a structure-verification test in terms of dimensional consistency. The unit check
tool of Vensim was used, and there was no dimensional mismatch. Then, in the process
of the behavior test, the simulated result was compared with the relevant historical data
of Jiaxing City in 2018–2020. The comparison of historical and simulated data of the resi-
dent population and GDP of three industries in Jiaxing City is given in Table 4, while the
comparison of water usage is shown in Table 5.

Tables 4 and 5 demonstrate that the error rate between all simulated data and real
data was below 10%, which means the model was in line with the actual situation and can
be considered to be adequate to forecast further time steps [40]. Therefore, the developed
model could be used to analyze and forecast the dynamic change of water quality in the
next step.
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Table 4. Comparison of historical and simulated data of the population (million) and GDP (billion RMB).

Year 2018 2019 2020

Population
Real value 472.6 480 540.1
Simulated value 472.6 480.13 540.41
Error rate 0% 0.03% 0.06%

GDP of primary industry
Real value 195.14 201.7 -
Simulated value 195.14 199.01 -
Error rate 0% 1.33% -

Added value of secondary industry
Real value 2755.69 2892.55 2861.09
Simulated value 2755.69 2863.96 2888.03
Error rate 0% 1% 0.94%

Added value of tertiary industry
Real value 2146.76 2356.88 2524.25
Simulated value 2146.76 2346.14 2502.64
Error rate 0% 0.46% 0.86%

Table 5. Comparison of historical and simulated data of water use (billion tons).

Year 2018 2019 2020

Domestic water consumption
Real value 2.29 2.32 2.41
Simulated value 2.29 2.32 2.62
Error rate 0% 0% 8.71%

Primary industry water consumption
Real value 10.27 9.62 9.36
Simulated value 10.27 9.62 9.45
Error rate 0% 0% 1%

Secondary industry water consumption
Real value 4.32 4.60 4.53
Simulated value 4.32 4.58 4.55
Error rate 0% 0.43% 0.44%

Tertiary industry water consumption
Real value 1.28 1.29 1.35
Simulated value 1.28 1.33 1.35
Error rate 0% 3.1% 0%

5.3.2. Sensitivity Analysis

Sensitivity analysis is an important task for the reliability of simulation results due
to the uncertainties embedded in parameters of SD models. This analysis can be used to
ascertain model response to uncertain changing of industrial-structure adjustment and
identify influential parameters affecting water quality. We selected nine parameters related
to the change in industry proportion for carrying out a sensitivity analysis of the complex
system: three parameters that were associated with primary industry (change rate of
farming area, change rate of LPB GDP, change rate of aquaculture GDP), three that were
related to the secondary industry (change rate of TI added value, change rate of PPP added
value, change rate of RCMCP added value), and three related to the tertiary industry
(change rate of WRS added value, change rate of ACS added value, change rate of CSE
added value). Figure 9 gives the sensitivity analysis of “the change rate of farming area” as
an example. The sensitivity analysis indicated that the curves obtained were consistent
with the original trends.
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Figure 9. Sensitivity analysis of WQCPI in response to “the change rate of farming area” ±50%.

Table 6 gives the deviation trends of five water-quality variables (COD concentration,
NH3-N concentration, TN concentration, TP concentration, and WQCPI) obtained by ad-
justing the initial value of these nine parameters selected 50% up or down. The deviation in
2035 was larger than that in 2025, which suggests that the present model was robust enough
to simulate the coupling mechanism of economic development and water environment.
The sensitivity analysis results also showed that adjustment in farming industry had the
most significant impact on water quality, followed by PPP and LPB. In the perspective of
single pollutant concentration, the concentration of COD and TN was much more sensitive
to the change of the farming industry, while PPP and LPB were identified as the most
sensitive indicators of the concentrations of NH3-N and TP, respectively.

Table 6. Sensitivity analysis of WQCPI in response to nine parameters ±50%.

Parameter

COD
Concentration

(mg/L)

NH3-N
Concentration

(mg/L)

TN
Concentration

(mg/L)

TP
Concentration

(mg/L)
WQCPI

2025 2035 2025 2035 2025 2035 2025 2035 2025 2035

Change rate of farming area 0.055 0.238 0.000 0.007 0.006 0.026 0.000 0.004 0.004 0.022
Change rate of LPB GDP 0.042 0.095 0.004 0.009 0.008 0.017 0.003 0.007 0.008 0.018
Change rate of aquaculture GDP 0.009 0.024 0.006 0.016 0.004 0.011 0.000 0.001 0.004 0.011
Change rate of TI added value 0.001 0.004 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Change rate of PPP added value 0.015 0.064 0.001 0.029 0.004 0.011 0.000 0.001 0.002 0.020
Change rate of RCMCP added value 0.008 0.123 0.000 0.003 0.002 0.003 0.000 0.000 0.001 0.002
Change rate of WRS added value 0.005 0.027 0.000 0.005 0.001 0.008 0.000 0.000 0.001 0.004
Change rate of ACS added value 0.000 0.004 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.002
Change rate of CSE added value 0.001 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001

5.4. Model Simulation and Analysis

On the basis of constructing the composite system simulation model and verifying
its effectiveness, this research tested the dynamic impact of water environment by setting
scenario assumptions for different degrees of industrial-structure adjustment. Among
them, the adjustment of industrial structure should be realized by changing the different
industries’ growth rate. According to the 14th Five Year Plan and the related industrial
development plan of Jiaxing, the scenarios are as follows:

Scenario 1 (development as usual): there was no parameter adjustment in this scenario.
The scenario was used as a reference scenario; that is, to maintain the existing level of
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industrial-structure development, and the growth rate of the GDP of the primary, secondary,
and tertiary industries remained constant.

Scenario 2 (structural optimization of primary industry): this scenario gave priority to
adjustment in the distribution of primary industry. Nonpoint source pollution caused by
irrigation and family livestock and poultry breeding plays a major role in the deterioration
of water quality in Jiaxing City. Livestock and poultry breeding was an important pillar
industry in Jiaxing during the early 20th century. Large-scale livestock and poultry breeding
with the phenomenon of direct discharge of livestock manure into rivers exceeded the
water-environment carrying capacity. Meanwhile, the scale of aquaculture was expanding
due to the promotion of green technology. Therefore, in 2013, Jiaxing government started
checking and rectifying illegal breeding farms and achieved demonstrated results. In
Scenario 2, a 10% decrease in the change rate of farming area and livestock and poultry
breeding GDP and a 10% increase in the change rate of aquaculture GDP were applied
after 2021.

Scenario 3 (structural optimization of secondary industry): this scenario focused on
adjustment of the distribution of the secondary industry. Considering the textile industry,
paper and paper product production industry, and raw chemical materials and chemical
products industries are intensive industries for the consumption of water and discharge
highly polluted water in large amounts, Jiaxing City will take actions to limit the growth of
these industries. Thus, Scenario 3 assumed the current change rate of these industries will
decline 10% from 2021.

Scenario 4 (structural optimization of tertiary industry): this scenario devoted atten-
tion to adjustment of the distribution of the tertiary industry. During the 13th Five Year
Plan period, the proportion of added value of the information service industry, financial
industry, science and technology service industry, and other modern service industries in
Jiaxing City has been increasing. There will be a slowdown in the development of tradi-
tional service industries as more resources are transferred to the modern service industries.
In this scenario, the change rates of WRS added value, ACS added value, and CSE added
value will have a decrease of 10% from 2021.

Scenario 5 (collaborative optimization of three industries): this scenario was a coordi-
nated adjustment of the distribution of the three industries. This integration scenarios took
all the parameter adjustments into consideration.

As this research aimed to explore the impact of industrial-structure adjustment on
water quality, the scenario design did not consider the optimization of economic objectives.
Table 7 gives an introduction to the parameter settings in different scenarios.

Table 7. Comparison of the scenarios.

Parameter S1 S2 S3 S4 S5

Change rate of farming area Constant −10% Constant Constant −10%
Change rate of LPB GDP Constant −10% Constant Constant −10%
Change rate of aquaculture GDP Constant +10% Constant Constant +10%
Change rate of TI added value Constant Constant −10% Constant −10%
Change rate of PPP added value Constant Constant −10% Constant −10%
Change rate of RCMCP added value Constant Constant −10% Constant −10%
Change rate of WRS added value Constant Constant Constant −10% −10%
Change rate of ACS added value Constant Constant Constant −10% −10%
Change rate of CSE added value Constant Constant Constant −10% −10%

5.4.1. Simulation of Water Quality

The simulated WQCPI of surface water in Jiaxing City is shown in Figure 10. Un-
der the current industrial structure and economic development mode, the quality of the
surface-water environment in Jiaxing City will be significantly improved and achieve a
subcleanness level. Specifically, the comprehensive pollution index of the surface-water
environment decreased rapidly from 2021 to 2030, and decreased slowly from 2031 to
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2035. By 2035, the comprehensive pollution index of water environment will drop to
about 0.37, with COD, NH3-N, TN, and TP concentrations in Jiaxing’s surface water of
0.89, 0.5, 0.15, and 0.05 mg/L, respectively. Compared with the base mode, the other
four alternative scenarios pushed the CWQPI curve downward at different levels, which
meant the adjustments of industrial structure could promote the improvement of water
quality, especially in reducing COD concentration (Figure 11). Among the four policy
designs of industrial-structure optimization, collaborative optimization of three industries
(S5) was the most effective in improving water quality, indicating that transformation and
upgrading of the three industrial structures would be the most beneficial and most efficient
measure to promote sustained development of Jiaxing City’s water environment. However,
the simulation results also indicated that this effect was limited, and cannot help Jiaxing’s
water quality achieve breakthrough.

Figure 10. Simulated WQCPI of surface water in Jiaxing City (2018–2035).

Figure 11. Radar chart for the simulation of water quality in 2035 under different scenarios.

5.4.2. Simulation of Pollution Load

Figure 12 gives the simulation results for COD, NH3-N, TN, and TP pollution loads
from socioeconomic activities between 2018 and 2035 under different scenarios. Four
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pollutant-loading trends behaved in the same way. Pollutant discharged from socioeco-
nomic activities will gradually decrease after a temporary increase in 2019. Taken as a
whole, industrial-structure adjustments had positive effects on reducing pollutant load.
They can especially contribute to the reduction of COD and TP discharges.

Figure 12. Simulation of COD, NH3-N, TN, and TP pollution loads from socioeconomic activities between 2018 and 2035
under different scenarios.

5.5. Suggestions for Improving Water Quality of Jiaxing

This research sought to develop sustainable solutions for water-quality management
by conducting scenario analyses. The results of the sensitivity analysis showed that
adjustment in the farming industry had the most significant impact on WQCPI, followed
by PPP and LPB, which indicated that these three industries are critical components that
affect Jiaxing City’s water-quality management. This is reasonable, because agricultural
nonpoint sources of pollution are the leading source for the surface water environment.
The simulation results indicated that the existing industrial structure of Jiaxing City will
improve the water quality during 14th Five Year Plan period. However, the adjustment
of industrial structure in Jiaxing City has little influence on water-quality improvement
at the present stage. On the one hand, the Jiaxing government had implemented strict
measures to control and prevent industrial pollution, and some of the most persistent
point-source pollutants are under good control now. On the other hand, there is little space
for the major industries to adjust, as they have long been competitive industries in Jiaxing.
Therefore, to ensure the sustainability of water quality, the Jiaxing government should
take actions to accelerate the application of cleaner production processes and technologies
into consideration. It is necessary to increase investment support for cleaner production
transformation projects of key industries and enterprises in the river basin and organize
cleaner production pilot demonstrations. For example, enterprises should give priority to
the cleaner production technology issued by the state.

The results of the SD models can be used to investigate the interactions among
numerous factors and understand the dynamic behavior of complex systems. However,
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the social economy and water environment constitute an open and dynamic system with
the characteristics of high complexity, uncertainty, and multiple levels. While making
model-based assessments of complex environmental problems, the assessments should rely
more on exploring possible future developments, rather than making accurate predictions
about the future [41]. The impact of possible future policies can be analyzed by conducting
scenario analyses and providing reference for decision-makers. For example, the results of
Scenario 5 showed that the impact of industrial-structure adjustment on NH3-N pollutant
load was very limited, which indicated that industrial-structure adjustment is not an
effective way to degrade the concentration of NH3-N in surface water.

This research had limitations. First, some variables, such as the amount of entry water,
outland water, precipitation, and evaporation, were assumed to be constant. This implies
that the gap between water supply and demand cannot be measured precisely. Second, the
impact of water quality on economic activities was simplified by industrial water quota, as
it was quite difficult to quantify the interaction between water quality and the economic
change of each sensitive industries. Third, a multiobjective optimization study of economic
growth and water-quality improvement was not considered. Future research is required to
make up for these deficiencies.

6. Conclusions

This research used SD modelling as a decision-support tool to help achieve sustainable
water-quality management. The model used in this work covered population; primary,
secondary, and tertiary industries; water resources; and water environmental subsys-
tems. Sectors of population and economics, water demand and wastewater discharge,
pollutant load, and water quality were coupled in the SD model in order to express the
coupling coordination among the city’s socioeconomic development, pollutant loads, and
water quality.

We applied the model to Jiaxing City and the primary, secondary, and tertiary indus-
tries were further divided into nine subindustries. The model was calibrated based on
the historical data obtained from 2018–2020. Validation results and sensitivity analysis
confirmed the model was appropriately implemented and could be used to analyze the
research problem. Under the current scenario (S1), Jiaxing’s water quality will steadily
improve over the period of 2021–2035 and reach a subcleanness level at the end of 14th Five
Year Plan. Adjustments in the farming industry had the most significant impact on water
quality, followed by PPP and LPB. In terms of individual pollutants, the concentrations of
COD and TN were much more sensitive to changes in the farming industry than in other
industries. PPP and LPB were identified as having the most influence on the concentrations
of NH3-N and TP, respectively. Collaborative optimization of the three industries (S5)
would be the most efficient policy to promote sustainable water management. However,
the effect of industrial-structure adjustment was limited. Strategies comprising cleaner
production should be undertaken to reduce pollution generation.
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