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Abstract: In Taiwan, intensive forest fires frequently cause serious forest degradation, soil erosion
and impacts on alpine vegetation. Post-fire succession often induces the substitution of forest
by alpine grassland. Alpine silver grass (Miscanthus transmorrisonensis Hay.) and Yushan cane
(Yushania niitakayamensis (Hay.) Keng f.) are two main endemic species emerging on post-fire
alpine grassland. These species play a major role in the recovery of alpine vegetation and soil
conservation of alpine grassland. However, their root traits, root mechanical properties and water
erosion-reducing ability have still not been well studied. In the present study, root characteristics
were examined using a complete excavation method. Root mechanical characteristics were estimated
by utilizing the uprooting test and root tensile test, and hydraulic flume experiments were performed
to investigate the water erosion-reducing ability using 8-month-old plants. The results show that the
root architecture system of Alpine silver grass belongs to fibrous root system, while the Yushan cane
has sympodial-tufted rhizomes with a fibrous root system. Root characteristics reveal that relative
to Alpine silver grass, Yushan cane has remarkably larger root collar diameter, higher root biomass,
larger root volume, higher root density, and a higher root tissue density. Furthermore, uprooting
resistance of Yushan cane is notably higher than that of Alpine silver grass. However, the root tensile
strength of Alpine silver grass is significantly higher than that of Yushan cane. Additionally, hydraulic
flume experiments reveal that Yushan cane has significantly lower soil detachment rates than that
of Alpine silver grass. Collectively, these findings clearly show that Yushan cane has superior root
characteristics and water erosion-reducing ability than Alpine silver grass and is thus more suitable
for the conservation of alpine grassland.

Keywords: alpine grassland; root biomechanics; root system; soil stability; water erosion-reducing ability

1. Introduction

Taiwan, a subtropical maritime island in Southeast Asia, is rich in alpine forest re-
sources. Due to harsh drought conditions and high inaccessibility, alpine forests are very
vulnerable to forest fires caused by lightning strikes [1]. Severe forest fires often cause
significant forest deterioration and vegetation succession [2,3]. In addition, wildfires can
damage forest soil texture, and trigger landslides and runoff erosion after intense rain-
storms [4,5]. Usually, wildfires burn out forest vegetation, and induce primary ecological
succession. Previous studies have indicated that post-fire forest succession occurs with the
substitution of dominant herbs and shrubs in alpine vegetation [6,7]. In Taiwan, Alpine
silver grass (Miscanthus transmorrisonensis Hay.) and Yushan cane (Yushania niitakayamensis
(Hay.) Keng f.) are two endemic alpine pioneer species emerging on post-fire alpine
grassland [8]. Generally, pioneer alpine vegetation plays an essential role in vegetation
restoration and soil conservation of alpine grasslands [9,10].
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The crucial functions of roots are anchorage and absorption of water and nutrients.
Plant root systems can significantly affect slope stability and soil erosion [11]. Patterns
of root system architecture are affected by plant species and environments, and can be
categorized into seven types, i.e., P- (parallel), H- (horizontal), PH- (parallel and horizontal),
R- (right), VH- (vertical or horizontal), V- (vertical) and M- (massive) type [12]. Alpine
environments are characterized by dry, cold, windy, and snowy conditions. Alpine plants
develop diverse root morphology and properties to survive and thrive in the harsh envi-
ronmental conditions of higher altitudes [13,14]. Root system architecture plays a vital role
in anchorage. Mickovski et al. [15] indicated that Vetiver grass (Vetiveria zizanioides L.) has
an M-type fibrous root system that can resist uprooting and torrential runoff. Root traits
also significantly influence its biomechanical properties. It has been demonstrated that
ultimate pullout resistance is highly correlated with root collar diameter [16]. Lee et al. [17]
reported that tree uprooting resistance is highly influenced by root collar diameter and
root biomass. Hudek et al. [14] also demonstrated that alpine grasses have equivalent root
tensile strength to small shrubs. Several studies have demonstrated that Poaceae species
with M-type fibrous roots have higher soil binding capability and can significantly enhance
the slope stability of alpine lands [18–20]. Previous studies also demonstrated that fibrous
roots are more efficient than tap roots in preventing concentrated flow erosion [21–24].
Furthermore, root functional traits have a great influence on soil erosion. Several studies
reported that the soil erosion rate is negatively correlated to root density and root length
density [21,25]. Gyssels and Poesen [26] indicated that flow erosion rates decrease with
increasing root density. In addition, Burylo et al. [27] showed that the soil erosion rate
is closely correlated with fine roots. However, there have been very few studies on the
root characteristics and water erosion-reducing ability of Alpine silver grass and Yushan
cane. The hypothesis of this study is that Yushan cane with perennial symoidial rhizomes
and profuse fibrous lateral roots could exhibit better ability in control of soil erosion and
degradation than Alpine silver grass. Since Alpine silver grass and Yushan cane are the
major dominant species on post-fire grassland, this study is aimed to investigate and
compare the root traits, root mechanical properties and water erosion-reducing ability of
these two native alpine pioneer species in relation to post-fire vegetation restoration and
soil erosion control of alpine grasslands.

2. Materials and Methods
2.1. Site and Vegetation

The sampling site is located at the Hohuan Mountain, 3000 m a.s.l., at 24◦09′34” N,
121◦17′42” E in Taiwan, an alpine grassland (Figure 1). The annual mean temperature in
the region is 7 ◦C, and the annual rainfall is about 3500 mm [8]. This 500 ha research area,
with a downward slope in the northeast direction and average slope of 10◦, is covered by
46% dominant Alpine silver grass (Miscanthus transmorrisonensis) and 42% Yushan cane
(Yushania niitakayamensis) vegetations (Figure 2). The soil profile of Yusan cane grassland
showed an Umbric epipedon (A, at 0–22 cm) and two Cambic horizons (Bw1, at 22–32 cm
and Bw2, at 32–44 cm). The soil pedon has two main lithological discontinuities at about
40 and 70 cm below soil surface. The type of soil was classified as typic Haplumbrept, fine,
illitic, frigid and inclinic. The soil materials of upper 45 cm and 45–70 cm are silty clay and
sandy loam, respectively [28].
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Figure 2. The distribution of Miscanthus transmorrisonensis (a) and Yushania niitakayamensis (b) at Hohuan Mountain alpine
grassland. Photo taken by M.-Y. Chu in July 2019.

2.2. Plant Raising

Four 50 cm × 50 cm-quadrat sample plots at 6 m intervals along two transects lines
were set up at Alpine silver grass and Yushan cane vegetations at the Hohuan Mountain
alpine grassland in July 2019, respectively. One thousand ramets of each species were
randomly selected, carefully excavated and collected by hand with a small steel shovel. The
average height of ramets for Alpine silver grass and Yushan cane were 4.6 ± 1.4 cm and
5.2 ± 1.6 cm, respectively. Ramets of each species were wrapped in wet paper towels and
put in polyethylene bags and stored in portable ice box to conserve the viability. Then, the
ramets were brought back to the laboratory and planted into high crates (30 × 30 × 50 cm,
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L ×W × H) and short crates (30 × 30 × 30 cm, L ×W × H). Before planting, the crates
were packed with alpine soils collected from the alpine grassland. The chemical and
physical properties of the soil are shown in Tables 1 and 2. The organic carbon and total
nitrogen contents were analyzed by combustion method using Vario EL cube elemental
analyzer. In addition, Mehlich 3 extragent (composing 0.2 M glacial acetic acid, 0.25 M
ammonium nitrate, 0.015 M ammonium fluoride, 0.013 M nitric acid, and 0.001 M ethylene
diamine tetraacetic acid (EDTA)) was used to extract the elements, such as P, K, Ca, Mg,
Zn, Mn, Fe, Cu, Cd, Cr, Ni, and Pb. The concentrations of these elements were analyzed
using an inductively coupled plasma optical emission spectroscopy (ICP-OES) method.
For root traits and biomechanical study, 24 ramets of each species were transplanted to 24
high crates separately. For hydraulic flume experiment, 36 ramets of each species were
transplanted to 24 short crates, respectively. Meanwhile, twelve bare soil crates served as
control. All crates were randomly arranged in a nursery under an external environment
and watered once every three days. Crates were rotated weekly to reduce shielding effect.
Altogether, the azimuth of crate was unaltered.

Table 1. Chemical characteristics of soil used in this research.

Properties Soil

pH (water) 6.21
Conductivity (dS m−1) 0.11
Organic carbon (g kg−1) 1.95
Total nitrogen (%) 0.27
Phosphorus (mg kg−1) 20
Potassium (mg kg−1) 78
Calcium (mg kg−1) 1359
Magnesium (mg kg−1) 162
Zn (ppm) 6.87
Mn (ppm) 143
Fe (ppm) 350
Cu (ppm) 1.56
Cd (ppm) 0.00
Cr (ppm) 1.00
Ni (ppm) 1.4
Pb (ppm) 6.4

Table 2. Physical characteristics of soil used in this research.

Properties Soil

Skeletal fraction (%) 68
Sand (%) 17
Silt (%) 11
Clay (%) 4
Bulk density (g cm−3) 1.1
Porosity (%) 46.2
Particle density (g cm−3) 2.3

2.3. Growth Characteristics

An pilot research project showed that the crate has sufficient space for root growth
and distribution. Eight months after transplanting, twelve plants of each species were
randomly chosen for root traits and root system observations. Root collar diameter (RCD)
was measured. The intact root systems were cautiously removed from soil with flushing
water. Root distribution and numbers were measured and recorded. Root area ratios (RAR)
were calculated by gathering all roots (1–10 mm diameter) from every 10 cm soil layer
utilizing Böhm’s Methods [29] and calculated [17]. Root traits were inspected and root
pictures were recorded for root architecture analysis. Root traits were measured using
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WinRHIZO Pro image analysis software (v. 2009c; Regent Inc., Quebec, QC, Canada) [30],
although root volume was assessed utilizing a water displacement method for accuracy [31].
Root and shoot were dried at 70 ◦C for 72 h for dry weight measurements. The acquired
data were used to calculate root characteristics [32]. Meanwhile, live roots were collected
for later tensile tests.

2.4. Uprooting Test

Twelve plants of each species were randomly selected for pullout capacity measure-
ments. The silty clay soil has an average dry weight of 17.5 kN m−3, and moisture content
of 25 ± 4%. Before each uprooting test, root collar diameter was recorded. The stem was
cut off from 15 cm above the root collar. The uprooting test was carried out using a vertical
pullout apparatus [17]. The ultimate uprooting force (Fult, N) and displacement were
recorded for further statistical analysis.

2.5. Root Tensile Test

After root system removal, single live root samples were cleaned and categorized
into three diameter classes (0–1, 1–2, and 2–5 mm). Only intact root segments were used.
Root segments were cut into 50 mm in length and preserved [33]. Seventy root sections
of each species were tested in 24 h. The tests were carried out utilizing a tensile testing
machine [34]. Prior to tensile test, root diameter at the middle of section was recorded.
Root sections were tightened to clamps. Afterwards, the root sections were subjected to
constant tensile speed of 4.7 mm min−1 until rupture. For each species, 70 root sections
were tested in the middle section: 39 root sections of Alpine silver grass and 36 root sections
of Yushan cane plants. Root tensile strength (Tsi, MPa) was calculated according to the
equation [20,35]:

Tsi=
4Fult

πdi
2 (1)

where Fult is the ultimate tensile force at rupture (N), and di is the root section diameter
(mm) estimated at the middle point.

Furthermore, the relation between root tensile strength (Ts) and diameter (d) was
computed according to simple power law equation [36]:

Ts = α·d−β (2)

where α and β are species-specific coefficients.

2.6. Hydraulic Flume Experiment

Hydraulic flume experiments on simulated concentrated flow were conducted on
eight-month-old plants using a flume similar to Burylo et al. [27]. The flume was con-
structed with stainless steel (500 × 30 × 30 cm, L ×W × H) with an opening (30 × 30 cm,
L ×W) at the bottom, equaling the wooden short crate, in order that the crate soil surface
matches the flume surface (Figure 3). Before the flume test, the above-ground parts of
samples were cut off at the base. Samples were immersed with water in a bucket for 2 h,
and then left to drain for 10 h. For preventing side effects, the rims between crate and
flume were sealed by adhesive tape and silicone glue. The surface slope, flow discharge
and average bed flow discharge were monitored, and bed flow shear stress (τ, Pa) was
estimated according to the following formula [37,38].

τ = ρwgRS (3)

where ρw is the water density (kg m−3), g is the acceleration due to gravity (m s−2), R is
hydraulic radius (m) and S is the sin α in which α is soil surface slope (◦). Subsequently,
samples were subjected to a constant flow discharge of 0.55 m3 m−1 for one minute. Pilot
tests showed that soil erosion mostly happened in the first minute of the flume test. Twelve
plant sample crates of each species were tested at two slopes. Twelve crates with bare soil
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samples were tested as control. Water and soil debris were gathered in 60 L metal buckets
every minute at the outlet of the flume. The soil debris was divided by settling for 12 h,
drying at 75 ◦C for 72 h and then measuring. The relative soil detachment rate of each
species was computed by dividing the mass of soil debris removed from plant samples
with the mean weight of soil debris detached from control ones. The tests consisted of two
species and one control at two slopes, each with twelve replicates.
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2.7. Statistical Analysis

Variations in root traits, root mechanical characteristics and water erosion-reducing
ability between species were examined with t-test in IBM SPSS V22.0 (SPSS, Chicago, IL,
USA). Data of root collar diameter and root surface area were normalized by [(xi − x-)/SE],
examined by multicollinearity tests, and multiple linear regression analysis utilizing SPSS
Version 22.0. Multiple regression analyses in SPSS were conducted utilizing Multiple
Regression Analysis in SPSS to inspect the relations between uprooting resistance and root
traits. Microsoft Excel Regression analysis (Excel 2013, Microsoft, Redmond, WA, USA)
was used to examine the relations between root tensile resistance, tensile strength, and root
diameter.

3. Results
3.1. Root System Architecture

Y. niitakayamensis plants developed longer and more abundant root systems than M.
transmorrisonensis plants (Figure 4). The fibrous root systems for M. transmorrisonensis
and Y. niitakayamensis were classified as M-type [12]. In addition, M. transmorrisonensis
had underground stems, and Y. niitakayamensis grew perennial sympodial rhizomes. M.
transmorrisonensis, a grass, grew its fibrous roots and underground stems to 17 cm deep
in soil (Figure 4a), while Y. niitakayamensis, a dwarf bamboo, developed its fibrous roots
and rhizome up to 19 cm deep in soil (Figure 4b). Root area ratio (RAR) analysis revealed
significant differences between species in top layers of soil (Table 3, Figure 5).
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Figure 4. Root architecture of 8-month-old M. transmorrisonensis (a) and Y. niitakayamensis (b) plants.

Table 3. Means ± SDs of root area ratios at different soil depths for M. transmorrisonensis and Y. niitakayamensis.

Species
Root Area Ratio (%)

0–5 cm 5–10 cm 10–15 cm 15–20 cm 20–25 cm

Miscanthus transmorrisonensis 0.17 ± 0.04 a 0.08 ± 0.03 b 0.02 ± 0.01 b 0.01 ± 0.01 a 0.00 ± 0.00 a

Yushania niitakayamensis 0.26 ± 0.02 a 1.13 ± 0.20 a 0.17 ± 0.04 a 0.04 ± 0.02 a 0.00 ± 0.00 a

Letters in the same column display significant difference (t-test) between species. N = 12. Level of significance p < 0.05.
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Figure 5. Root area ratios at different soil depths for M. transmorrisonensis and Y. niitakayamensis.
Class: 1 (0–5 cm), 2 (5–10 cm), 3 (10–15 cm), 4 (15–20 cm), 5 (20–25 cm).

3.2. Growth Characteristics

Pilot testing revealed the wooden crates had enough room for root development
during the experiment. Statistical results revealed great variations in root traits of plants
between species (Table 4). Substantially, all growth characteristics except root collar diame-
ter were significantly larger for Y. niitakayamensis than for M. transmorrisonensis. Altogether,
Y. niitakayamensis plants exhibited significantly higher root and shoot growth characteristics
than M. transmorrisonensis plants.
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Table 4. Means ± SDs of growth characteristics for M. transmorrisonensis and Y. niitakayamensis.

Growth Characteristics M. transmorrisonensis Y. niitakayamensis t Value

RCD (mm) 4.07 ± 0.21 b 9.17 ± 0.58 a 8.228 ***
RT 1371.65 ± 130.28 a 1125.78 ± 175.2 a −1.118
TRL (cm) 332.08 ± 73.36 b 1369.6 ± 121.14 a −7.326 ***
RB (g) 5.84 ± 1.12 b 13.33 ± 2.65 a 3.066 **
SB (g) 3.73 ± 0.39 b 38.56 ± 3.59 a 9.653 ***
RD (kg m−3) 2.33 ± 0.45 b 5.64 ± 1.39 a 2.263 *
RLD (km m−3) 1.2 ± 0.27 b 5.48 ± 0.48 a −7.705 ***
RSA (cm2) 333.68 ± 64.12 b 1271.83 ± 161.03 a −5.412 ***
RTD (g cm−3) 0.24 ± 0.02 a 0.35 ± 0.06 a 1.773
RV (cm3) 26.47 ± 5.03 b 45.23 ± 3.15 a 1.855 *
SRL (m g−1) 0.33 ± 0.1 b 3.48 ± 0.51 a −6.052 ***

RCD, root collar diameter; RT, root tips; TRL, total root length; RB, root biomass; SB, shoot biomass; RD, root
density; RLD, root length density; RSA, total root surface area; RTD, root tissue density; RV, root volume; SRL,
specific root length (SRL). Letters in the same row display significant differences (t-test) between species. N = 12.
Level of significance * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. Root Anchorage Ability

Uprooting statistics exhibited that uprooting resistance force rose with uprooting
up to a top and then fell as roots ruptured. The maximum uprooting resistance force of
Y. niitakayamensis (0.8 ± 0.09 kN) was almost seven times that of M. transmorrisonensis
(0.11 ± 0.02 kN) (Table 5). Regression results demonstrated a positive relation between
the maximum uprooting force and some root traits, such as root collar diameter and root
surface area. Linear regressions of uprooting force (Ur) and root collar diameter (RCD) for
M. transmorrisonensis and Y. niitakayamensis are shown in Table 6. These results showed
that uprooting resistance forces are strongly associated with root collar diameter and root
surface area.

Table 5. Means ± SDs of ultimate uprooting force for M. transmorrisonensis and Y. niitakayamensis
and t-value for a t-test.

Root Anchorage Ability M. transmorrisonensis Y. niitakayamensis t-Value

Ultimate uprooting force (kN) 0.11 ± 0.02 b 0.8 ± 0.09 a 7.607 ***
Letters signify significant difference (t-test) between species. N = 12. Significance level *** p < 0.001.

Table 6. Relationship between root traits and uprooting resistance for M. transmorrisonensis and Y. niitakayamensis.

Morphological Traits Species Regression Equation R2 p

RCD (mm) M. transmorrisonensis
Y. niitakayamensis

Ur = 0.05RCD − 0.093
Ur = 0.141RCD − 0.509

0.762 ∗∗
0.8218 ∗∗

0.01
0.01

RSA (cm2)
M. transmorrisonensis

Y. niitakayamensis
Ur = −0.0004RSA + 0.05
Ur = −0.001RSA + 0.407

0.738 ∗
0.803 ∗

0.023
0.034

Ur, uprooting resistance; RCD, root collar diameter; RSA, root surface area. N = 12. Significance level * p < 0.05; ** p < 0.01.

Multicollinearity diagnostic test exhibited that variance inflation factors (VIF) of root
collar diameter and root surface area for M. transmorrisonensis and Y. niitakayamensis were
1.139 and 1.078, respectively, indicating no collinearity between root collar diameter and
root surface area. The derived multiple linear regression equations are shown in Table 7.
Collectively, the root anchorage ability of Y. niitakayamensis is remarkably higher than that
of M. transmorrisonensis.
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Table 7. Relationship between uprooting resistance, root collar diameter and root surface area for
M. transmorrisonensis and Y. niitakayamensis.

Species Regression Equation R2 p VIF

M. transmorrisonensis Ur = 0.042RCD + 0.00028RSA − 0.097 0.715 ∗∗ 0.002 1.139
Y.niitakayamensis Ur = 0.122RCD + 0.00RSA − 0.581 0.85 ∗∗∗ 0.0004 1.078

Ur, uprooting resistance; RCD, root collar diameter; RSA, root surface area. N = 12. Significance level ** p < 0.01;
*** p < 0.001.

3.4. Root Tensile Strength

The results revealed significant differences in root diameter, tensile resistance and
tensile strength between the two species. The mean root diameter of Y. niitakayamensis was
remarkably higher than that of M. transmorrisonensis and the mean root tensile resistance
force of Y. niitakayamensis was also notably greater than that of M. transmorrisonensis.
However, the average root tensile strength of M. transmorrisonensis was remarkably higher
than that of Y. niitakayamensis (Table 8). In addition, root tensile resistance rose with
increasing root diameter following power law function (Figure 6). However, root tensile
strength declined with rising root diameter conforming to power law function (Figure 7).
Taken together, the root tensile strength of M. transmorrisonensis was remarkably greater
than that of Y. niitakayamensis.

Table 8. Means ± SDs of root diameter, root tensile resistance force and root tensile strength for
M. transmorrisonensis and Y. niitakayamensis and t-value for a t-test.

Parameters M. transmorrisonensis Y. niitakayamensis t Value

Root diameters (mm) 0.71 ± 0.06 b 1.73 ± 0.17 a −5.608 ***
Tensile resistance force (N) 15.30 ± 1.94 b 61.25 ± 8.96 a −5.012 ***

Tensile strength (MPa) 408.55 ± 22.71 a 24.96 ± 1.13 b 16.871 ***
Letters in the same row display significant differences (t-test) between species. N = 12. Level of significance
*** p < 0.001.
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3.5. Water Erosion-Reducing Ability

Two soil surface slopes (2.86◦, 16.7◦) were used to test the water erosion-reducing
ability by the two species in this study. For the slope of 2.86◦, the mean flow velocity,
flow discharge, and bottom flow shear stress were 47.49 cm s−1, 0.55 l s−1 and 0.0024 Pa,
respectively. In addition, for the slope of 16.7◦, the mean flow velocity, flow discharge,
and bottom flow shear stress were 91.43 cm s−1, 0.55 l s−1 and 0.0083 Pa, respectively.
Our results demonstrated that the soil loss amount was significantly varied among root-
infiltrated soil samples of the two species and bare soil sample. At the slope of 2.86◦, the
mean soil loss amount for bare soil was significantly higher than that of root-permeated soil
samples of M. transmorrisonensis and Y. niitakayamensis. Furthermore, at the slope of 16.7◦,
the mean soil loss amount for bare soil was significantly higher than that of root-permeated
soil samples of M. transmorrisonensis and Y. niitakayamensis (Table 9). Moreover, relative soil
detachment rates were significantly different between the two species. At the slope of 2.86◦,
the mean relative soil detachment rate of M. transmorrisonensis was at least six times higher
than that of Y. niitakayamensis. At the slope of 16.7◦, the mean relative soil detachment
rate of M. transmorrisonensis was at least three times higher than that of Y. niitakayamensis
(Table 10). Furthermore, the relative soil detachment rates (RSD) of the two species under
two slopes decreased with rising root density (RD) conforming to power law function
(Figures 8 and 9). Collectively, our results clearly show that Y. niitakayamensis has a superior
water erosion-reducing ability compared to M. transmorrisonensis, as demonstrated in their
reducing soil detachment rates.



Sustainability 2021, 13, 7633 11 of 15

Table 9. Means ± SDs of soil loss amount for M. transmorrisonensis and Y. niitakayamensis and bare soil.

Slope (◦)
Soil Loss Amount (g min−1)

ANOVA (p)
Miscanthus transmorrisonensis Yushania niitakayamensis Bare Soil

2.86 49 ± 10.02 b 7.73 ± 1.15 c 224.5 ± 41.5 a 0.000 ***
16.7 267.67 ± 35.45 b 82.25 ± 12.61 c 666.1 ± 66.3 a 0.000 ***

Letters in the same row display significant differences (ANOVA and Tukey’s HSD post hoc test) among species. N = 12. Significance level
*** p < 0.001.

Table 10. Means ± SDs of relative soil detachment rates between M. transmorrisonensis and Y. ni-
itakayamensis.

Slope (◦)
Relative Soil Detachment Rate (%)

p
Miscanthus transmorrisonensis Yushania niitakayamensis

2.86 21.83 ± 4.46 a 3.44 ± 0.51 b 0.005 **
16.7 40.19 ± 5.32 a 12.35 ± 1.89 b 0.003 **

Letters in the same row signify significant difference (T test) between species. N = 12. Significance level ** p < 0.01.
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4. Discussion
4.1. Root System Architecture

M. transmorrisonensis and Y. niitakayamensis are dominant native pioneer species oc-
curring in post-fire alpine grassland in Taiwan. M. transmorrisonensis is a perennial grass
exhibiting allelopathic dominance [8,39]. On the other hand, Y. niitakayamensis is a peren-
nial sympodial bamboo species with a well-developed rhizome, which is more resistant
to wildfire [40]. Our results showed that the roots of M. transmorrisonensis resemble an M-
(massive) type fibrous root system with underground stems, while Y. niitakayamensis (dwarf
bamboo) plants present an M- (massive) type fibrous root system with sympodial rhizomes.
Previous studies indicate that plants with fibrous root systems are beneficial for erosion
and sediment control [15,41]. Therefore, M. transmorrisonensis and Y. niitakayamensis with
fibrous root systems are advantageous for soil conservation of alpine grassland. Further, the
RAR distribution showed that Y. niitakayamensis has more roots in soil depths 5–10 cm and
10–15 cm than that of M. transmorrisonensis. Thus, our results suggest that Y. niitakayamensis
is more competitive than M. transmorrisonensis in shallow soil erosion control.

4.2. Growth Characteristics

The results revealed that all root traits, except for root tips and root tissue density,
varied notably between the two species. They were remarkably higher for Y. niitakayamensis
than for M. transmorrisonensis. Previous studies have shown that root biomass, root density,
root length density and total root surface area have a great influence on slope stability,
soil erodibility and soil conservation [16,27,42,43]. On the post-fire alpine lands in Taiwan,
vegetation restoration is crucial for soil conservation and ecological rehabilitation. M.
transmorrisonensis and Y. niitakayamensis are native pioneer alpine species with adaptability
to withstand harsh environments in alpine areas and are favorable for ecological restoration
of alpine lands. Altogether, our results demonstrate that Y. niitakayamensis has better root
growth characteristics and can adapt better to the harsh environments in the alpine areas
than M. transmorrisonensis.

4.3. Root Anchorage Ability

The results demonstrated that the ultimate pullout force of bamboo Y. niitakayamensis
is remarkably higher than that of grass M. transmorrisonensis. Regression analysis demon-
strates strong correlations between uprooting resistance, root collar diameter and root
surface area. These results are consistent with earlier studies [16,17,44]. Obviously, Y. ni-
itakayamensis with sympodial rhizome and profuse fibrous roots has higher anchorage
ability than M. transmorrisonensis with fibrous roots. Taken together, Y. niitakayamensis
has the higher anchorage ability than M. transmorrisonensis and is more beneficial for soil
conservation of alpine grasslands.

4.4. Root Tensile Strength

Root tensile strength has a great influence on slope stabilization [20,45,46]. Our
findings demonstrated that tensile resistance force and tensile strength differ remarkably
between the two species. Root tensile resistance force of Y. niitakayamensis was notably
greater than that of M. transmorrisonensis, whereas root tensile strength of M. transmorriso-
nensis was remarkably greater than that of Y. niitakayamensis. Further, root tensile resistance
is positively correlated with root diameter, congruent with previous studies [20,47,48].
However, the results show a negative power law correlation between root diameter and
root tensile strength, consistent with previous studies [48,49]. These relations have been
ascribed to decreasing cellulose content concurrent with rising root diameter [48] and
decreasing lignin content as the root diameter rises [49]. Additional studies are needed to
justify the root cellulose and lignin contents of the two alpine species.
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4.5. Water Erosion-Reducing Ability

In general, alpine plants can reduce concentrated flow erosion [27]. M. transmorriso-
nensis and Y. niitakayamensis are native alpine pioneer plants and can withstand the alpine
harsh environments. They can prevent water erosion by reducing soil detachment rates.
Our study highlights the difference between the two alpine plant species on the reduction
in soil detachment rates with respect to different slopes. The mean soil loss amount for bare
soil is the highest, that of root-permeated soil samples of M. transmorrisonensis is the second,
and Y. niitakayamensis is the lowest with respect to both slopes 2.86◦ and 16.7◦ (Table 6).
In addition, the soil detachment rate of M. transmorrisonensis is remarkably higher than
that of Y. niitakayamensis. Our results also show that the root density of Y. niitakayamensis
is notably higher than that of M. transmorrisonensis and the relative soil detachment rates
decrease with rising root density. Previous studies have demonstrated that a rise in root
density results in a significant reduction in water erosion [22,26]. Altogether, our results
clearly show that the water erosion-reducing ability of Y. niitakayamensis is significantly
superior to that of M. transmorrisonensis.

In Taiwan, wildfires and torrential rains frequently trigger serious soil erosion and
impact on alpine grassland. Vegetation restoration has become an important issue of
sustainable alpine grassland management [50]. M. transmorrisonensis and Y. niitakayamensis
are dominant native alpine pioneer species on post-fire grassland. These two species play
an important role in vegetation restoration and ecological succession. Our findings indicate
that there are remarkable differences in root characteristics, root anchorage ability, tensile
strength and water erosion-reducing ability between these two native species, indicating
that Y. niitakayamensis is superior to M. transmorrisonensis in restoring vegetation in post-fire
alpine grasslands. Further studies are required to investigate the ecological succession of
the wildfire burn scars. Silvicultural planting with native tree species can be adopted to
foster forest ecosystem resilience and stability.

5. Conclusions

This study reveals that Y. niitakayamensis has remarkably better root growth charac-
teristics and root anchorage ability than M. transmorrisonensis. Above all, hydraulic flume
tests demonstrate that Y. niitakayamensis has superior water erosion-reducing ability than
M. transmorrisonensis. These findings are beneficial for improving bioengineering technol-
ogy of alpine grassland by combining the information of plant water erosion-reducing
ability. It is clear that Y. niitakayamensis is beneficial for restoring vegetation of post-fire
alpine grasslands. We also recommend that mixed planting with native tree species, such
as Abies kawakamii and Tsuga chinensis, maybe practiced to foster forest ecosystem resilience
and sustainability.
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