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Abstract: The increase in distributed generation (DG) and variable load mandates system operators
to perform decision-making considering uncertainties. This paper introduces a novel state-aware
stochastic optimal power flow (SA-SOPF) problem formulation. The proposed SA-SOPF has objective
to find a day-ahead base-solution that minimizes the generation cost and expectation of deviations
in generation and node voltage set-points during real-time operation. We formulate SA-SOPF for a
given affine policy and employ Gaussian process learning to obtain a distributionally robust (DR)
affine policy for generation and voltage set-point change in real-time. In simulations, the GP-based
affine policy has shown distributional robustness over three different uncertainty distributions for
IEEE 14-bus system. The results also depict that the proposed SA-OPF formulation can reduce
the expectation in voltage and generation deviation more than 60% in real-time operation with an
additional day-ahead scheduling cost of 4.68% only for 14-bus system. For, in a 30-bus system, the
reduction in generation and voltage deviation, the expectation is achieved to be greater than 90%
for 1.195% extra generation cost. These results are strong indicators of possibility of achieving the
day-ahead solution which lead to lower real-time deviation with minimal cost increase.

Keywords: stochastic optimal power flow; machine learning for energy systems; affine recourse
policy; Gaussian process; state-aware

1. Introduction

The power system operation is going through a major change due to increased uncer-
tainties via renewable source-based distributed generations (DG) and electric vehicle (EV)
load. These uncertainties pose challenges in compact formulation of alternating current
optimal power flow (ACOPF), under uncertainty, to obtain optimal cost solution while
satisfying the operational and physical constraints [1]. Multiple formulations of uncertain
ACOPF have been proposed in the literature, with different constraint satisfaction notions
like robust [2], chance-constrained [3], and risk-aware [4]. All these methods fall under the
class of stochastic optimal power flow (SOPF) [5].

Literature reveals two main directions followed for SOPF solution: (i) linearization of
AC power flow (ACPF) (DC, Taylor expansion, or partial linearization [6]), and (ii) Monte-
Carlo simulation (MCS) methods [7]. The linear methods carry a trade-off in accuracy for
better computational performance. MCS provides a higher accuracy with poor tractability
as errors directly depend upon the number of ACPF samples used. Recently, to include
non-linear ACPF relations, in SOPF, polynomial chaos expansion (PCE) is employed [8].
PCE expresses the uncertain state and decision variables as a function of input following a
known probability distribution function (PDF) [8].

The SOPF solution methods in literature, other than MCS, are built with assumptions
about the type of PDF followed by the uncertain DG generation or load. For example,
in PCE, perfect information about the random input variable’s PDF is needed to construct
orthogonal basis [8]. The collection or estimation of PDF information is more challenging
with solar generation and EV loads, as they do not always follow well-known distributions.
Mostly, the SOPF works use affine policy to shift the generation set-points under uncertainty

Sustainability 2021, 13, 7577. https://doi.org/10.3390/su13147577 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4688-2021
https://orcid.org/0000-0003-2610-5161
https://doi.org/10.3390/su13147577
https://doi.org/10.3390/su13147577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13147577
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13147577?type=check_update&version=1


Sustainability 2021, 13, 7577 2 of 16

of load demand or injection [1,9]. There are two rationales behind focusing on affine
policy as (i) it is easy to implement via automatic generation control (AGC) [1], and
(ii) it makes the problem tractable as calculating the expectation over linear function is
computationally easy.

The conventional SOPF formulation only concerns about minimizing the cost of
generation in day-ahead and real-time operation. The optimal affine policy (found by any
method) attempts to achieve the minimal generation cost, while satisfying the physical
and operational constraints for every input point. Following the optimal affine policy
may lead to considerable variation in states, particularly node voltages. This variation
will result in frequent tap-changing requirements and large variations in power flow
across lines [10]. A higher number of control operations means higher overall control
costs in terms of operation and maintenance of transformers and tap-changing devices.
Further, the optimal affine policy obtained only to minimize generation cost can also
result in higher variations in power flow across transmission lines. This large change
in power flow during operation means higher variations in locational marginal prices
(LMP), making economic market operation difficult. Recently, in [11], it has been discussed
and highlighted that cost-minimizing participation factors can lead to large variations in
power flows. In [11], the objective is modified to incorporate the variance of power flow
using the DCOPF formulation without voltage variables. Therefore, this work focuses
on addressing two challenges in SOPF problem formulation and solution domain. First,
the proposed SA-SOPF brings state awareness into the formulation for obtained a more
holistic solution. Second is that this work provides a way to get away with assumptions on
net-load uncertainty description as a fixed PDF and provides distributionally robust policy.

In this paper, we formulate a novel state-aware stochastic optimal power flow (SA-
SOPF). The objective is to minimize generation cost with the expectation of generation and
voltage deviation for real-time (RT) operation. The classical two-stage SOPF formulation
is adopted to convey the idea clearly. We present the proposed SA-SOPF in the form
of standard single-period formulation for day-ahead and intra-day scheduling [1,12–14].
The first stage in concerned with finding optimum day-ahead solution while second stage
deals with the updates or changes needed in set points when value of uncertain input
gets realised or known. Our purpose is to investigate the possibility of obtaining the
day-ahead (DA) base-solution, which has a joint objective of minimization of expectation
deviation in the generation and voltage set-points and the minimization of DA cost of
generation. The minimization of expectation of voltage deviation will help reduce the total
number of control operations required and lower the cost of control. We formulate the
RT objective in terms of expectation of deviation in generation and voltage for a given
uncertain set of net demand or load. The proposed work also presents a distributionally
robust (DR) method to obtain an affine policy for RT operation and solving second stage of
the SA-SOPF problem. We employ Gaussian process (GP) learning for obtaining the affine
policy of RT operation and express RT deviation in generation and voltage as a function
of DA base-solution. Further, to incorporate the voltage we work with full ACPF based
formulation of SA-SOPF. To deal with non-convexity of the problem, we present a convex
relaxation of ACPF based SA-SOPF with DA base-solution as a decision variable. The
relaxation includes objective penalties that incorporate RT operation objective and improve
the convex ACOPF feasibility.

The main contributions of this work can be summarized as:

1. Proposing and formulating the novel state-aware stochastic optimal power flow (SA-
SOPF) problem with a given affine feedback policy. The formulation is aimed to
minimize joint objective of expectation of state deviation and generation cost;

2. Learning distributionally robust (DR) affine policy using the Gaussian process. This DR
policy can be employed for different uncertainty distributions without retraining. The
analytical form of policy is then expressed as a function of DA base-solution to be
incorporated in SA-SOPF;
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3. Developing convex relaxation of SA-SOPF with modified objective function for incor-
porating real-time objective. This relaxation handles the non-convexity of proposed
SA-SOPF, formulated based on complete AC power flow to incorporate the volt-
age variable.

There are different day-ahead optimization problem formulations proposed over
the years. One category is multi-period SOPF [15,16] which solves a 24-h scheduling
problem. Another class of problem called single period SOPF, on which there are works
such as [1,12–14,17]. The single period SOPF can be considered as a snapshot of the multi-
period SOPF by fixing one-time instance. Further, single-period problems can also be used
for hour-ahead scheduling (intra-day scheduling) for upcoming time instances. In this
work, we propose the SA-SOPF problem as a single-period SOPF problem. We follow
structure and timing of single-period SOPF similar to that described in case of robust OPF
in [14].

The remaining paper starts with formulation of SA-SOPF and lay out the differences
between the proposed SA-SOPF formulation with traditional SOPF. We also highlight the
major challenges in solving the proposed SA-SOPF problem which are addressed in the
sections following this one. Then, we present the GP-based distributionally robust affine
policy learning mechanism. The section also contains the description of the RT affine policy
as a function of DA base-solution. Section 4 presents the convex formulation of SA-SOPF
problem. First, we present the theorem which provides analytical solution of the RT stage
objective of SA-SOPF and then we develop a reformulation of SA-SOPF. The objection
penalization based semi-definite programming formulation is then followed. In results
and discussion we provide case studies with four different cases on IEEE 14-Bus system.
The cases are designed where load follows different distributions. Thus establishing the
proposed method’s applicability. The conclusion section then summarizes the work and
identifying future work directions.

Next, we introduce some notations. The i-th node complex voltage, in rectangular
form is vi = Re(vi) + j Im(vi) where Re(·) is real and Im(·) is imaginary part. We consider
a network having n nodes and ng generators. At the i-th node, the complex power demand
is given as sd

i = pd
i + jqd

i while generation is indicated by sg
i . To indicate uncertain load

vector during real-time operation, we use ξ. The capital letters, such as W and M, represent
a matrix of appropriate dimensions while column vectors are indicated using bold letters
like voltage v. The norm operator · indicates 2-Norm of the quantity. We use “base-solution”
to indicate DA schedule set-points while RT stands for real-time and DA for day-ahead.
The word policy and recourse function are used interchangeably. In this work, we consider
uncertain load where load means the net demand where DG is considered negative load.

2. State-Aware Stochastic Optimal Power Flow

The conventional two-stage SOPF formulation attempts to minimize the expected RT
operational cost (of real power generation) along with the DA generation schedule cost [4].
This means that during the RT operation there is no control over the state deviations.
In other words, the set-point adjustments made to preserve cost optimally can lead to larger
variations in states, such as voltage. In this section our objective is to define the SA-SOPF
problem and highlight how it addresses the need of being aware about state deviation in
RT operation state. The non-linear ACPF-based formulation of SOPF and SA-SOPF under
discussion is motivated by the two-stage stochastic non-linear programs with recourse [18].

The core idea of a two-stage SOPF is to find an optimal recourse function and base-
solution, which has the objective of cost minimization, respecting constraints for both
day-ahead (first-stage) and real-time (second-stage) operation. The recourse function
or policy is a rule by which we update the DA set-points of generation in real-time,
realizing uncertainty in net demand (load—DG injection). The conventional two-stage
SOPF problem, with uncertain load vector ξ, is [4]
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min costD(pg
o ) +Eξ{costR(∆pg, ξ)}

s.t. Day-ahead Constraint Set

Real-time Constraint Set.

(1)

Here, costD is day-ahead cost and costR is real-time operation cost. The ξ represents the
uncertain net-load vector, while E is the expectation operator. The RT and DA constraints
are very similar to standard ACOPF [19]. The difference is that RT constraints need to
satisfy for each realization of the uncertainty while DA constraints are for base-solution.

Constraints

Let, N being set of nodes in a network, while generator node set is G ⊆ N and
the set of branches is identified as L. For i-th node, the generated power is denoted as
sg

i = pg
i + jqg

i and the load demand is given by sd
i = pd

i + jqd
i , respectively. Further, Y is

network admittance matrix with elements yij where (i, j) ∈ L. The v represent the complex
conjugate of the variable v. Then, the set of constraints applied at each node of the network
for a complex load demand sd

i are

sg
i − sd

i = ∑
j

{
yijvivi − yijvivj

}
pg,min

i ≤ pg
i ≤ pg,max

i

qg,min
i ≤ qg

i ≤ qg,max
i

(|vi|min)2 ≤ |vi| ≤ (|vi|max)2

p2
ij + q2

ij ≤ (smax
ij )2

(2)

The first constraint in (2) is of power balance at the node i where the right-hand side
is the sum of the power flow through all the branches connected to node i, i.e., ∀j such that
(i, j) ∈ L. The next four equations are inequality constraints bounding the control and state
variables within the operational and physical limits of the system and equipment. These
constraints are imposed at each node of the system.

Now, there are two different constraint sets in (1). For DA constraint set, the demand
sd

i in (2) is taken as the day-ahead forecasted demand sd
o,i. The sd

o,i can also be interpreted
as expected value of demand for any future scheduling instance like day-ahead or hour-
ahead. For the real-time operation, we consider the demand or load to be uncertain. Thus,
the demand sd

i is replaced by an uncertain load variable ξi. Further, real-time constraints
should be imposed on each realization of uncertain load. The SOPF formulation we
follow is similar to the one presented in [1]. As explained before, we need to change the
DA set-points (generation dispatch, controlled voltages) while satisfying constraints and
maintaining optimality with the realization of uncertainty. The function that establishes
the relationship between uncertainty and set-point updates is called recourse function or
policy. Conventionally, this policy is obtained to minimize the real-time generation cost
only [1,4].

The proposed problem is different from traditional SOPF formulations in [1,4] in terms
of the objective of the problem. The proposed SA-SOPF is targeted to find a base-solution
that minimizes the combined objective of DA cost and RT state-deviation expectation while
following a given RT affine policy. This implies that the SA-SOPF solution will sacrifice
the optimality in generation cost, if needed, to achieve a lower state (voltage in proposed
work) deviation expectation. Formally, the proposed SA-SOPF is

Problem 1. Given uncertain net-load ξ with mean forecast µ, find the optimal day-ahead base-
solution xo

? = {pg
o
?, vo

?} such that

x?o = argmin
xo∈X

g(pg
o ) +Eξ

{
∆pg}2

+Eξ

{
∆v
}2 (3)
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where, pg
o is generation set-point and vo = [Re(vo) ; Im(vo)] is voltage for base-solution.

In (3), we opt for an affine policy for the RT adjustments in generation and voltage as
in [1,9]. The policy is a function which relates the uncertain load with the change and base-
solution of generation and state. The affine relationship is expressed as vo +∆v = Mvξ +Cv
for voltage, and pg

o + ∆pg = Mpξ + Cp for generation change. Here, Mp and Mv represent
the sensitivities with respect to uncertain load while Cp and Cv are intercepts of the
affine policies of generation and voltage, respectively. Further, {pg

o , vo} ∈ X represents
that base-solution is inside ACOPF feasible space, and g(·) is generation cost function.
The X represents the feasible space of the day-ahead optimization problem constructed by
imposing power balance constraint at base-load and operational limits as DA constraint
set shown in (2). Basically, X represents feasible space for ACOPF problem, constructed to
find DA base-solution. With a known policy, we just need to plug the numerical value of
ξ, upon realization (once numerical value is known), to obtain the changes needed in the
voltage ∆v and generation ∆pg setpoint.

The proposed SA-SOPF problem (3) has two main challenges in solving. Firstly,
even with a fixed, known optimal policy, the expectation operator makes the problem
non-deterministic in nature. Further, the problem (3) is a general case of the conventional
ACOPF problem. The problem (3) reduces to ACOPF when the uncertainty-related decision
and input variables are replaced with zero. Thus, as the ACOPF problem is NP-hard in
nature [19], the proposed general stochastic problem (3) also belongs to the NP-hard
category. In the following, before dealing with these issues, we obtain the distributionally
robust affine policy. Later, we cast the RT objective without the expectation operator using
analytical solution which minimized the RT objective. Then we develop a convex relaxation
of the proposed SA-SOPF problem (3) with a deterministic form RT objective.

3. Affine Policy for RT Operation

The GP is a non-parametric modeling method allowing modeling of prior information
and performing regression for a subspace of input [20–22]. The non-parametric behavior
means that we can employ the model with different distributions, once it is trained for an
uncertain load subspace, without retraining. The concept is similar to the idea of distri-
butional robustness (DR) [23]. The main difference in non-parametric and DR is that the
former is applicable on entire subspace irrespective of distribution type while traditionally
DR is defined on an ambiguity set, developed using different distributions [13]. Therefore,
the proposed method can work with an unknown PDF within the given load subspace.
The error in implementation does not depend on the type of uncertainty distribution.

In GP, the covariance function k(·, ·) is employed to obtain input–output relation-
ship [20]. The selection of the covariance function determines the accuracy and complexity
of the model. In the following, we employ the linear covariance function to obtain an affine
policy for the RT-stage of the SOPF (1). We term the affine policy as distributionally robust
as it is a wide-spread terminology in the community. The same can also be interpreted as
non-parametric affine policy. For details of ACOPF learning via GP, see [24].

Distributionally Robust Affine Policy Learning

In this section, the target is to learn an affine function that relates the generation and
voltage set-point to uncertain load ξ. In the power system, it is difficult to accurately
estimate the PDF type and parameters for solar PV-based DGs and loads, such as electric
vehicles. This motivates researchers to develop methods which are independent of the PDF
type. In this work, we are employing non-parametric GP regression to learn the policy. This
means that upon learning, the policy can be used with any type of distribution function
within the given load subspace. This property is similar to distributional robustness
and it provides subspace-wise robustness. Therefore, we term the policy as subspace-wise
distributionally robust or only distributionally robust for simplicity. Further, we use complete
ACOPF as an RT stage problem to minimize the cost of generation while satisfying the
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operational and physical constraints. For a given realization ξ of uncertain load, the RT
stage problem can be cast as a deterministic ACOPF:

min g(pg)

s.t. f1(pg, qg, v, ξ) = 0

f2(pg, qg, v, ξ) ≤ 0.

(4)

Here, g(·) is the cost function, f1(·) is power balance equality and f2(·) represents
lower and upper limits as indicated in (2). As discussed before, the constraint set (2) has to
be applied for each demand or load realization ξ in RT operation (4). As we consider load
uncertainty bounded within a range, we assume generators to have sufficient ramping
rates for meeting the demand. However, the inequity constraint set f2(·) can be modified
to handle ramp constraints as well. Now, we employ the linear covariance function to
learn an optimal set-point pg

i as an affine function of the uncertain load ξ, i.e., pg
i (ξ) .

The learning mechanism is similar to the one used recently in [24]. The core concept in
designing affine policy is to learn the optimal generation setpoints using GP regression
with linear covariance function and then obtain the standard affine form with sensitivity
and intercept coefficients.

At learning stage, we first construct a learning data set {Ξ, pg
i } ∀i ∈ G by solving (4)

for N input instances. Here, Ξ is a matrix with N rows and columns equal to the number
of uncertain loads in the system. Each row of Ξ represents an uncertain input vector
while pg

i is a column vector containing N optimal generation set-points for i-th generator.
The uncertain load samples in Ξ are sampled from a uniform distribution within a given
load subspace of ±δ variation in real-power load. Thus, if mean prediction of real power
load is pd

o then each of the random load vector is ξ ∈ {pd
o ± δpd

o}, δ ∈ (0, 1). The network
topology is assumed to be unchanged implying constant admittance matrix Y. The optimal
hyperparameters of linear covariance function kLN are obtained via maximizing the Log
marginal likelihood [20]. The i-th generator’s optimal generation, as a function of ξ, upon
training GP model on training dataset {Ξ, pg

i }, is [20]

kLN(Ξ, ξ) = τ2
(

c1 +
ΞTξ

l2

)
(5)

pg
i (ξ) = kLN(Ξ, ξ)Tαi (6)

with αj =
(
kLN(Ξ, Ξ) + σ2

ε I
)−1V̂j, design matrix is Ξ, and ξ is a variable vector. By taking

transpose of pg
i , expression (6) is

pg
i (ξ) =

(
τ2c[αT

i 1] +
τ2αT

i ΞTξ

l2

)
(7)

To obtain standard form, we define an optimal generation intercept value c′i = τ2c[αT
i 1]

along with sensitivity vector mi = (τ2αT
i ΞT)/l2, with mi being row vector of same length

as that of uncertain load ξ. Therefore, an approximate linear policy for optimal generation is

pg
i (ξ) = c′i + miξ. (8)

This relation (8) is an equation of line if the uncertainty vector ξ has only one dimen-
sion. Further, via generalizing (8), we define Mp = [m1; . . . ; mng] with ng being number
of generators. The linear policy for all the optimal generation set points, with matrix
Mp ∈ Rng×n, and vector Cp = [c′1; . . . ; c′ng], is

pg = Mp ξ + Cp. (9)

Here, we omit (ξ) on the left-hand side for representation simplicity. Similarly, follow-
ing (9), voltage policy is v = Mvξ + Cv.
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Interestingly, the function in (9) can be used for obtaining the optimal set-points under
uncertainty of load, in its the current form directly. However, it is important to note that
we do not know the base-solution for the generation pg

o and voltage set-point vo. This is
because (6) (and voltage policy) is obtained using the complete ACOPF model and policy
provides the set-points like pg, not deviation of set-points like ∆pg. Moreover, as explained
in the problem formulation of (3), we need the affine policy as a function of base-point pg

o
and vo as this will allow us to obtain the base solution which achieves objective described in
(3). Therefore, we express (9) (and voltage policy) as a function of unknown base-solution
pg

o and vo as
pg

o + ∆pg = Mpξ + Cp

vo + ∆v = Mvξ + Cv
(10)

The representation in (10) allows us to solve SA-SOPF problem (3) as now we have
the RT stage objective as a function of DA base-solution. In the next section we solve SA-
SOPF for the optimal DA base-solution {pg

o
?, vo

?} which minimized the cost of day-ahead
generation schedule and expectation of deviation in generation and voltage following the
affine RT policy (10). Notably, this affine policy is not optimal and is an approximation of
true policy. The remark below explains this in detail.

Remark 1. The affine policy used to update the set-points is an approximation and will have some
optimality gap compared to accurate, complete information optimal solution. The main reasons for
using the affine policy are (1) easy implementation and interpretation as participation factor, and
(2) reduced computational complexity due to straightforward expectation calculation over linear
functions. It is easy to see that if there exists a perfect feedback policy, it is likely to be a non-linear
function as the power flow manifold in ACOPF is non-linear. However, the idea behind using
affine policy is to reach close to optimal while keeping the easy implementation capability and lower
formulation complexity. The proposed GP-based distributionally robust policy learning framework
can also be used to obtain more accurate and complex non-linear policies. Nevertheless, using such
a policy to formulate and solve state-aware SOPF needs detailed work, which we will explore in
future works.

4. Convex Relaxation SA-SOPF

In this section, we present a convex relaxation of the SA-SOPF problem to deal with
the non-convexity arising due to AC power flow equation in SA-SOPF. First, for the RT
stage, we present the analytically obtained optimal solution which solves the issue of
non-deterministic RT stage objective due to expectation operator. Here, it is important to
understand that in real-time the shifting of set-point has much smaller numerical value
compare to day-ahead (DA) solution, i.e., ∆pg

i <<< pg
o,i. This also implies that any

optimality gap in DA solution will have more impact than the RT affine policy induced
optimally gap. Therefore, it is very important to find the DA solution close to the true
optimal solution of the original non-convex problem.

4.1. RT Stage Reformulation

In this subsection, we derive a convex deterministic equivalent of the expectation-
based RT objective. This is essential as, even with a known affine policy, the problem (3) is
intractable due to involvement of expectation operator. The core idea is to find an optimal
solution vector that minimizes the expectation of generation and voltage deviation with
RT policy (10), expressed as a function of base-solution. We refer to such a solution as RT
optimal solution. Further, the RT optimal solution will replace the RT objective term in (3)
in terms of the distance between DA solution and RT optimal solution. We present this
section in terms of obtaining the RT optimal voltage solution, and generation solution can
be obtained similarly.

Let, the RT optimal solution for voltage is vr
o and given as vr

o = argminv Eξ

{
∆v
}2.

Now, with RT objective term of voltage minimizing at vr
o, the expectation operator term
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in (3) can be replaced with the distance between vr
o and vo. This means that formulation

will try to achieve the day-ahead solution vo close the set-point vr
o, which minimizes the

voltage deviation expectation term in RT objective. Importantly, in the proposed work we
do not solve a non-deterministic optimization problem, involving expectation operator, to
obtain vr

o. We analytically derive the RT optimal solution vr
o for voltage term in (3) below.

Theorem 1. If the affine policy is ∆v = Mvξ +Cv− vo with uncertain load vector ξ having mean
forecast µ, then the RT optimal solution vr

o is given as

vr
o = Mvµ + Cv (11)

Proof of Theorem 1. Using the given RT affine policy we can calculate the expectation as
Eξ

{
∆v
}
= Mvµ +Cv− vo. Now, by applying definition of vector Euclidean-norm we have

Eξ

{
∆v
}2

= (Mvµ + Cv − vo)
T (Mvµ + Cv − vo)

Further, by taking derivative of above expression with respect to vo, we can easily
show that optimal occurs at vr

o = Mvµ + Cv. Similarly, we also obtain the RT optimal
solutions for generation vector as pg,r

o = Mpµ + Cp.

In (11), the right hand side is constant for a given affine policy coefficient matrix Mv
and intercept CV . Further, the mean forecast µ of the uncertainty variable ξ is known to
system operator to obtain the day-ahead solution accordingly. As discussed that due to
non-parametric property of GP, the affine policy we have shown is distributionally robust
within a given subspace. This means as long as we know the mean vector µ in a given
subspace of uncertain load, we can use the proposed method.

Now, using the result of Theorem 1 as {pg,r
o , vr

o}, we obtain an equivalent, tractable
and deterministic formulation of problem (3), by replacing the expectation operator-based
RT objective term with convex Euclidean-norm of difference (or distance), as follows.

x?o = argmin
X

g(pg
o ) + pg,r

o − pg
o

2
+ vr

o − vo
2 (12)

here, optimal day-ahead base solution xo
? = {pg

o
?, vo

?}, and ACOPF feasible space
{pg

o , vo} ∈ X are same as in (3). The xo
? is the base-solution at which joint objective,

minimum generation cost and minimum distance from the RT optimal solution obtained
via (11), is minimized. Thus, the expectation operator’s issue is solved, and now we have a
convex objective term instead, which is deterministic in nature and convenient to optimize
using convex optimization methods.

In the OPF works under uncertainty, the cost of change in generation set-point is
also considered [13]. In the problem (3), we do not use the cost factor multiplier for RT
generation as we formulate a state-aware SOPF where voltage deviation minimization is
also our objective. Further, the minimization of expectation of generation deviation will
also minimize RT generation costs indirectly. It represents the case when all generators
have the same RT cost coefficient. However, our formulation is suitable to incorporate
different objective functions versions as suggested by the remark below. The comparative
cost-benefit analysis of different objective formulations will be explored in future works.

Remark 2. The RT cost appears in various formulations of the SOPF [13]. The RT objective, in
the problem (3), can also be modified to include a cost coefficient vector. Let r be column vector of
known RT generation cost coefficients, then modified RT objective is Eξ

{
rT∆pg}. As the constant

multiplier r does not affect the calculation of the expectation, the optimal base point solution pg,r
o for

minimization of RT stage objective is same as obtained via (11). It is important to note here that
it is difficult to obtain combined and related cost coefficient of generation and voltage deviation.
Thus, it will be useful to have separate cost coefficient for voltage and generation deviation which
can be interpreted as weights of the multi-objective function. The adequate selection of these weights
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depends on system operator requirements, and is governed by the trade-off between generation cost
and operation-maintenance cost.

As mentioned earlier, the non-convexity of the ACOPF feasible space X in (3) poses
another major computational challenge. To solve this, we present a convex relaxation of
the problem (12) in the following subsection. We use the well established SDP relaxation of
ACOPF [19] with some modifications required to solve (12) having additional RT objective
term along with generation cost function.

4.2. Convexification of SA-SOPF

In this section, we build the objective penalization-based convex relaxation of (12)
using a modified form of SDP relaxation of ACOPF [19]. The major computational issue in
ACOPF is of non-convexity which arises with the apparent power flow equation, describing
power flow in branch connecting node i and j, as

sij = yijvivi − yklvivj (13)

here, vi is the complex node voltage at i-th node while over-line as v indicate complex
conjugate of the quantity. The yij is admittance of the branch connecting the node i and j,
yij ∈ Y. The non-convexity in (13) is due to the multiplication of voltage with its complex
conjugate which makes (13) a quadratic equality. In [19,25], authors have given a convex
relaxation method by using lifting variables. The lifting variable W, a symmetric matrix
replaces the voltage product as [19]

Wij = vivj,

Or W = vovT
o

(14)

Using the relation (14), the quadratic voltage equalities can be formulated in terms
of linear matrix inequalities with the positive semi-definite condition on variable matrix
W � 0 [19] instead of the relation W = vovT

o . However, there are some major differences
in the proposed problem that makes this type of relaxation inadequate for the proposed
problem. Below we present the modifications in standard SDP relaxation of ACOPF [19],
which are required to solve proposed SA-SOPF.

The RT objective in (12) involves the voltage such that the expectation of voltage
deviation gets minimized, along with the generation deviation. Thus, complete replacement
of vo with W is not possible. Further, with standard relaxed constraint W � 0 [19], there is
no bound on the gap between decomposed voltage vector vw = [Re(vw) ; Im(vw)] from
W = vwvT

w and voltage magnitude variable appearing in the objective as vo. To build a
coupling between these two different voltage variables, we employ a modified convex
relaxation of ACOPF. Instead of positive semi-definite condition W � 0, we apply the
convex inequality as [26]

W � vovT
o (15)

Now, consider the RT objective term in (12). The day-ahead generation pg
o is a variable

and the generation term in (12) is convex. Thus, the real power objective term can be
included directly in SDP formulation of SA-SOPF. The voltage term of RT objective in (12)
can be expended as [26]

||vr
o − vo||2 = (vr

o − vo)
T(vr

o − vo)

= vT
o vo − 2vTvr

o + vr
o

Tvr
o.

(16)

Further, we can modify (16) to bound the gap induced using the lifting variable as
in (15) which will also improve feasibility. Here we do not rigorously provide guarantee of
the feasibility improvement by the penalty but readers can find the motivation and ideas
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behind the same in [26]. Now, we propose an upper bound of the term vT
o vo in (16), relating

the voltage variable vector vo with matrix W, by applying the trace operator on (15) as

Tr{vovT
o } ≤ Tr{W},

Or vT
o vo ≤ Tr{W}. (17)

Thus, with (17), (16) and (12) we obtain the convex upper bound of RT objective
pg,r

o − pg
o

2
+ vr

o − vo
2 ≤ hp(p

g
o ) + hv(vo), as a function of DA base-solution vectors

hp(p
g
o ) = pg,r

o − pg
o

2
2

hv(vo) = Tr(W)− 2vT
o vr

o + vr
o

Tvr
o

(18)

Now, following the model in [19,26] and using (14) with (18), we present a complete
convex relaxation of (3) as

min g(pg
o ) + βp hp(p

g
o ) + βv hv(vo)

s.t pg,min
i ≤ Tr(YiW) + pd

o,i ≤ pg,max
i

qg,min
i ≤ Tr(YiW) + qd

o,i ≤ qg,max
i

(|vi|min)2 ≤ Tr(MiW) ≤ (|vi|max)2

Tr(YijW)2 + Tr(YijW)2 ≤ (smax
ij )2

W � vovT
o

(19)

Here, DA base-solution for real power generation is pg
o,i = Tr(YiW) + pd

o,i and vector
pg

o is constructed by stacking all ng real power generation variables pg
o,i ∀ i ∈ G for DA

solution. As defined earlier, the vector vo = [Re(vo) ; Im(vo)] has real and imaginary
part of the complex voltages at all the buses. The g(·) is a quadratic cost function and
βp, βv are weights determining relative importance of the different objective terms. Further,
Yk, Yk, Ykl , Ykl are admittance matrices and Mk diagonal incident matrix. These are
constructed similar to the ones presented in [19], and not presented here for brevity.

The effect and interpretation of the objective weights (βp, βv) is important to under-
stand here. The numerical values of these weights decide the significance of different
objectives. Unlike generator-wise cost variables which work on individual generation vari-
able, these weights directly decide relative significance between generation deviation and
voltage deviation. Further, they can also be used to balance out the significance between
real-time and day-ahead cost objectives.

In the next section, we present the simulation results and discussion on the proposed
SA-SOPF problem formulation. We show the evidence of distributional robustness of the
affine policy, as well as the effect of state-aware objective on optimal generation cost under
different cases.

5. Results and Discussion

In this section, we use the IEEE 14-bus and 30-bus system [27] with all the non-
zero load buses having an uncertain injection or load. First, we show the subspace-wise
robustness or distributional robustness of the affine policy learned via GP for 14-bus
system. Later we present results and discussion on SA-SOPF numerical studies and
comparative effect of different objective terms. We use the well established runopf code
of MATPOWER [27] for bench-marking of SA-SOPF solution and error estimation. The
ACOPF is used to refer the case where only DA cost objective g(pg

o ) is used to obtain
the base-solution.
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5.1. 14-Bus System

To show the applicability of the proposed method, over a variety of uncertainty
distributions, we use different cases in simulations. The details of cases in terms of PDF
parameters of net-load (uncertain demand minus uncertain distributed (renewable source)
generation) is as follows:

• Case I: Uniform distribution of uncertain net-load vector ξ, within ±30% variation of
base-load of each node;

• Case II: Normal distribution of uncertain net-load vector ξ with base-load as mean and
10% of the base-load taken as standard deviation for each node;

• Case III: Weibull distribution of uncertain net-load vector ξ with base-load selected as
scale and 1.5 times the base-load taken as shape parameter for each node.

It is important to note that we consider the load as net-load, meaning uncertain
distributed generation (from renewable sources) is subtracted from the uncertain de-
mand at each node. Therefore, the simulations cases above are explicitly designed to
showcase the proposed methods ability to work with both uncertain load and renewable
injection together.

Now to show the distribution robustness of RT policy (10), we draw %L1 error his-
togram for generation vector in Figure 1 and for voltage vector in Figure 2. The %L1 error
is defined as ||v− vs||1/||vs||1 × 100 with vs being the true solution obtained via runopf.
We use Case I to train the GP and obtain policy for all there cases without retraining of the
model again. It is clear that in case I, mean of error histogram is lower than other cases in
Figures 1 and 2. Note that the %L1 norm error in all three cases is <1%. This is indicative
of the distributional robustness of the proposed GP-based policy.

The importance of SA-SOPF lies in it’s ability to outperform conventional SOPF
in terms of minimizing the expectation of voltage deviation. The Table 1 contains the
comparison of SA-SOPF results with SOPF for case I–III. It shows that with very less extra
cost (<1% of SOPF cost of 6429.31 $/hr), SA-SOPF can significantly reduce the voltage
deviation. This evidence suggests that there exist DA optimal solutions, which lead to
lower state deviation without a significant increase in the cost.

Table 1. SA-SOPF results of change in day-ahead cost, and real-time deviations with respect to
day-ahead ACOPF.

∆g(pg) ∆||Eξ{∆pg}||2 ∆||Eξ{∆v}||2

Case I 5.7438 $/hr 0.0349 MW −0.6680 pu
Case II 5.7440 $/hr 0.0189 MW −0.6672 pu
Case III 5.7721 $/hr −0.1975 MW −0.6586 pu

Figure 1. %L1 norm error in pg for 104 sample MCS.
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Figure 2. %L1 norm error in |V| for 104 sample MCS.

Further, case I–III have the base-load as the mean pd
o = µ. This means that DA optimal

base-solution without RT objective will lead to the very less value of E{∆pg} = Mpµ + Cp.
In other words, the DA scheduling ACOPF solution will be close to the RT optimal solution
for generation pg,r. Therefore, we test our method’s robustness on a case where the mean
of the uncertain load is different from base-load µ 6= pd

o .

• Case IV: Normal distribution of uncertain net-load vector ξ with 1.1 times base-load
as mean and 10% of the base-load taken as standard deviation for each node.

The case IV is used, as a harsh condition, to show the performance of proposed SA-
SOPF formulation to achieve its intended goal of minimization of state-deviation with
DA generation cost. The Pareto front between three objective terms of (3) (solved via (19))
for case IV is given in Figure 3 while results comparing numerical values of day-ahead
cost based ACOPF and SA-SOPF Pareto solution are given in Table 2. Both these results
show that the proposed SA-SOPF formulation achieves an order-of-magnitude lower
expectation in voltage deviation, compared with ACOPF results. Further, the reduction in
expectation of generation deviation is significant compared to the increase in DA schedule
cost. This proves proposed SA-SOPF’s applicability under worst-cases like case IV.

Table 2. SA-SOPF results for Case-IV.

g(pg
o) ||Eξ{∆pg}||2 ||Eξ{∆v}||2

ACOPF 6429.31 $/hr 204.13 MW 0.6709 pu
SA-SOPF-Pareto 6730.55 $/hr 61.92 MW 0.0185 pu

Change 4.685% −69.66% −97.24%
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Figure 3. Pareto for Case-IV (14-bus system), points within ellipse are of minimum distance from
origin, i.e., Pareto optimal.
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5.2. 30-Bus System

In this subsection, we present the results on 30-bus system [27,28]. This test system
has total of six generators and 21 load buses. We consider all 21 loads as random variables,
thus effectively having a 21-dimensional vector Ξ. We consider the base-load as 0.8 times
of the load given in the data file with [27] to ensure feasibility within the uncertain load
space. For learning the affine policy, a load space of ±20% is considered assuming that
all the points within this subspace are feasible for ACOPF. We check this assumption
by simulating ACOPF for 104 samples. For testing, we consider an uncorrelated normal
distribution with a 5% standard deviation of base-load for testing this case study.

Figure 4 shows the %L1 norm error for the generator and voltage magnitude vectors.
The affine policy quality is assessed against 104 samples of true ACOPF solution. The left
sub-figure in the Figure 4 shows that the affine policy learned using GP has %L1 norm error
less than 0.03%. This indicates that the proposed method has been able to approximate
the relationship accurately. The error plot for |V| shows that the percentage error in the
voltage magnitude is of the order of 10−3 which is considerably low.

Figure 4. %L1-norm error in pg and |V| in 30-Bus system calculated with 104 sample MCS.

Table 3 shows the results of the proposed SA-SOPF Pareto optimal with the ACOPF
results with perfect information. It shows that with 1.195% extra cost, there is 90.08%
reduction in the expectation generator set-point deviation. Further, the expectation in the
change in voltage deviation has also been reported as 99.91% in the Table 3.

Table 3. SA-SOPF results for 30-bus system.

g(pg
o) ||Eξ{∆pg}||2 ||Eξ{∆v}||2

ACOPF 388.22 $/h 17.305 MW 0.087818 pu
SA-SOPF-Pareto 392.86 $/h 1.716 MW 7.43× 10−5 pu

Change 1.195% −90.08% −99.915%

For indicating the increase in the generation cost due to different penalties, we present
the Pareto front for considering all three objective terms in Figure 5. The figure shows
that a significant decrease in the deviation of generation set-points is obtained, at the
expense of cost and voltage set-point deviation increase. However, the cost increment
of approximately 1% for Pareto optimal shows a possibility of obtaining the low state
deviation solution compared with a very low-cost increase.
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Figure 5. Pareto for 30-Bus, points within ellipse are of minimum distance from origin i.e., Pareto optimal.

5.3. Optimality Gap and Computation Time

An aspect of the policy accuracy is the optimality gap between the solutions obtained
using the proposed affine policy and perfect information ACOPF solution. There will be
a non-zero optimality gap in most of the conditions due to non-linearity of power flow
manifold. In Figure 6 we present a box plot representing the percentage optimality gap
between the cost obtained using affine policy and true, complete information ACOPF. It is
clear that affine policy has achieved a significantly less optimality gap (<0.1%) for all three
cases. This shows that the affine decision rule is a highly accurate approximation of the
actual decision rule, in distributionally robust manner.

Table 4 contains the results for the time taken in learning voltage and generation
set-point affine policy. The table also shows the time taken to solve the SA-SOPF problem
using MOSEK 9.2 with YALMIP [29] on MATLAB R2020b. The time is given in seconds.
All the simulations are performed using the GPML toolbox [30] on PC having Intel Xeon
E5-1630v4@3.70 GHz, 16 GB RAM. These time results show that the proposed method has
obtained the DR affine policy for different systems within 1 min, and the SA-SOPF solution
is obtained in negligible time. We use only 450 ACOPF training samples, which makes
the proposed method computationally-lite compared to large-scale MCS-based methods.
Importantly, the proposed work focuses on finding an affine recourse policy and a solution
to the SOPF problem, minimizing the cost and the state deviation for a future scheduling
period. This future scheduling period can be a few hours ahead or a day ahead. We do
not propose the SA-SOPF problem solving or distributionally robust affine policy learning
in real-time. Therefore, the time taken by the proposed method has much less significant
as the framework under which the SA-SOPF problem is solved is not time-constrained.
We will explore the possibilities of using the scalable Gaussian process learning methods in
future works for large-scale systems.

Table 4. Computation time for various case studies.

System Learning (s) pg + v SA-SOPF (s)

14-bus 2.41 + 16.88 = 19.29 0.157
30-bus 4.01 + 38.01 = 42.02 2.325
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Figure 6. Percentage optimality gap between the cost of generation using true, complete information
ACOPF and affine policy in (8) for IEEE 14-bus system. The test is conducted three different cases
with 104 samples. The cost coefficients are taken from [27].

6. Conclusions

A novel state-aware stochastic optimal power flow (SA-SOPF) problem is formulated
and solved using convex relaxation. The proposed SA-SOPF problem minimizes the day-
ahead generation schedule cost and expectation of deviation in generation and voltage
for ACOPF under uncertainty. The recourse function or policy to shift the generation and
voltage set-point with load uncertainty are obtained using GP learning—the proposed
method results in a distributionally robust affine policy. The policy has produced accurate
results for different types of load uncertainty distribution with <1%L1 error. The proposed
formulation is able to minimize the expectation of generation and voltage deviation signifi-
cantly > 60%. The additional day-ahead cost is not more than 5% for 14-bus system. The
proposed SA-SOPF attains at least 90% reduction in expectation of set-point variation with
only 1.195% extra generation cost for 30-bus system. Therefore, the proposed formulation
opens up the possibility of obtaining SOPF solutions, which improves system performance
in real-time. The lower state variation in real-time will lead to lower power flow change,
lower locational marginal price change, and fewer control operations requirements like tap
changing. Future work will explore the possibilities of combining the policy learning and
optimization problem. The problem learning of distributionally robust affine policy for
larger systems will also be considered in future.
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