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Abstract: Accident analysis and prevention are helpful to ensure the sustainable development of
transportation. The aim of this research was to investigate the factors associated with the severity
of low-visibility-related rural single-vehicle crashes. Firstly, a latent class clustering model was
implemented to partition the whole-dataset into a relatively homogeneous sub-dataset. Then, a
spatial random parameters logit model was established for each dataset to capture unobserved
heterogeneity and spatial correlation. Analysis was conducted based on the crash data (2014–2019)
from 110 two-lane road segments. The results show that the proposed method is a superior crash
severity modeling approach to accommodate the unobserved heterogeneity and spatial correlation.
Three variables—seatbelt not used, motorcycle, and collision with fixed object—have a stable positive
correlation with crash severity. Motorcycle leads to a 12.8%, 23.8%, and 12.6% increase in the risk
of serious crashes in the whole-dataset, cluster 3, and cluster 4, respectively. In the whole-dataset,
cluster 2, and cluster 3, the risk of serious crashes caused by seatbelt not used increased by 5.5%,
0.1%, and 30.6%, respectively, and caused by collision with fixed object increased by 33.2%, 1.2%, and
13.2%, respectively. The results can provide valuable information for engineers and policy makers to
develop targeted measures.

Keywords: traffic safety; latent class clustering; spatial correlation; single-vehicle crashes; heterogeneity

1. Introduction

The impact of traffic crashes on sustainable development cannot be ignored because
accidents will cause significant property damage and personal injury. The analysis of traffic
crashes can provide targeted measures to improve traffic safety performance and promote
sustainable development. Among various crash types, single-vehicle (SV) crashes account
for a high fatality rate; according to the National Highway Traffic Safety Administration,
the number of SV crashes and fatalities accounted for 16% and 36.9% of the respective
totals for all crashes [1,2]. The impact of SV crashes on road safety is daunting. This
phenomenon is particularly obvious in rural areas of China because road infrastructure
and medical assistance in these areas are worrisome. The number of fatalities caused by
rural SV crashes increased from 2013 to 2017, showing an average growth rate of 4% [3,4].
Therefore, analysis on the severity of rural SV crashes has aroused widespread interest
from transportation professionals [5,6]. A primary objective of this research is to clarify the
relationship between crash severity and various risk factors [7], and it has been generally
recognized that weather has a significant influence on crash severity [8].

Severe weather can affect the traffic environment and is more likely to result in serious
crashes [9,10]. In particular, low visibility caused by fog and haze has been considered as a
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crash-concentration environment [11]. Such condition will affect the judgment of traffic
obstacles, which has a negative influence on traffic safety [12,13]. In the existing research
on rural SV crashes, low visibility has been exhibited as a variable of weather factors; there
is a lack of separate research on rural SV crashes under such conditions. For example,
Wen et al. [14] investigated the risk factors of SV crash severity in mountainous areas and
suggested that compared with sunny weather, the probability of serious and fatal crashes
in foggy weather increased by 21.2% and 15.7%, respectively. Visibility conditions were
divided into four categories—greater than 200 m, 100 –200 m, 50 –100 m, and less than 50
m—to evaluate the safety performance of rural areas. It was found that the probability of
fatal crashes is substantially increased in visibility less than 100 m [15].

Further, research on rural SV crashes under specific inclement weather mainly has
focused on rainfall and snowfall. A mixed logit model was established using rain-related
rural SV crashes. The regression results show that the influence of male drivers on crash
severity exhibited a random effect [5]. Based on the study of snow-related rural SV
crashes, it was found that older drivers were 101.7% more likely to be involved in a
serious crash compared to middle-aged drivers [6]. Recently, a preliminary analysis
of SV crashes associated with low visibility was conducted [16]; however, the research
did not separately analyze rural crashes. In urban and rural areas, some substantial
differences in crash characteristics have been found [17,18]; thus modeling results cannot
be transferred directly [9]. Hence, it is necessary to investigate the effect of contributing
factors on the severity of low-visibility-related rural SV (LVR-SV) crashes to provide
trustworthy measures.

The rest of this paper is organized as follows. Section 2 presents a comprehensive
background review for rural SV crash analysis. Details of the collision dataset are described
in the subsequent section. The model framework of this research is exhibited in Section 4.
The analysis and discussion of the regression results are given in Section 5. Conclusion of
this paper is given in Section 6. The potential limitations, together with future work, are
described at the end.

2. Background
2.1. Safety Covariates of Rural Single-Vehicle Crashes

Various risk factors will affect the severity of rural SV crashes, and correspond-
ing research was conducted to clarify the relationship between risk factors and crash
severity [8,9]. According to the characteristics of risk factors, three components can be roughly
identified: driver characteristics, crash characteristics, and environmenta characteristics.

There is a significant correlation between driver characteristics and rural SV crash
severity, which has been widely recognized by transportation professionals. Several driver-
related risk factors, such as gender, age, seatbelt usage, drunk driving, and speeding, were
investigated in the existing literature. For example, a positive correlation between male
driver and serious crashes was revealed [6]. This phenomenon is related to the aggressive
driving behavior of male drivers. The study also noted that older and younger drivers were
significantly more likely to have severe SV crashes than middle-aged drivers. Older and
younger drivers are susceptible to distracted driving [19]. The impact of distracted driving
on crash risk was analyzed, and a positive correlation between distracted driving and crash
risk was found [20]. Further, the importance of using seatbelts and maintaining a safe speed
has been widely emphasized, as they can effectively prevent drivers from being involved in
fatal crashes [14,21]. A latent class logit function was established, and three risk variables—
seatbelt not used, driving under the influence of alcohol, and fatigue driving—are expected
to result in a significant increase in the probability of severe crashes [22].

Crash characteristics mainly include two components: crash type and vehicle type.
Specifically, three crash types—collision with fixed object, run-off-road crashes, and colli-
sion with animals—have an important impact on the severity of SV crashes [23]. It was
found that these variables are negatively correlated with crash severity. However, this
finding could not be supported by Haq et al. [24]. A hierarchical Bayesian random inter-
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cept approach was established to link collision with fixed object and crash severity. The
regression results show that (1) collision with fixed object will cause a significant increase
in the possibility of serious crashes and (2) one of the serious consequences of collision with
fixed object is rollover, which will increase the risk of serious crashes in some extent [25].

In addition, existing studies have found that the severity of rural SV crashes varies
across vehicle types. Three vehicle types—passenger vehicle, motorcycle, and large
vehicle—were classified, and the large vehicle was used as a reference variable to es-
tablish an ordered logistic regression. The results indicate that compared with large-vehicle
crashes, the risk of serious crashes caused by passenger vehicle reduced significantly
(odds ratio was 0.553) and caused by motorcycle increased significantly (odds ratio was
3.907) [26]. Considering the substantial differences between different vehicle types, cross-
vehicle-types modeling was recommended. For example, a crash severity regression
function related to motorcycle and truck crashes was established, respectively, to explore
the risk factors [27,28]. Establishing a regression model across vehicle types can obtain
targeted findings and improve the model fit; this may be due to the fact that a crash dataset
containing a specific vehicle type has more homogeneity compared with a crash dataset
containing all vehicle types [29].

Many significant risk variables are included in the environmental characteristics [30],
such as road surface, weather, light condition, and intersection, etc. Previous studies
have found that there is a negative correlation between adverse road surface conditions
and crash severity [23]. It indicates that the reduction in crash severity under adverse
conditions is due to drivers being more cautious. A more detailed finding related to
adverse road surface was drawn by Yu et al. [10]. Compared with dry road surface, the
probability of fatal crashes caused by wet, snow, and ice is reduced by 2.73%, 0.85%, and
2.78%, respectively. A severity prediction function was established by Hou et al. [31] to
investigate the influence of environmental factors on crash severity. It was found that the
probability of severe injury is expected to be significantly reduced under the conditions of
visibility less than 200 m and wet road surface. Meanwhile, both roads with intermediate
barriers and dark unlighted conditions will cause a significant increase in the tendency
of serious crashes. Further, illumination conditions were divided into five categories to
establish a logistic regression. Compared with the daylight condition, the probability of
serious collision under dusk, dawn, dark lighted roadway, and dark unlighted roadway
conditions increased by 1.57 times, 2.02 times, 1.63 times, and 2.61 times, respectively [32].
This shows that the possibility of serious injury in the early morning is of the most concern,
and the provision of street lighting can reduce the occurrence of serious traffic collisions.

2.2. Statistical Techniques for Unobserved Heterogeneity and Spatial Correlation

Unobserved heterogeneity has been recognized as a primary issue in crash severity
analysis [33–35] because several risk factors affecting the possibility or severity of the
crash cannot be observed [36,37]. Such fact has driven the development of statistical
techniques to identify the unobserved heterogeneity. To accommodate the discrete nature
of crash severity (no injury, slight injury, serious injury, and fatality), various regression
approaches—random parameters logit (RP-logit) model [38,39], random parameters probit
model [40], random intercept logit model [41], latent class logit model [10], and finite
mixture random parameters model [16,42]—have been widely recommended due to their
high flexibility [43–45]. Alternatively, random parameters ordered logit model [46] and
random parameters ordered probit model [47] were applied to handle the intuitive ordering
of crash severity. For example, Wu et al. [8] established the RP-logit model to analyze the
risk factors of single- and multi-vehicle crash severity on rural highways. The results show
that the RP-logit model can accommodate the unobserved heterogeneity satisfactorily, and
some substantial differences in the risk factors between urban and rural were clarified.

Rural SV crash data in the United States were extracted to calibrate the RP-logit
model and the latent class logit model. The regression results indicate that both of these
statistical models can effectively identify risk factors, but the latent class logit model



Sustainability 2021, 13, 7438 4 of 24

has a slightly better fit performance than the RP-logit model [5]. Similar findings were
obtained by Cerwick et al. [48]. A hierarchical random intercept function was proposed
to accommodate cross-level interaction in crash data. The regression results indicate that
the fitting performance of the proposed function is comparable to the RP-logit model,
but its generalization is expected to be limited by high complexity [49]. Meanwhile, a
random effect tobit model and a random parameters tobit model were established to
accommodate the unobserved heterogeneity in crash rate analysis. The importance of
capturing the unobserved heterogeneity and the superiority of the random parameters
function were confirmed [50].

In addition, most crash severity functions were developed using a whole-dataset;
however, this modeling approach has some drawbacks. The crash analysis model can
identify unobserved heterogeneity, but it cannot reduce them. In addition, extensive
unobserved heterogeneity may cause the regression results to deviate from the real situa-
tion [34,51]. If the whole-dataset is divided into several sub-datasets, called clustering, and
both the homogeneity effect within the sub-dataset and the heterogeneity effect between
the sub-datasets are maximized, then the severity prediction functions are established for
each sub-dataset. This two-step modeling approach is expected to mitigate the impact of
unobserved heterogeneity on model estimation.

Currently, the two-step analysis approach is receiving increasing attention. A latent
class clustering (LCC) model and an RP-logit model were combined to investigate motor-
cycle crash severity. It was found that the LCC model is an efficient crash data clustering
technology and can effectively reduce the unobserved heterogeneity in the sub-dataset [52].
Based on crash data from New Mexico, Li et al. [53,54] modeled not only intersection-
related crashes but also SV crashes and found that the two-step approach can improve
the fitting performance of the severity prediction function. The severities of rain-related
rural SV crashes and head-on crashes were investigated respectively, and both of them
suggested that the two-step analysis approach can reveal more valuable risk factors [5,55].
A similar conclusion can be found in Yu et al. [10].

Further, the severity prediction functions mentioned above can not only provide
valuable risk factors but also effectively identify unobserved heterogeneity in crash data.
However, these functions can hardly identify spatial correlation across crashes. The ex-
istence of spatial correlation is reasonable. Some characteristics, such as road width and
road surface conditions, may be shared in adjacent crashes. This phenomenon has been
confirmed by much research [56–58]. Yang et al. [59] considered the spatial correlation of
crashes in road safety assessment; the study focused on investigating the interrelationship
among crash frequencies. The results show that the model simultaneously considering
both spatial correlation and unobserved heterogeneity outperforms the model considering
only the unobserved heterogeneity. Risk factors of freeway crashes were explored using a
spatial generalized ordered logit model. It was found that the model fit can be improved
by accounting for spatial effect and the spatial error term can be effectively estimated by in-
troducing the Gaussian conditional autoregressive (CAR) technique [60]. Klassen et al. [61]
obtained the same conclusion by proposing a spatial random intercept logit model and
pointed out that ignoring spatial correlation may lead to biased inferences. To examine
pedestrian injury severity in bicyclist–pedestrian crashes, a Gaussian CAR spatial Poisson-
lognormal model was adopted. The regression results highlight the effectiveness of jointly
modeling multiple crash severities to improve fit performance [62].

The spatial functions mentioned above are evolved from traditional regression models
by considering a spatial error term, including the multinomial logit model, ordered logit
model, random intercept logit model, etc. The spatial function evolved from random pa-
rameters models is less common. Several studies have proved that the random parameters
model outperforms the fixed-parameter model and the random intercept model. Identify-
ing the spatial correlation by extending the random parameters model is expected to exhibit
satisfactory fitting performance. Recently, a spatial random parameters Poisson-lognormal
model, a spatial random parameters tobit model, and a spatial random parameters Poisson-
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lognormal model with a mixture component were proposed to capture the spatial correla-
tion across crashes [63–65]. These three advanced crash prediction functions are employed
to predict crash count, crash rate, and crash frequency, respectively. However, no spatial
function evolved from the random parameters model, especially the RP-logit model, for
predicting crash severity was found. This is a methodology gap and corresponding studies
should be conducted to supplement existing severity prediction functions.

2.3. The Current Research

As discussed above, unobserved heterogeneity and spatial correlation may have a
substantial contribution to crash severity. However, these two crucial issues are not clear in
the analysis of LVR-SV crash severity. Hence, this research was conducted to comprehen-
sively investigate unobserved heterogeneity and spatial correlation across LVR-SV crashes.
A two-step modeling approach combining the LCC model and a novel spatial random
parameters logit (SRP-logit) model was proposed to complement the severity prediction
function. Specifically, the LCC model was first developed to divide the whole-dataset into
several relative homogeneous sub-datasets. Then, the SRP-logit model was established for
each sub-dataset to capture the spatial correlation and unobserved heterogeneity. Based
on the two-step modeling approach, the following questions will be clarified: (1) Does
the SRP-logit model outperform the RP-logit model? (2) Which variables have significant
impacts on the severity of LVR-SV crashes? (3) Are there differences in the spatial correla-
tion and the unobserved heterogeneity between the sub-dataset and the whole-dataset? A
comprehensive research framework of this paper is exhibited in Figure 1.

Figure 1. Comprehensive research framework of this paper.

3. Data

A rural SV crash dataset of 110 two-lane undivided road segments for a five-year
period (2014–2019) was extracted from the Shandong Department of Transportation. The
GIS map of the region under study is shown in Figure 2. The crash dataset records the
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characteristics of the driver, vehicle, time and location, road conditions, weather, visibility,
etc. As visibility and weather are estimated by traffic police, some errors may exist; thus
a real-time meteorological dataset was collected from the Shandong Climate Center to
calibrate row data.

Figure 2. GIS map of the region under study.

Crash data related to low visibility—less than 100 m—was extracted because the rate
of fatal crashes in rural areas greatly increases when visibility is less than 100 m [15]. After
excluding abnormal data, 19,187 LVR-SV crashes were sorted. Of note is that rain and snow
may also cause low visibility; crashes impacted under these conditions are mainly due to
unsatisfactory anti-skid performance and were excluded.

More details of road characteristics were extracted from the Traffic Information System
maintained by the Shandong Department of Transportation. All road segments at crash
locations were verified as approximately linear horizontally and vertically. By checking the
curvature and slope of each site, crash data at sharp turns or ramps were eliminated. In
total, 19,014 crashes were used to calibrate the model parameters.

During the modeling process, driver injury severity was regarded as a dependent
variable. In China, driver injury severity is divided into four categories—no injury (70.0%),
slight injury (20.1%), serious injury (8.6%), and fatality (1.2%). A driver passing away
within seven days is regarded as a fatal event. It can be seen that fatality cases are very
limited, which may lead to incorrect inference. Considering that the two adjacent injury
categories are similar, the combination of fatality and serious injury was named FS injuries.
It was not expected to have a substantial influence on model estimation. Hence, the
dependent variable contains three categories—no injury, slight injury, and FS injuries. No
injury was taken as a reference variable.

Independent variables were processed to optimize the model structure; specifically,
continuous variables such as time and driver age were discretized, and the classification
of discrete variables was simplified. For example, there were more than 20 crash types
in the raw data that were simplified into four categories—collision with non-fixed object,
collision with fixed object, collision with pedestrian, and other crashes. Motorcyclists must
wear helmets, and passenger car drivers must use seatbelts; because they have similar
functions, these data were collectively classified as seatbelts/helmets. Nearly 80 types of
motor vehicles were recorded, and the vehicle types, less than 1%, were combined into
“other” vehicle type. Five categories—passenger car, motorcycle, pickup, truck, and other
vehicle type—were included in vehicle type. Traffic control includes several modes, such as
police direction, roadway guide markings, and traffic lights. These control methods were
marked as traffic control, otherwise marked as no traffic control. The specific variables
classification and proportion statistics are shown in Table 1.
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Table 1. Variables classification and statistics.

Variables Description Number
Driver Injury Severity

No
Injury

Slight
Injury

FS
Injuries

Total number 19,014 70.0% 20.1% 9.8%
Driver gender Male 17,209 70.6% 19.3% 10.1%

Female * 1804 64.7% 26.7% 8.5%
Driver age <25 2473 67.6% 23.8% 8.4%

[25,50] * 13,210 76.1% 16.0% 7.9%
>50 3330 47.9% 32.8% 19.2%

Seatbelt/helmet Not used 5778 50.9% 32.4% 16.5%
Used * 13,235 78.4% 14.5% 6.9%

Drunk driving No * 14,200 72.9% 17.9% 9.2%
Yes 4813 58.7% 26.1% 15.1%

Career Company staff * 3080 70.0% 20.5% 9.5%
Self-employed 5869 77.0% 15.7% 7.2%

Farmer 8305 66.6% 22.1% 11.3%
Others 1759 63.0% 23.3% 13.6%

Vehicle type Passenger car * 8405 90.3% 6.9% 2.7%
Motorcycle 4574 29.0% 47.0% 23.8%

Pickup 2356 50.3% 34.7% 14.8%
Truck 3011 87.6% 6.5% 5.8%
Others 667 86.9% 7.7% 5.2%

Week Monday/Friday 5405 70.7% 19.7% 9.6%
Tuesday–Thursday * 8361 70.0% 20.2% 9.8%

Weekend 5247 69.3% 19.9% 10.8%
Intersection No * 12,476 69.5% 19.9% 10.6%

Yes 6537 71.0% 20.2% 8.8%
Time of day 00:00–7:00 2720 64.8% 19.7% 15.4%

7:00–10:00 * 2666 77.3% 16.2% 6.4%
10:00–17:00 6391 72.2% 19.4% 8.2%
17:00–21:00 3898 73.6% 19.4% 6.9%
21:00–24:00 3338 60.3% 25.0% 14.6%

Collision type Fixed object 14,249 72.2% 21.0% 6.6%
Non-fixed object * 1704 22.1% 30.8% 46.9%

Pedestrian 3042 89.4% 8.3% 2.2%
Others 18 50.1% 44.7% 5.2%

Traffic control No control * 10,306 69.2% 20.6% 10.2%
Control 8707 71.0% 19.3% 9.6%

Note: * indicates that variable is reference variable in model.

As shown in Table 1, the proportion of FS injuries of older drivers (>50) (19.2%) and
the time of 00:00–7:00 (15.4%) were higher than other categories of factors. In addition, the
proportion of FS injuries caused by collision with a fixed object is the highest (46.9%), a
finding that is inconsistent with the general rule that the number of crashes decreases with
the increase of injury degree. Such a phenomenon is related to the topic of this research.
Generally, the traffic environment of rural areas is complex, and the driver safety awareness
is not satisfactory. In low-visibility conditions, drivers may not be able to avoid obstacles
in time, which is more likely to result in a serious crash.

4. Methodology
4.1. Latent Class Clustering Model

The LCC model is a probability-based multivariate clustering approach and consists of
two types of variables—exogenous and latent class. The exogenous variable is risk factors
included in the observation, such as gender and age, and the latent class variable is a kind of
dummy variable obtained by estimating clustering probabilities of the exogenous variable.
Homogeneous clustering was conducted using latent class variables to reduce unobserved
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heterogeneity across observations. A complete LCC approach includes four-step theory
construction, parameter estimation, fitness evaluation, and result analysis.

For a given LVR-SV crash dataset, it is assumed that R latent class variables are
estimated using J categorical exogenous variables. Each of the exogenous variable has
Kj possible values, for crash i = 1, . . . , I . The number of outcomes may vary across the
different exogenous variables, hence indexing by j. Let Yijk represent the value of the J
exogenous variable. Yijk = 1 denotes the response of crash i for the jth variable is k, and
Yijk = 0 otherwise, where j = 1, . . . , J and k = 1, . . . , Kj.

In the LCC model, the class-conditional probability is represented by πjrk, and its
meaning is the kth outcome related to jth variable is exhibited by a crash in class r, where
r = 1, . . . , R. Further, within each latent class, for each exogenous variable, the sum of the

conditional probabilities for all categories is 1, which can be derived as
Kj

∑
k=1

πjrk = 1.

Hence, the probability of a specific set of J outcomes was produced by the variable j in
crash i for latent class r and can be obtained as:

f (Yi; πr) =
J

∏
j=1

Kj

∏
k=1

(
πjrk

)Yijk
(1)

Further, the prior probability of latent class membership is denoted by pr, which
represents the unconditional probability that crash i will belong to each latent class before
considering the variable response outcome Yijk provided by the exogenous variables. The
probability density function of all latent classes is a form of weighted sum, which can be
expressed as (see Linzer et al. [66]):

P(Yi|π, p ) =
R

∑
r=1

pr

J

∏
j=1

Kj

∏
k=1

(
πjrk

)Yijk

 (2)

pr and πjrk are unknown model parameters and are determined by maximizing the
log-likelihood function. p̂r and π̂jrk are used to represent the estimated results of pr and
πjrk. Based on the outcome of the exogenous variables, the Bayesian inference is used to
calculate the posterior probability of each crash belonging to each latent class:

P̂(r|Yi ) =
p̂r f (Yi; π̂r)

R
∑

q=1
p̂q f
(
Yi; π̂q

) (3)

Model fitness was evaluated by AIC (Akaike information criterion), BIC (Bayesian
information criterion), and CAIC (consistent Akaike information criterion). By introducing
a penalty term of model complexity, such diagnostic methods provide the criteria to
measure complexity and goodness of fit. The smaller the value of AIC, BIC, and CAIC,
the better the fitting performance of the model. The calculation formulas of AIC, BIC, and
CAIC are as follows:

AIC = 2p− 2LL(β) (4)

BIC = p ln(I)− 2LL(β) (5)

CAIC = [1 + ln(I)]p− 2LL(β) (6)

where p denotes the number of model parameters, LL(β) denotes the log-likelihood conver-
gence value, and I is the number of observations.

4.2. Spatial Random Parameters Logit Model

The RP-logit model can capture unobserved heterogeneity by allowing model pa-
rameters to vary across observations. Such function provides a flexible framework for
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the RP-logit model. In theory, it can fit any observations with random effects. However,
the generality of the model is limited by the inability to capture the spatial correlation
across observations [59]. Since adjacent segments have similar geometric characteristics
and environments, some factors will be shared across adjacent crashes [60,61]. By consid-
ering the spatial correlation, the fitting performance of the RP-logit model is expected to
be improved.

In order to better illustrate the modeling approach, the derivation starts from the
RP-logit model, which is the original approach of the SRP-logit model. For a given LVR-SV
crash at road segment m (m = 1, . . . , M), the probability of ith crash exhibits a severity
level k, marked as Pm

i,k, which can be given as:

Pm
i,k = P(Um

i,k ≥ Um
i,k) ∀k 6= k′ (7)

Um
i,k is a propensity function to determine the severity k of ith crash. i = 1, . . . , I is

the ith crash event where I denotes the total number of crashes. k = 1, . . . , K is the crash
severity. K denotes the number of categories of crash severity; K = 3 in this research. For
such a ternary-dependent variable, Pm

i,k is determined by a set of covariates representing
specific attributes and a set of unknown parameters. The propensity function is assumed
to be linear, which can be expressed as:

Um
i,k = βi,kXm

i + εm
i,k (8)

βi,kXm
i = βi,k,0 + βi,k,1xm

i,1 + . . . + βi,k,Lxm
i,L = βi,k,0 +

L

∑
l=1

βi,k,l xm
i,l (9)

The term βi,k = (βi,k,0, βi,k,1, . . . , βi,k,L) represents the vector of model coefficients to
be estimated. Among them, βi,k,l is the coefficient of the lth covariate when the severity of
ith crash is k. βi,k,0 is the model intercept. Xm

i = (xm
i,1, . . . , xm

i,L) represents a set of covariates
related to crash severity. xm

i,l is the lth covariate related to ith crash. εm
i,k denotes the random

error term, which obeys Gumbel distribution.
The response variable Ym

i takes one of three values: Ym
i = 0 denotes no injury and

was used as the reference variable, while Ym
i = 1 and Ym

i = 2 represent slight injury and FS
injuries, respectively. Let Pm

i,k = Pr
(
Ym

i = k
)
(k = 0, 1, 2) denote the probability of Ym

i = k.
Hence, we have:

Ym
i ∼ categorical(Pm

i,0, Pm
i,1, Pm

i,2) (10)

Assuming that the probabilities Pm
i,0, Pm

i,1, Pm
i,2 obey the multinomial logistic distribu-

tion, the structure of RP-logit model is shown as follows.

log it(Pm
i,k) = log

Pm
i,k

Pm
i,0

= βi,k,0 +
L

∑
l=1

βi,k,l xm
i,l (k = 1, 2) (11)

where all variables in Equations (10) and (11) are the same as those defined earlier.
The regression coefficients to be estimated in RP-logit model may vary across obser-

vations. It is assumed that the normal distribution, marked as N(·), is followed by the
random coefficients βi,k = (βi,k,0, βi,k,1, . . . , βi,k,L)

T and its distribution form is as follows.

βi,k ∼ N(µk, φk) (12)

βi,k =


β1

i,k
β2

i,k
· · ·
βL

i,k

, µk =


µ1

k
µ2

k
· · ·
µL

k

, φk =


(ϕk

1,1)
2

(ϕk
1,2)

2 · · · (ϕk
1,L)

2

(ϕk
2,1)

2
(ϕk

2,2)
2 · · · (ϕk

1,L)
2

· · · · · · · · · · · ·
(ϕk

L,1)
2

(ϕk
L,2)

2 · · · (ϕk
L,L)

2

 (13)
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It is necessary to point out that the random parameter βl
i,k is determined when its

variance ϕk
w,l is significantly greater than zero. Otherwise, it will be regarded as a fixed

parameter across observations. If no random parameter is found, the RP-logit model will
degenerate to a multinomial logit model.

To capture the spatial correlation of LVR-SV crashes, a spatial structure is constructed
by adding a spatial error term δm

k to the RP-logit model, called the spatial random parame-
ters logit (SRP-logit) model. The spatial term is interpreted by Gaussian CAR techniques,
which have been widely accepted in spatial statistical analysis. Based on this modification,
unobserved heterogeneity across observations can be captured by random parameters and
the spatial correlation among adjacent crashes can be captured by the spatial structure. The
specific model structure is as follows.

log it(Pm
i,k) = log

Pm
i,k

Pm
i,0

= βi,k,0 +
L

∑
l=1

βi,k,l xm
i,l + δm

k (k = 1, 2) (14)

An effective joint density specification often used for the spatial term δk =
(
δ1

k , δ2
k , . . . , δM

k
)

is in terms of pairwise differences in errors and a variance term σ2
δk

[67,68], thus:

P(δk) ∝ exp

[
−0.5v−1 ∑

m 6=m

(
δm

k − δm
k

)2
]

, v = σ2
δk

(15)

A normal distribution is implied in this joint density for δm
k conditioning on the effect

of δm
k on the remaining observation road segments. The corresponding conditional form is:

δm
k

∣∣∣δm
k ∼ N

(
δm

k ,
σ2

δk

∑m 6=m wm, m

)
(16)

With

δm
k =

∑m 6=m
(
wm, mδm

k
)

∑m 6=m wm, m
(17)

where wm, m denotes the un-normalized weight between road segment m and m, and
it is defined as a proximity structure based on distance attenuation. The weight is cal-
culated using exponential decay function of the distance between road segments. In
addition, let (tm1, tm2) represent the crash coordinate in segment m (the latitude and
longitude). The Euclidean distance between road segment m and m is represented by

dm,m =
√
(tm1 − tm1)

2 + (tm2 − tm2)
2. Hence, we have:

wm, m = e−αdm, m (18)

The term α is a weight coefficient, which controls the decline rate of correlation. At the
same time, if the potential spatial correlation of all observed road segments is considered,
this will reduce the model fit performance [69]. Inspired by Klassen et al. [61] and Aguero-
Valverde et al. [70] and combined with the actual length of road segment, dm,m = 3 km was
used as the threshold to identify the spatial correlation. Specifically, the minimum distance
between the observed road segments is greater than this threshold, and a weight with a
value of 0 is considered, otherwise it is 1. As pointed out by El-Basyouny and Sayed [71],
due to the complexity of traffic interaction around the specific crash site, random variations
across road segments may be structured spatially, and the SRP-logit model can be calibrated
using the PROC GLIMMIX procedure in SAS version 9.3.
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In addition to AIC and BIC, McFadden R2 is often used to evaluate model fit. The
calculation approach is as follows:

McFadden R2 = 1− LL(β)

LL(0)
(19)

where LL(β) and LL(0) denote the convergence value and the initial value of log-likelihood,
respectively. The range of McFadden R2 is 0 to 1—the larger the value, the better the
fitting performance.

4.3. Average Marginal Effect

The average marginal effect of the significant risk variables was calculated to quantify
the impact of the independent variables on crash severity. Since the independent variables
in this research are binary variables, the calculation paradigm of the average marginal
effect, marked as EPk

Xl
, is as follows:

EPk
Xl

=
1
I

I

∑
i=1

(Pi,k(Xi,l = 1)− Pi,k(Xi,l = 0)) (20)

where Xi,l denotes the value of the lth independent variable in ith crash. Pi,k(Xi,l = 1)
represents the probability that the severity of crash i is k under the premise of Xi,l = 1. For
a given risk variable, all the observations have a marginal effect, and the average marginal
effect was obtained by calculating the average of all marginal effects. The mathemati-
cal meaning of the average marginal effect refers to the probability change of a certain
crash severity when a variable changes by one unit while the value of other variables
remains stable.

5. Analysis and Discussion
5.1. Analysis of Latent Class Clustering Model

The LCC model was performed based on the exogenous variable shown in Table 1 in
Latent GOLD 4.5 software. An exploratory analysis approach was used to determine the
optimal number of latent class variables. Starting with the latent class variable of 1, the
number of latent class variables was gradually increased and model fitness was checked
one by one to select the best model. In total, 12 clustering models were constructed; the
specific fitting comparison was shown in Figure 3. As shown in Figure 3, the values of AIC,
BIC, and CAIC decrease with the increase of the number of latent class variables. However,
the percentage reduction in the values of AIC, BIC, and CAIC is less than 1% starting from
a latent class variable of 4. This indicates that dividing the observation into four clusters
(sub-datasets) can satisfactorily identify the latent class variable. The distribution statistics
of different variables in the different clusters are shown in Appendix A Table A1.

Figure 3. Identification of the number of latent class variables.
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Since the proportion of variables in different clusters is different, variables with a high
percentage can be identified as characteristic variables; hence, the latent class variables can
be described by the characteristic variables. The characteristic variables (nine groups in
total) and simple size of different clusters are shown in Table 2.

Table 2. Distribution of characteristic variables and simple size of each cluster.

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of observations 9517 3561 3075 2860
Older driver (>50) 10.8% 8.5% 19.3% 49.7%

Seatbelt/helmet used 83.1% 77.8% 71.4% 13.5%
Seatbelt/helmet not used 16.9% 22.3% 28.6% 86.5%

Drunk driving 23.7% 15.2% 24.5% 45.5%
Passenger car 81.2% 12.7% 17.5% 1.2%

Motorcycle 9.8% 1.8% 68.4% 52.9%
Truck 0.2% 68.2% 7.4% 0.03%

Collision with fixed object 2.5% 3.6% 40.2% 3.3%
Mid-age driver (25–50) 73.1% 88.3% 64.3% 33.6%

As can be seen from Table 2, the percentages of seatbelt/helmet used and passenger
car in cluster 1 are 83.1% and 81.2%, respectively, which are significantly higher than those
in other clusters. Hence, these two variables are the characteristic variables in cluster 1. In
cluster 2, the percentage of truck is 68.2%, which is less than 10% in other clusters. Further,
among the different vehicle types in cluster 2, truck has the highest proportion. Hence,
truck is one of the characteristic variables of cluster 2. In addition, the proportion of mid-
age driver (25–50) in cluster 2 is significantly higher than that in other clusters. Thus, truck
and mid-age driver are the characteristic variables of cluster 2. In cluster 3, the proportion
of motorcycles (68.4%) and collision with fixed object (40.2%) is significantly higher than
that in other clusters. Therefore, cluster 3 has two characteristic variables, motorcycle and
collision with fixed object. Similarly, three characteristic variables are contained in cluster 4,
which are older driver, seatbelt/helmet not used, and drunk driving.

In addition, the proportional distribution of crash severity for different clusters is
shown in Table 3. Interestingly, the crash severity in cluster 1 contains only two categories,
and they are no injury and slight injury. Other clusters include three categories—no injury,
slight injury, and FS injuries. This phenomenon can be confirmed by the characteristic vari-
ables of cluster 1. As is known, the use of a seatbelt/helmet can provide superior protection
for drivers, which will significantly reduce the probability of a serious crash [15]. Moreover,
the percentage of FS injuries in cluster 3 is 41.4%, which is significantly higher than that
in other clusters. The characteristic variables of cluster 3 is motorcycle and collision with
fixed object; both of these variables are risk factors related to high mortality [52]. These
findings preliminarily demonstrate the superiority of the LCC model in identifying latent
class variables.

Table 3. Distribution of crash severity in each cluster.

Categories Total Sample Size No Injury Slight Injury FS Injuries

Whole-dataset 19,013 13,309 (70.0%) 3802 (20.1%) 1902 (9.8%)
Cluster 1 9517 9264 (97.3%) 253 (2.6%) 0 (0%)
Cluster 2 3561 3377 (94.8%) 105 (2.9%) 79 (2.2%)
Cluster 3 3075 46 (1.5%) 1757 (57.1%) 1272 (41.4%)
Cluster 4 2860 675 (23.6%) 1655 (57.8%) 530 (18.5%)

5.2. Analysis of Spatial Random Parameters Logit Model

Establishment of the SRP-logit model was a progressive process. The initial variables
were added to the model one by one and were retained or deleted depending on the
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significance of the parameters (90% confidence level). The modeling was repeated five or
more times for each dataset, and the best-fitting model was employed.

Similar to the RP-logit model, the distribution form of random parameters needs to
be pre-set. To verify the optimal distribution hypothesis of random parameters, three
commonly used probability density distributions—normal distribution, uniform distribu-
tion, and log-normal distribution—were tested. Among them, the log-normal distribution
provides a limitation, that is, the model parameters need to maintain the same sign (all
positive or all negative). However, signs of the parameters varying across the risk factors
are often observed [39,55]. Hence, the log-normal distribution is not appropriate in this
research. The fitting performance of random parameters obeying normal and uniform
distributions was compared. The results are shown in Table 4.

Table 4. Fitting comparisons of random parameters following different distributions.

Indicators Distribution Form Whole-Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number - 19,013 9517 3561 3075 2860
LL(β) Normal distribution −13,762.75 −5661.29 −3285.78 −2632.22 −2168.51

Uniform distribution −13,768.13 −5674.34 −3283.78 −2641.53 −2179.42
BIC Normal distribution 20,490.35 9084.12 4291.55 3971.34 3067.85

Uniform distribution 20,506.58 9095.87 4291.55 3988.25 3071.32
McFadden R2 Normal distribution 0.342 0.401 0.397 0.371 0.408

Uniform distribution 0.339 0.400 0.397 0.364 0.406
p-value Normal distribution <0.001

Uniform distribution <0.001

The optimal distribution hypothesis was determined by comparing the BIC and McFad-
den R2 values. As shown in Table 5, for the whole-dataset, cluster 1, cluster 3, and cluster 4,
the random parameters in the SRP-logit model conforming to the normal distribution
outperform those conforming to the uniform distribution because the normal distribution
in such dataset has a lower BCI value and a higher McFadden R2 value. However, no
random parameter was captured in cluster 2. Hence, the SRP-logit model established by
cluster 2 degenerates to the spatial multinomial logit model.

Table 5. Comparison of fitting performance between RP-logit model and SRP-logit model.

Crash Dataset
BIC

RP-Logit Model SRP-Logit Model Difference

Whole-dataset 20,563.21 20,490.35 72.86
Cluster 1 9109.08 9084.12 24.96
Cluster 2 4309.86 4291.55 18.31
Cluster 3 3983.92 3971.34 12.58
Cluster 4 3072.02 3067.85 16.17

According to the optimal distribution hypothesis of random parameters in the SRP-
logit model, the LL(β) value of the model built by the whole-dataset was −13,762.75, which
was less than the sum of the LL(β) values of the model built by the different sub-dataset
(−13,747.80). The BIC value of the whole-dataset model was greater than the sum of the BIC
values of the sub-dataset model (the difference is about 75.49). Meanwhile, the chi-square
test of both the whole-dataset model and the sub-dataset models was significant (p < 0.001).
It was shown that the fitting performance of the SRP-logit model can be improved by using
the relatively homogeneous sub-dataset to calibrate the parameters.

In addition, the RP-logit model was established for each dataset, and the distribution of
random parameters was consistent with the SRP-logit model. Then, the fitting performance
was compared between the RP-logit model and the SRP-logit model by the BIC criteria. As
shown in Table 5, the BIC values of the PR-logit model and the SRP-logit model established
by cluster 1 were 9109.08 and 9084.12, respectively, which shows a difference of 24.96.
Meanwhile, the RP-logit model and the SRP-logit model calibrated by cluster 2 showed a
BCI difference of 18.31. Similarly, the SRP-logit models calibrated by cluster 3 and cluster 4



Sustainability 2021, 13, 7438 14 of 24

were accompanied by more satisfactory BIC values, which were 12.58 and 16.17 lower than
the RP-logit model, respectively. The same findings can be confirmed for the model built
by the whole-dataset.

These statistics showed that the SRP-logit model outperforms the RP-logit model in
terms of fitting crash severity, and this finding remained stable across different datasets.
Hence, spatial correlation is a recommended modeling approach. In addition, this study
also proved that the Gaussian CAR technology is an effective method to identify spatial
correlation in modeling crash severity, which further enriches the research on traffic safety.
Guo et al. [72] and Klassen et al. [61] reached a similar conclusion and pointed out that a
highly significant spatial error component can reveal more crash information compared to
a model without spatial structure.

The estimation results of the variance term σ2
δk

in the SRP-logit model are shown in
Table 6, and the independent variable estimation and average marginal effect analysis are
shown in Tables 7 and 8, respectively. As shown in Table 6, the spatial correlation was
captured in all crash datasets because the spatial variance term was highly significant. Of
note is that the significance of variance term varies across the different crash severities and
the different datasets. Specifically, in the whole-dataset, a significant spatial correlation was
identified for the three severity levels—no injury, slight injury, and FS injuries—under the
distance threshold of 3 km. In cluster 1, the spatial parameters of no injury and slight injury
were significant. In cluster 2, there is a significant spatial correlation among no-injury
crashes. The spatial correlation of slight injury and FS injuries was captured in cluster 3 and
cluster 4. These findings indicate that there is a spatial correlation between the severities of
LVR-SV crashes. As can be seen in Tables 7 and 8, there are significant difference in the
parameter estimation and the average marginal effect between the whole-dataset model
and the sub-dataset model. For example, some variables are not significant in the whole-
dataset model but are significant in the sub-dataset model. By comparing these models,
it is possible to reveal some important variable information hidden in the whole-dataset
model [67].

Table 6. Coefficient estimation of spatial error term in SRP-logit model.

Severity Whole-Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4

No injury 1.067 * 0.731 * 2.549 **
Slight injury 0.814 ** 0.415 *** 0.612 * 1.013 *
FS injuries 1.261 * 2.164 ** 0.321 ***

Note: * indicates 90% confidence level; ** indicates 95% confidence level; *** indicates a confidence level above 95%.

5.3. Discussion

Based on the regression results in Tables 7 and 8, a total of 18 factors that have
significant impact on crash severity were identified. Among them, three factors (seatbelt
not used, motorcycle, and collision with fixed object) lead to a significant increase in the
probability of serious crashes, and these findings are consistent across different datasets. It
is suggested that these three risk factors should be considered emphatically by the policy
makers to reduce the severity of rural crashes. In most cases, the other three factors—drunk
driving, old drivers, and the time of 21:00–7:00 (21:00–24:00 and 0:00–7:00)—also have a
positive correlation with crash severity. In addition, truck and collision with pedestrian
have a negative correlation with crash severity. These findings are consistent with the
official statistics [3] and previous studies [4,6,10,54]. A detailed discussion of the risk
factors is shown below.
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Table 7. Coefficient estimation results for SRP-logit model.

Variables
Whole-Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4

S F S S F S F S F

Male driver −0.63 ** −0.28 *** −0.29 * −1.51 *** 0.31 * 1.40 **
Std. dev. 0.50 0.42

Young (<25) −0.39 ** −0.59 ** −0.60 * −0.56 ** 0.82 **
Std. dev. 1.06

Old (>50) 0.62 ** 1.06 *** 0.81 ** −1.58 * −1.34 ** 1.58 * 0.88 ***
Seatbelt not used 0.71 * 1.24 ** 0.99 ** 0.68 ** 1.05 ** 1.79 ** −1.17 **

Drunk driving 0.33 ** 0.31 ** 0.35 * −2.64 *** 1.04 * 2.68 * −0.22 * 0.35 **
Std. dev. 1.25 1.21

Self-employed −0.41 ** −0.52 ** −0.13 *
Farmer −0.17 * −0.32 * −0.43 *

Motorcycle 3.07 ** 3.32 *** 0.41 * 0.70 * 3.42 ** 2.45 *
Pickup −1.97 ** −1.12 ** −2.21 ** −0.59 * −1.22 ** 2.407 *
Std. dev. 2.24 0.52

Truck −0.73 ** −0.43 * −0.46 * −1.30 *
Others 0.49 *

10:00–17:00 0.22 *
Std. dev. 0.53

17:00–21:00 0.27 * 0.38 *
Std. dev. 1.28 2.45

21:00–24:00 0.93 ** 1.28 ** −0.89 ** 1.29 *** 0.34 ** 0.35 * 0.60 **
0:00–7:00 0.68 ** 1.26 *** −1.29 ** 1.08 ** 2.63 *** 0.26 **
Control 0.20 * 0.38 **

Fixed object 1.89 ** 3.64 ** 1.71 ** 1.64 *** 1.70 * 2.52 *
Std. dev. 1.51

Pedestrian −1.77 ** −2.08 * −0.56 ** −1.41 ** −0.60 **
Others 3.29 ** 3.34 **

Intercept −2.56
*** −4.91 * −3.03 ** −3.24 ** −5.22 ** 2.41 **

Note: S = slight injury; F = FS injuries. * indicates 90% confidence level; ** indicates 95% confidence level; *** indicates a confidence level
above 95%.

Table 8. Average marginal effect of SRP-logit model.

Variables
Whole-Dataset Cluster 1 Cluster 2 Cluster 3 Cluster 4

S F S S F S F S F

Male −0.065 0.005 −0.061 −0.114 0.034 0.123
Young (<25) −0.022 −0.003 −0.031 −0.076 0.038

Old (>50) 0.035 0.053 −0.007 −0.021 0.218 0.147
Seatbelt not used 0.038 0.055 0.041 0.001 0.132 0.306 0.254

Drunk driving 0.028 0.007 0.010 −0.043 0.039 0.109 −0.015 0.028
Self-employed −0.023 −0.017 −0.006

Farmer −0.016 −0.030 −0.029
Motorcycle 0.174 0.128 0.030 0.187 0.238 0.126

Pickup 0.211 0.074 −0.016 −0.049 −0.076 0.078
Truck −0.030 −0.019 −0.012 −0.059
Others 0.019

10:00–17:00 0.018
17:00–21:00 0.026 0.022
21:00–24:00 0.064 0.052 −0.002 0.018 0.105 0.019 0.051
0:00–7:00 0.031 0.062 −0.003 0.016 0.003 0.097
Control 0.011 0.035

Fixed object 0.045 0.332 0.014 0.012 0.073 0.132
Pedestrian −0.134 −0.049 −0.027 −0.031 −0.001

Others 0.411 0.014
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5.3.1. Driver Characteristics

A significant correlation was found between male driver and the crash severity. The
parameter of this variable (FS injuries) follows a normal distribution, with a mean of
−0.28 and a standard deviation of 0.84 in the whole-dataset model, showing that 37.0%
of male drivers are more likely to cause FS injuries. Further, the regression coefficient of
male driver varies across different sub-datasets. For FS injuries, the parameters of male
driver in cluster 3 and cluster 4 were negative (fixed parameter) and positive (random
parameter), respectively. This variable in clusters 1 and 2 was not significant. It is shown
that the unobserved heterogeneity related to male driver (FS injuries) presenting in the
whole-dataset was divided into cluster 3 and cluster 4 by the LCC model. Among these, the
heterogeneity of male driver in cluster 3 was effectively eliminated, but the same finding
was not supported by cluster 4. Hence, a conclusion can be drawn (consistent with Liu
and Fan [55]), under the specific risk factor, that the LCC model can effectively eliminate
the heterogeneity in some of the sub-datasets, but this function cannot be supported by all
the sub-datasets.

Young driver (under age 25) was significantly related to crash severity, which is
consistent with Feng et al. [73]. However, the coefficient of such variable varies across
different datasets. In the whole-dataset model, the parameter of young driver (FS injuries)
follows a normal distribution with a mean of −0.39 and a standard deviation of 1.06.
However, no random effects were found in sub-dataset models. The coefficient of young
driver (FS injuries) in cluster 2 and cluster 4 was negative and positive, respectively;
this variable was not significant in cluster 1 and cluster 2. This finding shows that the
unobserved heterogeneity of young driver in the whole-dataset can be effectively captured
by the LCC model and divided into cluster 2 and cluster 4. Further, these coefficients in the
sub-dataset can be explained by the characteristic variables. In cluster 2, one characteristic
variable was truck, which can provide satisfactory protection measures for a driver [48].
In cluster 4, both seatbelt/helmet not used and drunk driving were the characteristic
variables, and there is a significant positive correlation between these two variables and
serious crashes [52]. These findings reflect the infinite potential of the LCC model to mine
data heterogeneity.

Older driver (above age 50) shows a significant influence in most datasets. In the
whole-dataset, cluster 3, and cluster 4, the likelihood of FS injuries caused by older drivers
increased by 5.3%, 21.8%, and 14.7%, respectively. Wu et al. [9] reached a similar conclusion.
Therefore, older drivers should drive carefully and maintain safe driving habits to reduce
crash severity. However, the coefficient of this variable in cluster 2 suggested that older
driver was expected to significantly reduce the probability of FS injuries (the average
marginal effect was −0.021). A characteristic variable in cluster 2 was truck. Under
low-visibility driving conditions, more driving experience may be a dominant factor in
determining crash severity. This conclusion reflects the advantages of the LCC model to
mine the potential variable information; it can maximize the heterogeneity across different
sub-datasets and reveal the important variable information hidden in the whole-dataset.

The influence of seatbelt/helmet on crash severity cannot be ignored. The probability
of FS injuries caused by seatbelt/helmet not used increases by 5.5%, 0.1%, and 30.6% in
the whole-dataset, cluster 1, and cluster 3, respectively, which is consistent with previous
studies [54]. The impact of seatbelt/helmet not used on cluster 3 is significantly higher
than that in other datasets. Cluster 3 has two characteristic variables—motorcycle and
collision with fixed object. Rollovers often occur in motorcycle crashes, which can cause
serious injury, especially head injury, to drivers; the available literature confirms that a
significant cause of motorcyclists being killed is head injury [52]. Not wearing a helmet
leaves a rider’s head unprotected, which leads to a significant increase in the probability
of a serious injury. However, 30.4% of drivers still do not use seatbelts/helmets in the
whole-dataset. It is necessary to take some mandatory management measures to strengthen
the safety awareness of drivers.
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In the whole-dataset, cluster 3, and cluster 4, drunk driving causes a significant
increase in the probability of serious crashes (marginal effects 0.007, 0.109, and 0.028,
respectively) [55]. These results demonstrate the pernicious effects of drunk driving on
traffic safety to policy makers and the general public. Driving behavior can be affected by
alcohol, which can lead to serious collisions. In cluster 2, however, there was a significant
negative correlation between drunk driving and severe crashes (marginal effect−0.043).
This may be due to the high proportion of trucks in cluster 2 (68.2%), and some risk
compensation operations will be carried out by experienced truck drivers to reduce the
influence of alcohol [74].

5.3.2. Vehicle Characteristics

According to the model calibration results, motorcycles, pickups, and trucks have
significant impacts on the severity of LVR-SV crashes. As there are some differences
between various vehicle types, which cause crash severity to vary across different vehicle
types, this finding was proved by Rezapour et al. [26]. Specifically, there was a significant
positive correlation between motorcycle and serious crashes. In the whole-dataset, cluster 3,
and cluster 4, the probability of FS injuries caused by a motorcycle increased by 12.8%,
23.8%, and 12.6%, respectively. Wei and Cai [15] obtained a similar finding and pointed
out that motorcycles cannot provide superior protection for riders, and high mortality
is inevitable. Meanwhile, judgment related to the driving environment is influenced by
low-visibility conditions, which increase the probability of serious crashes [75].

In the whole-dataset, the parameter of pickup (FS injuries) obeys a normal distribution,
with a mean of −1.12 (0.11) and a standard deviation of 2.24 (0.13). The heterogeneity
exhibited in the whole-dataset was identified and divided into different sub-datasets by
the LCC model. In cluster 2 and cluster 4, the coefficient of pickup (FS injuries) was fixed
(−1.22) and random (mean 1.42, standard deviation 1.35), respectively; it was not significant
in clusters 1 and 3. This result shows that the LCC model can effectively eliminate the
heterogeneity of pickup in cluster 2, but this finding cannot be supported by cluster 4. The
residual heterogeneities need to be identified by the SRP-logit model. This finding indicates
that the LCC model and the SRP-logit model can compensate for the shortcomings of each
other, and combining the two models can provide a superior modeling approach.

There is a significant negative correlation between truck and the severity of LVR-SV
crashes, which is consistent with previous research [76]. In the whole-dataset and cluster 2,
the probability of FS injuries caused by truck was reduced by 3.0% and 5.9%, respectively,
compared with passenger car. In addition, truck (slight injury) was not significant in the
whole-dataset model, but a significant influence was shown in cluster 1 and cluster 2. This
finding suggests that the significance of truck (slight injury) was concealed by the whole-
dataset; this potential impact can be demonstrated by using the sub-dataset to calibrate the
SRP-logit model.

5.3.3. Other Characteristics

In the whole-dataset and cluster 4, the probability of slight injury related to the
time of 17:00–21:00 increased by 2.6% and 2.2%, respectively, compared with 7:00–10:00.
Chang et al. [52] reached a similar conclusion and pointed out that this phenomenon was
caused by aggressive driving caused by traffic chaos during the rush hour [77] because
the sample in this research was rural crashes and there is no evening peak phenomenon
in rural China. Therefore, a more suitable explanation is needed for the findings of this
research. Under low-visibility conditions, it is difficult to maintain a satisfactory driving
environment, and the infrastructure of rural roads is lacking. Furthermore, drivers are
fatigued after a day’s work and may not be able to avoid a crash under such conditions.
This phenomenon is particularly significant for drivers who are not familiar with the local
traffic environment [14].

In addition, there is a significant positive correlation between FS injuries and the time
of 21:00–7:00 (21:00–24:00 and 0:00–7:00), which is consistent with previous research [15].
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In the whole-dataset, cluster 3, and cluster 4, the probability of FS injuries related to the
21:00–24:00 increased by 5.2%, 10.5%, and 5.1%, respectively; this variable corresponding
to FS injuries was not significant in cluster 1 and cluster 2. Further, 0:00–7:00 (FS injuries)
was significant in the whole-dataset, cluster 2, and cluster 3 (average marginal effect 0.062,
0.003, and 0.097, respectively). These findings suggested that serious crashes are more
likely to occur at night and satisfactory driving conditions should be maintained to reduce
crash severity.

In the whole-dataset, cluster 2, and cluster 3, the probability of FS injuries caused by
collision with fixed object increased by 33.2%, 1.2%, and 13.2%, respectively. Zhu et al. [78]
reached a similar conclusion and pointed out that this finding may be related to the high
probability of rollover caused by collision with a fixed object. In addition, the parameter of
collision with fixed object corresponding to FS injuries was fixed across observations in
the whole-dataset, but it was random across observations in cluster 2 (mean 1.64, standard
deviation 1.51). This finding suggests that the model calibrated using the sub-dataset, as
obtained by the LCC model, can reveal the variable information hidden by the whole-dataset.

There was a significant negative correlation between collision with pedestrian and
crash severity. In the whole-dataset and cluster 2, the probability of serious injury caused
by collision with pedestrians was reduced by 4.9% and 0.1%, respectively. Pedestrians are
vulnerable compared with motor vehicles, and a collision with a pedestrian is not expected
to cause serious injury to motor vehicle occupants but could seriously threaten the lives
of pedestrians.

5.4. Recommendations

The method demonstrated in this study can be used to identify risk factors associated
with crash severity under low-visibility conditions. For areas where low-visibility condi-
tions occur frequently, such as Chongqing and Zibo, China, the proposed method can be
used to extract significant influencing factors. Then, effective solutions can be proposed
according to the factor characteristics to improve traffic safety performance and promote
sustainable development.

Based on the findings in this article and previous engineering experience, the greatest
benefit received by policy makers is the clarification of risk factors of the LVR-SV crash
severity. Some measures can be adopted to improve traffic safety.

(1) Certain risky driving behaviors (such as seatbelt not used, drunk driving, over-
speed, and fatigue driving) have significant influence on crash severity. Legal measures
are effective means to overcome risky driving behavior. Several electronic policies can be
installed on the roadside in rural areas to monitor risky driving behavior and impose penal-
ties. Meanwhile, an in-vehicle crash warning system that identifies such risky behaviors in
real time may contribute to improving traffic safety performance. The primary purpose of
these measures is to remind drivers to maintain safe driving habits.

In fact, these dangerous behaviors are closely related to the lack of adequate safety
awareness among drivers. Improving the safety awareness of drivers in rural areas is fun-
damental and important for improving road safety. Appropriate publicity and education
are necessary. In addition, an on-board navigation system can report the low-visibility
conditions ahead and advise drivers to slow down appropriately.

(2) A conclusion was drawn by this study that collision with fixed object will lead to a
significant increase in the risk of fatal collisions. Hence, the traffic management department
should focus on improving hard guardrails or other pavement fixtures on both sides of the
road (such as concrete wall pillars), replacing hard guardrails with soft guardrails that can
absorb collision energy, or installing a buffer energy-absorbing device on the surface of a
fixed object to reduce crash severity.

(3) The impact of motorcycles on traffic safety must be seriously improved. The
supervision, management, and education of motorcycle riders should be strengthened.
Dangerous driving and abnormal driving license status should be given severe punishment
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to reduce high-risk travel behavior. The government should encourage residents to choose
alternative modes of transportation instead of motorcycles.

(4) In rural China, road infrastructure is commonly inadequate. The Department
of Transportation should install sufficient roadway ancillary facilities, including road
condition signs, speed limit signs, pavement marking, and streetlights. Among them,
installation of streetlights is most essential because nights without street lighting will lead
to a dramatic increase in the risk of fatal collisions [48]. Meanwhile, to ameliorate the
effects of low-visibility conditions on crashes, we recommend installing blinking lights on
the roadside to alert drivers.

Among the safety measures mentioned above, the countermeasures corresponding to
seatbelt not used, motorcycle, and collision with fixed object should be implemented first
because the positive correlation between these variables and crash severity remains stable
across different datasets. Then, other measures could be implemented one after another.

It is necessary to point out that we have received strong support from the Zibo
Department of Transportation and several corresponding measures have been implemented
in some of the studied road segments. In the future, traffic crash data before and after
the implementation of safety measures will be collected and compared to evaluate the
effectiveness of the measures. This part is the focus of our future research.

6. Conclusions

The primary objective of this research was to investigate the risk factors of LVR-SV
crash severity. The injury severity of drivers was used as the dependent variable—no injury,
slight injury, and FS injuries. A two-step modeling approach was proposed. First, the LCC
model was used to divide the whole-dataset into several sub-datasets. By comparing the
fitting indicators of different numbers of sub-datasets, the whole-dataset was divided into
four sub-datasets. Then, the SRP-logit model was established for the whole-dataset and
the sub-datasets to identify the risk factors of crash severity and the spatial correlation
among adjacent crashes. In total, 18 significant factors were identified—male driver,
young age (<25, >50), seatbelt/helmet not used, drunk driving, career (self-employed and
farmer), vehicle type (motorcycle, pickup, truck), time of day (10:00–17:00, 17:00–21:00,
21:00–24:00, 0:00–7:00), collision type (collision with fixed object, collision with pedestrian),
and traffic control.

The statistical comparison showed that the SRP-logit model outperforms the RP-logit
model and is a superior modeling technique. The significance of the spatial error term in the
SRP-logit model indicates that there is a spatial correlation between the severity of LVR-SV
crashes. Meanwhile, the significance of the spatial error term varies across different datasets.
In the whole-dataset, the spatial correlation was captured among all the three severity
levels; however, the spatial correlation in the sub-dataset was less than the whole-dataset.
For example, the spatial parameter of no injury in cluster 2 was significant, but slight injury
and the FS injuries were not significant. This finding suggests that the LCC model can
reduce the spatial correlation in the sub-dataset, but it cannot be completely eliminated.

In addition, dividing the whole-dataset into sub-datasets through the LCC approach
and calibrating the model by the sub-dataset can further improve the fitting performance
of the SRP-logit model. Hence, a two-step analysis approach is advocated to model
crash severity.

Some interesting findings were obtained. First, the LCC model can effectively elimi-
nate the unobserved heterogeneity across observations in some sub-datasets, but it cannot
eliminate them in all sub-datasets. For example, male drivers showed random effects in the
whole-dataset and cluster 4, but no random effects were found in cluster 3. This finding
suggests that the LCC model can effectively eliminate the heterogeneity of male drivers in
cluster 3, but there was residual heterogeneity in cluster 4. Second, the sub-dataset model
can reveal some important variable information that was hidden by the whole-dataset
model. Truck (slight injury) was not significant in the whole-dataset model, but a significant
influence was captured in cluster 1 and cluster 2.
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7. Limitations of the Study

This research has some limitations.
(1) The risk factors considered in this study are not rich enough. If variables such

as traffic volume and vehicle speed can be considered, it is expected to further improve
the fitting performance of the SRP-logit model, although it is difficult to obtain such
information. Therefore, in the future, a millimeter-wave radar could be installed on several
rural road segments to collect valuable data.

(2) The crash extracted in this research occurred in China; the crash characteristics may
vary with different cultural backgrounds and traffic conditions. Thus, the transferability of
the model proposed in this research across countries should be studied to further enrich
the existing literature.

(3) This study used Gaussian CAR technology to account for the spatial correlation
error of crashes. We will continue to study the decrease of the spatial correlation error by
using other alternative methods.
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Appendix A

Table A1. Proportional distribution of independent variables in LCC model.

Variables Description Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number 9517 3561 3075 2860
Injury severity No injury 9210 3377 46 675

Slight injury 253 105 1757 1655
FS injuries 54 79 1272 530

Driver gender Female 12.3% 0.1% 2.6% 21.7%
Male 87.7% 99.9% 97.4% 78.3%

Driver age <25 73.1% 88.3% 64.4% 36.6%
[25,50] 16.1% 3.2% 16.3% 13.7%

>50 10.8% 8.5% 19.3% 49.7%
Seatbelt/helmet Used 83.1% 77.8% 71.4% 13.5%

Not used 16.9% 22.2% 28.6% 86.5%
Drunk driving No 76.2% 84.8% 75.5% 54.5%

Yes 23.8% 15.2% 24.5% 45.5%
Career Company staff 16.6% 16.2% 14.8% 16.5%

Self-employed 38.4% 26.3% 25.5% 19.5%
Farmer 36.9% 49.4% 50.9% 49.4%
Others 8.2% 8.1% 8.9% 14.7%
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Table A1. Cont.

Variables Description Cluster 1 Cluster 2 Cluster 3 Cluster 4

Vehicle type Passenger car 81.2% 12.7% 17.5% 1.2%
Motorcycle 9.9% 1.8% 68.4% 52.9%

Pickup 6.2% 9.4% 5.9% 43.3%
Truck 0.1% 68.2% 7.4% 0.1%
Others 2.7% 7.9% 0.8% 2.7%

Week Monday/Friday 43.4% 45.2% 44.2% 43.7%
Tuesday–Thursday 28.8% 28.2% 26.7% 29.5%

Weekend 27.8% 26.6% 29.1% 26.9%
Intersection No 64.9% 64.8% 76.1% 57.4%

Yes 35.0% 35.1% 23.9% 42.6%
Time of day 00:00–7:00 15.0% 16.1% 6.2% 16.4%

7:00–10:00 35.1% 33.6% 26.3% 36.9%
10:00–17:00 23.7% 15.9% 17.6% 20.2%
17:00–21:00 17.1% 11.0% 30.3% 14.7%
21:00–24:00 9.2% 23.3% 19.7% 11.8%

Collision type Collision with fixed
object 75.3% 82.6% 55.9% 83.5%

Collision with
non-fixed object 2.5% 3.6% 40.2% 3.3%

Collision with
pedestrian 22.2% 13.5% 3.8% 13.2%

Others 0.1% 0.3% 0.9% 0.8%
Traffic control No control 50.0% 59.5% 54.5% 59.5%

Control 49.9% 40.5% 45.5% 40.5%
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