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Abstract: Due to the increase in cargo handling in ports, and the thereby increase of trucking directly
associated with them, this article examines the impact of heavy goods vehicles generated by the
port facilities on the environment. The article determines what is feasible to limit the percentage
increase in the number of HGVs generated by the port areas such as container terminals or mass,
which will result in a significant increase in emissions in the port city. In this study, five intersections
were analyzed using micro-simulation to determine exhaust emissions such as CO, NOx, VOC, and
fuel consumption. The analysis was made on the example of the port city of Gdynia in Poland, using
the actual data. The use of the PTV Vissim tool made it possible to obtain the result data from the
simulation of ten variants with a variant representing the current state. The results indicate that
increasing the number of HGVs generated by port areas by 40% will make a significant difference
in exhaust emissions. The obtained results can be useful for controlling the level of environmental
pollution as predictive models.
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1. Introduction

The impact of heavy goods vehicles on city traffic has a negative impact on many
levels [1–3]. Heavy goods vehicles generate noise and environmental pollution but also
cause faster operation of the road surface [4]. The city road differs in the number of lanes,
permissible speed, or profiling of vertical and horizontal curves [5]. The law prescribes or
prohibits certain maneuvers on individually defined types of sections; bans on stopping
in certain places, orders to drive in a given direction, or speed limits depending on the
place and road class or road category. Regarding [6], the Polish Journal of Laws (Journal of
Laws of 2016), item 124, Regulation of the Minister of Transport and Maritime Economy
of 2 March 1999 on the technical conditions to be met by public roads and their location,
the following classes of public roads are distinguished: motorways, expressways, main
roads of accelerated traffic, main roads, collective roads, local roads, and access roads.
There are authorities empowered to supervise road users, such as the police, road transport
inspection, or municipal police. Each organizational unit has different tasks, but the goal is
common and clear. In the era of advanced information technology, telecommunications,
and transport telematics, management units and law enforcement agencies often use
various devices to perform their duties. The example of traffic regulation can be ordinary
traffic lights that allow or prohibit leaving the entrance of the intersection [7]. The listed
features and situations are just an example of how many independent variables can be
introduced into the model to reproduce traffic with the greatest accuracy.

Transport networks in cities can be structured differently. There are cities with pre-war
road infrastructure. Some were rebuilt anew after the war with the new road system. Each
city is different, so the traffic that travels on the city network varies from case to case.
An example may be the comparison of the cities of Gdynia with Krakow. The first one—
Gdynia [8–10], which due to the location of the shoreline has a linear road infrastructure.
The traffic of residents mainly focuses on commuting to the workplace or recreation, and
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also shares the same infrastructure with the traffic of heavy goods vehicles generated by the
port. Another different case is the central part of the city of Krakow. In Krakow, numerous
traffic calming restrictions were introduced deliberately in 1987–1988 to eliminate transit
traffic from a wider area and to further limit the accessibility of the city center for car
traffic [11]. By general knowing the make and model of the vehicle, we can calculate the
average fuel consumption per 100 km. There are ready-made calculators or websites for
this. However, when moving around the city by vehicle, the calculations are not so easy.
The amount of fuel burned affect [12], among others, the following factors: type of vehicle,
the efficiency of an engine, the performance of the other components of the vehicle, the
patency of the filter, proper tire pressure, fuel quality, the quality of the engine oil, driving
style, terrain after which the vehicle is moving and the most important—overcoming
resistance to motion depending on the first and second conditions of motion [13,14]. The
city in which the port is located develops its infrastructure in a direction that will meet the
needs of the inhabitants, but also ensure the flow of cargo from and to the port. There are
many environmental factors related to the operation of a port in the city.

These impacts are primarily related to shipping activities in port, land-based activities,
and environmental impacts from transport. Sea transport is also responsible for the
generation of carbon monoxide (CO) and nitrogen oxides (NOx) [15]. Carbon dioxide
is responsible for air pollution, its increased amount in the air causes smog in urban
agglomerations. This significantly affects the air quality in the port city and is a major cause
of respiratory and cardiovascular diseases. To perform the analysis, it will be necessary
to create a model that will allow obtaining the data necessary to estimate the scale of the
problem, the increasing number of trucks in cities, and the negative effects associated
with it. There is no perfect way to model motion for what it does randomly deviations
from the norm in the road network. According to the author [16], the reasons for the
deviations are nodes as critical points in the network. They are the ones that are prone
to interference. When calculating the microscopic model, it is necessary to identify such
places. The author [6] clearly emphasizes how important the measure of efficiency is
the flow of traffic in the transport network. There are publications that [17–19] define
traffic disruptions primarily as: road network congestion, road works, or road collisions.
When analyzing the impact of collision situations and road accidents, the authors [20] in
their monograph refer to the theory of modeling with the use of time-series trends in and
through long periods of time in the national area in road safety. Heavy goods vehicles and
their impact on the transport network are usually tested in terms of their negative impact
on the road surface [21–23]. There are publications [11–13] focusing on overloaded heavy
goods vehicles. The authors [3] found that overloaded vehicles cause from 35% to 70% of
the total fatigue damage to the pavement. On average, half of the total road fatigue damage
is caused by the traffic of overloaded vehicles. Thus, the infrastructure in the port city is
directly exposed to the negative impact of the port, including heavy goods vehicles [24]
and, above all, overloaded vehicles.

The model may include only one intersection, several intersections connected by
sections between nodes, creating a sequence of intersections, or even the entire road
network in the area covered by the territorial borders of the city. The paper presents a
case of traffic in a port city, where the seaport occupies the central part of the city, and its
infrastructure divides the city into the northern and southern parts. The analyzed case is in
a city where the traffic generated by the port must be intertwined with the traffic generated
by the residents who want to get to their daily destinations, such as work or school.

This work deals with the analysis of the fuel consumption of all vehicles traveling on
the urban road network at the time of increasing the number of heavy goods vehicles by
port terminals. The location of the terminals in the city has a great impact on the results of
the analyses. Terminals can be located away from the city center or, as in the case of the city
of Gdynia [25] in the northern part of Poland, in its very center. The city of Gdynia, with a
population of over 264,000, is part of a conurbation along with Sopot and Gdansk, creating
a Tri-City with a population of approximately one million. This analysis concerns a section
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of the road network of the city of Gdynia. This section covers two container terminals
and mass terminals as well as the roads between them, the flyover as the main link to the
bypass and further to the motorway, providing a connection with the south of the country.

The author [26] indicates in her monograph how the process of the spatial and func-
tional evolution of container terminals has proceeded and how the spatial arrangement of
their surroundings has changed. He aptly points out that the terminals nowadays are not
limited only to the area of their territory, but are a neural system, where the terminal is in its
center and is connected with other intermodal terminals. It can be noticed that the container
terminal, which is located in the central part of the city, is inseparable from its infrastructure
and spatial development and constantly affects the quality of life of its inhabitants and may
also cause disruptions to the road network [27,28]. This work examines the problem of
using microsimulation models [29] to estimate the impact of road traffic generated by the
port, and above all, by container or passenger terminals, on the functioning of the urban
road network.

2. Materials and Methods

It is a well-known division of transport models due to the scope of the male terri-
tory [30]: macroscopic, mesoscopic, microscopic, and submicroscopic. Such a classification
of models allows for a different level of aggregation, level of accuracy, and analogies to
other fields of science such as fluid mechanics or gas kinematics. Depending on the result
that the researcher wants to obtain, he should adjust the selection of quantities describing
given traffic. Other necessary dependencies will be needed for directly related research
with planning, for example, traffic flows and their structure [31]. On the other hand, from
the point of view of people managing the traffic, e.g., in the traffic control and management
center, the most important external data will be the number of vehicles, the method of
control or its lack, as well as the organization of traffic at nodes and sections between
nodes [32]. Simulation modeling of transport systems and processes has been used for
many years, scientific publications relating to the modeling of port management and its
transshipments can be found as early as 1980 [33]. Many issues related to the movement
of individual units—means of transport—and cargo handling operations were analyzed
through the use of complex simulation models due to the extensive and complex processes
taking place during their duration. Vehicle traffic in the urban transport network can
be analytically modeled, especially for medium and large-scale cases, using many tools
specially designed for this. Due to the heterogeneity of vehicle traffic, it is not possible to
fully reproduce using the model of all drivers’ behaviors or incidental situations having a
direct impact on road traffic [34].

The model used in this publication is on a microscopic scale [35,36]. The data for the
analysis was obtained using the PTV Vissim tool [37–40]. Modeling functionality with
the PTV Vissim tool is achieved by entering data on the size of the traffic flow, its type,
generic structure, important elements of the road infrastructure (curvature, horizontal, and
vertical curves, or the width of the lane), important elements of infrastructure related to
public transport, or mapping places related to the movement of pedestrians. The conducted
micro-simulation analysis allows for obtaining basic result data in the modeled transport
network in a specified time interval, such as queue lengths, travel times, time losses, the
number of stops, travel speed, exhaust emissions, or fuel consumption [41–46].

To carry out the analysis, as a case study of the impact of heavy goods vehicles on
the urban transport network, a model was implemented that reflects the existing state on
the example of the port city of Gdynia. The model is valid as of 2 October 2020. Later
possible changes to the modeled network or the method of traffic management were not
taken into account. The existing condition of the modeled network was compared to the
increased volume of heavy goods vehicle traffic resulting from travel to and from the port.
The model is designed to check the periods in which the level of freedom of movement will
not be exceeded in terms of operational reliability. Particular operational reliability limits
for individual states were determined based on the existing state model. To perform the
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described analysis, a simulation model was created in the PTV Vissim program. This model
was supplied with actual data received from the Gdynia Road and Greenery Authority
in Gdynia and manually calculated data. The data comes from the TRISTAR (Intelligent
Traffic Control System). The peak hour data was additionally measured manually to
calibrate the model with the exact generic structure of the vehicles. Due to the measured
data on traffic flow at intersections, the model calibration method was selected using the
GEH [41,42] indicator. I used this method for each type of vehicle separately due to the
result in the unit of vehicles per hour. The basic assumption of the method is to validate
and calibrate the model to obtain no more than a 5% difference in the measurement results.
An example of a transport network close to the port is a section of the network in the city
of Gdynia. The map below shows the scope of the modeled section of the urban transport
network of Gdynia city—Figure 1. On red color is marked analyzed road network.
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Figure 1. Part of the municipal transport network of the city of Gdynia (18◦33′ E, 54◦30′ N) was analyzed by simulation
modeling.

To measure the pollutants emitted, the model lists five intersections where the model
measurements took place. These intersections differ in geometry as well as in the generic
structure of vehicles. Figures 2–6 below show the geometry of the analyzed junctions
together with the geoinformation.

• Junction 1 (54.540335, 18.497963)
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• Junction 2 (54.532896, 18.488618)
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On a microscopic scale, for simulation analysis, for example, the PTV Vissim [43]
tool is used. The program allows you to create traffic analyzes road (including individual
car, bicycle, and collective traffic), and pedestrian traffic. The tool also allows for the
simulation study of mutual interactions generated by groups of traffic users moving on
the same road network. In the case of the PTV Vissim tool, the simulation is based on
the Wiedemann model associated with the name of “driving behind the leader” because
the vehicle following another vehicle reaches its maximum speed then it slows down and
accelerates to keep a safe distance from the vehicle in front of it [45]. In order to implement
the model, the following activities were made:

• The road network with the connection system was mapped, orthophotos were used,
as well as official data in the case of the height of the modeled flyover;

• Added vehicle loads on an hourly basis from 06:00 to 20:00, data was measured by
ITS system Tristar, and manually;

• The generic structure of vehicles was added;
• Torsional relations were added at each intersection with the specified percentage;
• Traffic light programs were added for the period from 06:00 to 20:00 along with the

schedule of changing programs depending on the time;
• Traffic lights at intersections;
• Public transport timetables were added, as well as infrastructure such as bus stops,

waiting for places for pedestrians;
• Allowable speeds on individual sections were assigned;
• Speeds on torsional relations within the intersection were limited;
• Traffic was assigned and prioritized in disputes;
• Pedestrian traffic was added;
• Measurement points were added;
• Calibrated and validated by the GEH index [46].

Based on ten simulation runs with the use of random seed 47, the results presented in
individual variants are average results. The model made in this way reflected the existing
state of the urban road network. In the further part of the work, it was described as Variant
0. The other variants of the model 1, 2 . . . , 10 reflect the increase in the number of heavy
goods vehicles generated by port areas, at three generator points by 10%, 20%, . . . 100%
more concerning the Variant 0.

3. Results

The simulation results were presented based on the analysis of five intersections with
traffic lights. The analysis of nodes allowed us to obtain data on the generation of CO [46],
NOx [47], VOC [48] by vehicles as well as statistics of fuel consumption [49]. Figure 7
below shows the location of the analyzed intersections in the network. The attached map
lists five intersections marked as nodes with numbers from 1 to 5. Impact of the increase
in the number of heavy goods vehicles generated by terminals on fuel consumption and
pollution in the city. The analysis was divided into variant 0—showing data on the current
state, and into other variants with the increased traffic of heavy goods vehicles.
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3.1. Variant 0—The Existing State

In the results of the Variant 0 microsimulation model, it can be seen that the results
differ depending on the junction. It depends on the traffic volume, left turn, the number of
stops at an intersection, or the length of the queue at the entrance. Each of the intersections
is also located at a different distance from the generator points—port terminals. The extent
of CO pollution from a vehicle is startlingly different. In the case of intersection no. 2, the
maximum values reach almost 12,000 g during the hour under study. However, in the case
of intersection no. 4, these values never exceed 1000 g. In the case of intersection no. 5, the
highest emission takes place during the afternoon rush hours, the values reach the value of
12,000 g at the measurement hour. Figure 8 shows the hourly distribution of CO emissions
at individual intersections.

In the case of NOx emissions, similarly to CO, the highest emission was measured at
junction no. 2, where the maximum value exceeds 2100 g during four measuring hours.
Moreover, by analogy with CO, junction 5 generates the highest NOx emissions during
the afternoon rush hour from 16:00 to 17:00. Junction no. 4 has incomparably lower values
than the other intersections. Figure 9 below shows a graph of NOx emissions broken down
by measuring hours.

Similar to the previous data, the highest VOC emission is generated by crossing 2.
The measured value exceeds 2500 g three times during the measuring hours. During
the afternoon peak, during one measurement hour from 16:00 to 17:00, intersection no.
5 generates the most VOC above 2600 g. At the remaining intersections, the values are
emitted at an equal level throughout the post-air period. The distribution of measurement
data is shown in Figure 10.
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In the case of fuel consumption at individual intersections, also intersection no. 2
consumes almost 7000 L during the calculation period from 7:00 to 20:00. The lowest fuel
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consumption, and thus environmental pollution, is at the conjunction no. 4—571 L. On
the other hand, intersections 1 and 3 generate fuel consumption of about 2000 L. Drivers
at junction 5 burn less than 3000 L. Figure 11 shows the variation in fuel consumption at
particular intersections.
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Measured by value, they are the basis for observing changes while increasing the
number of trucks generated by ports.

3.2. Variants 1–10

The results of the micro-scale simulation of variants in which the load of heavy goods
vehicles at generator points was increased show that increasing the number of vehicles by
20% brings the first negative effects. Analyzing the sum of the total emission of harmful
substances during the measurement period, it was an increase by 40% that showed that
there will be an increase in CO by over 20,000 g. The highest emission of harmful substances
will occur when the number of heavy goods vehicles through the ports is increased by
90%—the CO emission will exceed 320,000 g during the measurement period. Figure 12
shows a comparison of all variants depending on the increase in the number of heavy
goods vehicles.
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Referring to variant 0 and then to the one where the number of HGV was increased
by 40% and then by 90%, it can be seen that the increase in changes in CO emissions is not
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linear. These changes are visible mainly during the morning and afternoon peaks. In the
mornings from 9:00 am to 10:00, with the intensity of heavy goods vehicles increased by
90% at generator points, exhaust emissions will be almost 1500 g higher than for the other
variants during one measurement hour. The increase by over 1000 g will also take place
during the afternoon rush from 16:00 to 20:00. Figure 13 shows the hourly CO junction 1
case analysis.
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When analyzing the individual sums of exhaust emissions and fuel consumption
concerning a specific variant, it should be noted that the changes do not occur in any linear
way. Due to the extensive road network, equipped with various variable elements such as
intersections, pedestrian crossings, and signaling program, the simulation results will not
increase steadily with the increase in the number of vehicles. The use of a micro-simulation
tool will allow estimating the deterioration of both road traffic conditions and, above all, air
pollution-related to the transport of cargo from the port by road transport. These changes
are felt mainly by the inhabitants of the nearby areas adjacent to the port area. Table 1
presents a comprehensive comparison and summary of the results of the case study of an
increase in the number of trucks at generator points on the municipal transport network in
terms of CO, NOx, VOC emissions, or fuel consumption.

Table 1. Variants comparison—results.

Emissions CO [g] Emissions NOx [g] Emissions VOC [g] Fuel Consumption [L]

Variant 0 266,842.0 51,917.7 61,843.2 14,450.7
Variant 10% 263,597.8 51,286.6 61,091.3 14,275.0
Variant 20% 275,056.3 53,516.0 63,746.9 14,895.6
Variant 30% 273,860.4 53,283.3 63,469.8 14,830.8
Variant 40% 290,809.7 56,581.0 67,398.0 15,748.7
Variant 50% 277,846.1 54,058.8 64,393.5 15,046.7
Variant 60% 289,245.4 56,276.6 67,035.4 15,664.0
Variant 70% 287,013.0 55,842.3 66,518.0 15,543.1
Variant 80% 311,094.1 60,527.6 72,099.1 16,847.2
Variant 90% 323,418.2 62,925.4 74,955.3 17,514.6
Variant 100% 311,325.7 60,572.7 72,152.7 16,859.7
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4. Discussion

Traffic modeling is the research field of many disciplines, used in the theory of traf-
fic flow in road networks in the case of addressed microscopic, mesoscopic, and even
microscopic traffic simulation. Transport analyses performed by engineers are the basis
for making infrastructure decisions by city managers. Typically, in terms of the entire
city, macroscopic models are used, which will be able to determine the most important
changes depending on the compared variants. The analysis made for this article shows
how important the analysis is also on a microscopic scale. This case study of the port of
Gdynia and the roads leading to and from the port shows the use of micro-scale models
and tools.

The data available in the literature on port analyzes usually show the port in terms of
region or country. This is a reasonable approach due to the fact that the port is an important
part of the economy of a given country. As a whole, the increase in transshipment through
the port brings a positive result for the city or even the region, the port brings huge
profits for the city and is also a workplace for many residents. Increasing transshipments
will be synonymous with the need to increase work in the port. However, it should be
remembered that each cargo must somehow leave the port. However, as in the analyzed
case, residents have to share the road infrastructure with loads going to or leaving the port.
The performance of the described analysis will allow estimating the negative impact of the
increase in the number of trucks generated by the port on the lives of residents.

Any increase in the number of vehicles has an impact on the environment. The
obtained data from the microsimulation model should be read in a local reference. If the
number of heavy goods vehicles is increased, each 10% more vehicles generated by ports
will have an impact on the deteriorating traffic conditions in the port city. The microscopic
analysis presented in this article shows what negative effects should be expected in the case
of increasing the loading capacity of a given food. It should also be noted that there is a
possibility of mitigating the negative effects by using rail or inland transport for the further
transport of cargo from the port. Local authorities should therefore strive not to exceed the
limit values for the number of vehicles, especially heavy goods vehicles, in urban areas. An
important factor in promoting sustainable transport or urban transport to reduce exhaust
emissions.

The analysis presented in the article can be used in any port area, only with the need
to perform and calibrate the micro-simulation model. Due to the different road networks
in each city, the results will be different, however, the measurement method can be fully
used. In the case of the Gdynia port analysis, the volume of heavy goods vehicles by
40% will cause significant changes in road traffic, the number of exhaust gases, and fuel
consumption.

5. Conclusions

This analysis shows the possibility of using a micro-simulation tool to reflect the
negative environmental impact of vehicles through exhaust emissions.

The pursuit of modern cities towards sustainable development, both economically and
ecologically, should form the basis of the future activities of local authorities. The definition
of limit values that city authorities should not exceed may be determined based on the
study presented in this article. On the example of the Gdynia city—on the analyzed section
of the network, the pollution by exhaust gases differed depending on the measuring point.
Due to numerous factors influencing the measurement, such as the number of vehicles,
type of vehicle, number of stops, free movement, and the results are not linear. In the
analyzed case, an increase of the number of road transport by 40% resulted in a significant
increase in exhaust gas emissions. It should be noted that the study was performed daily.
Thus, the obtained CO increase of 20,000 g in the case of a 40% increase in the number of
vehicles generated by the port daily will generate about 600 kg of CO emissions monthly
only at one intersection. Monitoring of exhaust gases in cities, and especially in industrial
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cities, e.g., port cities, is an essential element to provide residents with a healthy and safe
place to live.

The presented case study can be applied to any road network in the vicinity of any
port. The analysis can only be performed on a well-constructed and then calibrated
microsimulation model.

The impact of the port on the port city is inevitable. Micro-scale analysis is able
to show when there is a significant deterioration in traffic conditions and an increase in
exhaust emissions. PTV Vissim is useful because it allows you to map the network in every
detail. These details are important due to the road network which varies from place to
place. The key application of the article is for city management to supervise and control
the level of pollution in the city in the future. A model is a useful tool for the prediction
of pollution as well as for determining the limit state which should not be exceeded. In
the analyzed case, an increase in heavy goods vehicles by 40% compared to the existing
state will significantly increase the pollutants emitted into the environment. The described
example can be applied to any other case. However, it has limitations in the form of a paid
license for the PTV VISSIM software. Another limitation is the need to have actual data to
correctly estimate the amount of pollution generated by vehicles.
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35. Krośnicka, K.A. Przestrzenne Aspekty Kształtowania i Rozwoju Morskich Terminali Kontenerowych, 1st ed.; Wydawnictwo Politechniki
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