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Abstract: Typhoons are major natural disasters in China. Much typhoon information is contained
in a large number of network media resources, such as news reports and volunteered geographic
information (VGI) data, and these are the implicit data sources for typhoon research. However,
two problems arise when using typhoon information from Chinese news reports. Since the Chinese
language lacks natural delimiters, word segmentation error results in trigger mismatches. Addition-
ally, the polysemy of Chinese affects the classification of triggers. Second, there is no authoritative
classification system for typhoon events. This paper defines a classification system for typhoon
events, and then uses the system in a neural network model, lattice-structured bidirectional long–
short-term memory with a conditional random field (BiLSTM-CRF), to detect these events in Chinese
online news. A typhoon dataset is created using texts from the China Weather Typhoon Network.
Three other datasets are generated from general Chinese web pages. Experiments on these four
datasets show that the model can tackle the problems mentioned above and accurately detect typhoon
events in Chinese news reports.

Keywords: typhoon; classification; event detection; polysemy; lattice; BiLSTM-CRF; Chinese news
reports

1. Introduction

Typhoons are major natural disasters, causing serious harm to human life and property.
China is close to the typhoon-prone area in the Pacific Ocean. In summer and autumn,
southern China in particular is frequently attacked by typhoons. Although there are early
warning mechanisms and defensive measures, typhoons still incur significant personal and
economic losses. Thus, research on typhoons can provide valuable information directly
related to the national economy and people’s livelihoods. With more precise advanced
warning, people can prepare and protect their property more effectively and efficiently.
However, the sources of data necessary for typhoon research are relatively fixed. The
data needed for typhoon research mainly come from image data, meteorological data, and
statistical data. The statistical data regarding typhoons are usually managed by the Chinese
government. As all the data comes from professional departments, data acquisition is
difficult, and real-time data cannot be obtained, especially statistical data. These problems
hinder typhoon research. There is an urgent need for obtaining data easily and quickly.

With the rapid development of the Internet, there is now much typhoon information
publicly available online. This information includes warnings as a typhoon develops, real-
time information about the weather (e.g., wind speed, rain), and information of the effects
of a typhoon as it passes (e.g., flooding, damage to infrastructure such as roads and build-
ings). These data are diverse and easier to obtain than those of professional departments.
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Wikipedia, online news, and social media have become implicit data sources of typhoon
information [1]. However, the data are massive, scattered, and in various formats. Finding
relevant data by manual search is almost impossible [2]. Event detection technology is the
most practical solution for retrieving typhoon information from online sources.

Event detection technology can cull information of interest from massive data. Events
can be defined as real-world occurrences that unfold in space and over time [3]. Event
detection from conventional media sources has long been addressed in the topic detection
and tracking (TDT) research program, which mainly aims at finding and following events
in a stream of broadcast news stories [3]. Therefore, event detection technology can be
applied to find typhoon information in massive amounts of data automatically. Event
detection is the first and key step in event extraction. However, most of the research is
focused on typhoon information extraction [4–7], and there is little research on typhoon
event detection.

Furthermore, there is no authoritative classification system for typhoon events. Yu [6]
defined a classification hierarchy for disasters recorded in microblogs. The hierarchy
includes six categories: buildings, green plants, transportation, water and electricity, other,
and useless. The classification scheme does not refer to typhoons in particular and is
not complete. A classification system would organize information efficiently, making
it more useful to people and governments, particularly in preparing for typhoons. In
order to analyze all aspects of typhoon and prepare for future typhoon data extraction,
typhoon information is regarded as a collection of small-scale information. According to
the description of the information, the small-scale information is defined as different types.
Each type corresponds to a type of event. Thus, typhoon is composed of several types of
events. By analyzing a large number of typhoon reports and by considering other general
disaster classification systems [5,6], a typhoon classification system is proposed.

Unlike those for common event detection, there are no ready-made experimental
datasets for typhoon event detection. Much research on typhoons organize the data from
volunteered geographic information (VGI) or blogs separately [4–7]. This paper creates
an experimental dataset specifically for typhoon event detection. The data come from the
reports published as a special column on the China Weather Typhoon Network (the website
of this special typhoon column in 2020 is http://typhoon.weather.com.cn/hist/2020.shtml
(accessed on 12 April 2021)). The reports on typhoon events cover 13 years, from 2008
to 2020. To the best of our knowledge, this is the first Chinese news dataset for typhoon
detection experiments.

Event detection includes two pivotal stages. The first stage is to locate the trigger
words, called trigger identification. The second stage is to classify the trigger words into
corresponding event types, called trigger classification. Although neural network methods
have made great achievements in event detection [8,9], there are still two issues. In the
trigger identification stage, the mismatching of trigger words can severely affect the event
detection performance of the resulting model. In Chinese, words are the basic semantic
units, and the mainstream approaches of event detection in Chinese are mostly word-
based models [10]. There are no natural delimiters between words for segmentation, so
it is usually necessary to segment words first. However, word segmentation may cause
problems in that a trigger word may be a part of one word or contain several words.
For example, the trigger word “死伤” (die and injure) has two parts, “死” (die) and “伤”
(injure), both of which are trigger words of the event types “Life: Die” and “Life: Injure”
in automatic content extraction (ACE). The trigger word “恢复上课” (resume classes)
contains two words, “恢复” (resume) and “上课” (begin classes). In such cases, word-based
methods cannot identify trigger words effectively. Some methods have been proposed to
fuse word information and character information to realize trigger identification [9,11–14].
Zeng [9] combined bidirectional long–short-term memory (Bi-LSTM) with a convolutional
neural network (CNN) to capture lexical information and character information without
any artificial features. However, this method still has the problem of inducing trigger
segmentation errors. Lin et al. [11] proposed a word-based event block model—nugget
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proposal networks—to solve the problem of the mismatches between words and trigger
words. However, the method limits the scope of the trigger candidates to a fixed-sized
window, which may cause overlap among the triggers.

After correctly locating the trigger words, classifying them is affected by the problem
of polysemy. If a trigger word has multiple word senses, it is important to decide which
applies in the context and which event type should be chosen. For example, the trigger “关
闭” (close) could represent different event types. In some cases, the trigger “close” may be
classified into the “Conflict: Demonstrate” event (close the subway station) in the event
classification process of ACE. In other cases, the trigger “close” may be classified into the
“Business: End-Org” event (close the business).

In order to prove the universality of the two problems above, Ding et al. [10] provide
some statistics of these problems in common datasets—the ACE 2005 and the Knowledge
Base Population (KBP) 2017 datasets. The proportion of polysemous words in the KBP
2017 dataset is greater than 50%, and the proportion of trigger word mismatches in the
KBP 2017 dataset is greater than 20%. These high proportions show that these problems
may affect event detection.

To solve the problem of word segmentation errors, words are generated not by any
segmentation system, but by a knowledge base, HowNet [15]. HowNet is a Chinese
semantic knowledge base, in which there are more than 200,000 entries. Each entry consists
of a word and its word sense. Some words appear only once, but some words appear in
many entries in HowNet. That is, some words have many word senses, called polysemous
word. Words are automatically obtained by matching the sentences with the entries.

If only word information or character information is exploited in event detection,
the other information will be ignored. This paper makes use of both word information
and character information. Event detection is treated as a sequence annotation task. Bidi-
rectional long–short-term memory with a conditional random field (BiLSTM-CRF) is a
mainstream sequence annotation model. This paper uses this model to process charac-
ter information. Additional processing units are needed to learn the features of words.
A lattice-structured LSTM network is used to learn word senses. The words that end with
the same character are the inputs of the lattice LSTM cell for this character. Moreover, if a
word has multiple senses, all the senses are input into the same lattice LSTM cell. Lattice
LSTM cells choose the most relevant characters and words from a given sentence. The
lattice-structured BiLSTM-CRF model can leverage both word information and character
information. Hence, with an external knowledge base and the utilization of character
information and word information, both problems discussed above can be alleviated. Ding
et al. [10] have compared some models that use the information of words and characters.
The performance of the lattice-structured LSTM proved better. Experiments are carried out
on the experimental typhoon dataset and three general news datasets. The results show
that this method successfully detects typhoon events.

2. Related Work

The resources for event detection can be online news or social media data. Many
studies have attempted to detect and cluster events from news reports [16–20]. For example,
Liu et al. [20] clustered news reports according to daily major events such as economic and
societal news, and Yu and Wu [19] aggregated news reports related to the same event into a
topic-centered collection. Other than online news, many social media, such as Twitter and
microblogs, are utilized in event detection [21–27]. Cordeiro [28] designed a time-decaying
factor to detect events with Twitter. Petroni [23] described a large-scale automated system
for extracting natural disasters and major events from news reports and social media.
Ritter [25] described TwiCal, the first open-domain event extraction and categorization
system for Twitter. Zhou [27] proposed a simple yet effective Bayesian model to extract
information from Twitter.

At present, event detection methods are classified into two classes: feature-based [29–33]
and neural network-based [8,10,34–38]. Feature-based methods utilize the features of
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language for event detection. Specific features include lexical features, syntactic features,
entity information, and textual features. Lan et al. noticed the effect of named entities in
event detection [29]. Similar ideas are found in the work of Zhang et al. [30] and Yang
et al. [31]. Kumaran applied a classification approach and the named entities to an event
detection task [32]. Nguyen and Grishman took syntactic information into account for event
detection [33]. Fan Hong [39] combined the improved term frequency-inverse document
frequency (TF-IDF) algorithm and syntactic analysis to detect earthquake events in web
news. Yang [40] proposed a fast disaster loss identification and classification method to
extract the disaster information from social media data by extending the obtained context
features and matching feature words. Huang et al. [4] combined events and context features
to extract typhoon events. Nevertheless, such features need to be designed manually, which
is time-consuming and laborious and has poor scalability.

Since neural networks can learn the features of input automatically, many neural
network-based methods have been applied for event detection [8,10,34–38]. Nguyen [8]
studied the event detection problem using CNNs that overcome the two fundamental
limitations of traditional feature-based approaches: the requirement of complicated feature
engineering for rich feature sets, and the propagation of errors from the preceding stages
that generate these features. He [35] proposed improving the current CNN models for
event detection by introducing nonconsecutive convolution. Liu et al. [36] detected events
with supervised attention mechanisms. Veyseh [37] proposed employing a self-attention
mechanism for neural text modeling to achieve semantic structure induction. Lai [38]
formulated event detection as a few-shot learning problem to extend event detection
to new event types. Yu et al. [6] explored CNN to extract typhoon information from
VGI. These methods are common and effective for English datasets, but do not solve the
problems of word segmentation and word sense disambiguation in Chinese. Ding [10]
proposed a trigger-aware lattice-structured neural network to detect events in Chinese.
This method can solve the above problems and is suitable for Chinese datasets.

Lattice-structured recurrent neural networks (RNNs) can be viewed as natural exten-
sions of tree-structured RNNs to directed acyclic graphs (DAGs) [41]. Lattice-based models
are used to combine character information with word information [42,43]. This paper uses
a lattice-based model and HowNet to prevent segmentation errors and solve the problem
of polysemy in Chinese by fusing character and word information.

In view of the above review, this paper first defines a comprehensive classification
system for typhoon events. Then, the paper presents a neural network-based method that
solves the problems of word segmentation and the polysemy in detecting typhoon events
in online Chinese news reports.

3. Methods

Our neural network-based method is depicted in Figure 1. In stage 1, a large number of
typhoon reports were read, and the nature of reports was analyzed. Based on the analysis,
the classification system for typhoons and triggers was defined. In stage 2, the typhoon
data were drawn from the China Weather Typhoon Network and processed by sentence
segmentation. A typhoon dataset was generated. In stage 3, the entries in HowNet were
matched in sentences to generate words, which can prevent word segmentation errors.
The skip-gram model [44] was used to generate the word embeddings. If a word has
many senses in HowNet, the word embedding for each sense should be generated. In
stage 4, the typhoon dataset was annotated with sequential labels and divided into three
subsets. In stage 5, the model lattice-structured BiLSTM-CRF model was constructed. In
stage 6, experiments on typhoon detection were carried out, including the training and the
evaluation of the model. The model was trained on different training sets several times.
Then, a set of evaluation metrics were used to evaluate whether the model can detect
typhoon events accurately. By averaging these metrics obtained in different experiments,
the evaluation results of the model were obtained.
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3.1. Classification System for Typhoon Events

After the reading and analysis of a large amount of typhoon reports from webpages,
the typhoon information was summarized. The information falls naturally into four
aspects: warning before the arrival of typhoon, location changes of the typhoon, weather
as the typhoon moves, and effects, especially on infrastructure and casualty. For further
research, the information summarized from webpages as transformed into events in small
granularity. For example, some events are related to warning and some events are related
to weather. For a class of events in small granularity, there is more granular information.
Take the weather information for example. The weather events include the information of
rain, wind, and the weather influence on waves and tides. A typhoon event is regard as a
collection of events in small granularity.

Based on the analysis above and by considering other general disaster classification
systems [5,6], typhoon events were classified into 4 categories and 15 subcategories. The
four categories are named state event, weather event, warning event, and effect event.
State events refer to the changes of typhoon locations from generation to termination. The
category is divided into 4 subcategories, namely generation events, development events,
landing events, and termination events. Weather events include 4 subcategories. They are
wind events, rain events, wave events, and tide events. Warning events refer to forecasts
about wind, rain, and disaster before the arrival of a typhoon.

Effect events refer to the negative effects of typhoons, especially on casualty and infras-
tructure, including 7 subcategories: transportation events, education events, flood events,
infrastructure events, building and crop events, commerce events, and statistics events.
Among them, transportation events include events involving flights, ports, high-speed
railways, and urban transportation. Educational events include events about the suspen-
sions and resumptions of schools. Flood events refer to floods and urban waterlogging.
Infrastructure events are events related to water supply, electric power, and communication.
Building and crop events are those affecting houses, apartments, public facilities, trees, and
crops. Commerce events refer to panic buying and closing of supermarkets, wet markets,
retail businesses, and restaurants. Statistics events refer to the statistical data of the losses
incurred by typhoons with respect to people, houses, and crops. This classification system
comprehensively covers every aspect of typhoons, as shown in Table 1.
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Table 1. Classification system for typhoon events with examples of triggers.

Category Subcategory Triggers

State Event

Generation 生成 (generate)

Development 靠近 (near),移动 (move),位于 (situate)

Landing 登陆 (land)

Termination 停编 (stop)

Weather Event

Wind 风力 (wind power),大风 (gale),阵风 (gust)

Rain 暴雨 (rainstorm),大雨 (heavy rain),降水 (precipitation)

Wave 中浪 (medium wave),大浪 (large wave),巨浪
(mountainous wave),风浪 (storm),海浪 (sea wave)

Tide 潮 (tide),风暴增水 (storm surge)

Warning Event 预警 (early warning),预报 (forecast)

Effect Event

Transportation

取消 (cancel),恢复 (resume),延误 (delay),停航 (suspend
air or shipping service),封闭 (shut),关闭 (close),通行能力
(traffic capacity),准点率 (punctuality rate),避风 (shelter

from the wind),限流 (current limiting),暂停发售
(suspension of sale),停运 (railway outage),停开 (stop),
停发 (stop sending),增开 (run additional or new),加开
(increase),交通管制 (traffic control),受阻 (obstructed),
封桥 (stop using the bridge),关停 (close down)

Education 停课 (suspend classes),恢复上课 (resume classes),复课
(resume classes)

Flood 洪水 (flood),内涝 (waterlogging)

Infrastructure 中断 (shutdown),停水 (cut off the water supply),停电
(cut off the power supply),恢复供电 (power restoration)

Building and
Crop

损坏 (damage),吹倒 (blow down),倒塌 (collapse),受损
(suffer loss),刮倒 (blow down),倒杆 (pole collapse),掀翻
(overturn),吹掉 (blow off),倒伏 (becomes flattened),连根

拔起 (uprooting)

Commerce 停业 (close down),抢购 (rush to purchase)

Statistics

受灾 (hit by a natural adversity),死亡 (death),死伤
(injured and killed),受伤 (injury),夺走 (snatch away),
被困 (trapped),转移人口 (transfer population),撤离

(evacuate),安置 (place),损坏房屋 (damage the house),
损失 (loss),被淹 (flooded),成灾 (disaster),绝收

(crop failure)

Triggers are the key elements used to detect and classify events. A trigger can be a
verb, a noun, a pronoun, an adjective, etc. [45]. This paper also uses triggers to detect
events. Triggers are defined for each category of typhoon events. Due to the richness of the
Chinese language, the same meaning can be expressed by different triggers. Thus, for each
category, there are many triggers. The triggers are also shown in Table 1.

3.2. Data Preparation

First, a crawler was written to collect information from webpages. The name and
year of each typhoon and the time, title, and content of the related news were saved into
MongoDB. One piece of data in the database corresponds to one news report. A total
of 4244 typhoon news reports were obtained, including 16,513 sentences. The language
technology platform (LTP) [46] method was used for sentence segmentation.
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3.3. Data Representation

This paper used two different granularities to represent the input texts. The first gran-
ularity is character granularity. Each Chinese character is represented as a word embedding
by a skip-gram model. In this way, all the Chinese characters in a text are expressed as
one-dimensional vectors of the same length. Figure 2 shows the word embedding represen-
tations of Chinese characters, in which a line of squares represents the word embedding of
one character.
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The second granularity is word granularity. Different from in English, the semantic
meanings of sentences in Chinese cannot be expressed by characters alone. A word is an
important unit of expression in Chinese. A Chinese word could be a single character or
several characters. Additionally, many Chinese words are polysemous, so a word usually
conveys different senses. The exact meaning of a word needs to be judged according
to the context. Therefore, the polysemy of words must also be considered during event
detection. For example, “past” can be used either as a noun to express a time or as a verb
to express the meaning of “crossing”. To better express the semantics of a sentence, a word
should also be represented as a word embedding. Different senses of a word correspond to
different word embeddings. If a word has only one sense, it has only one word embedding.
The skip-gram model is combined with HowNet to generate word embeddings for each
word [47]. The word embedding representations of polysemous words are shown in
Figure 3. The #N symbol in Figure 3, after each Chinese word, represents the nth sense of
the word. Non-polysemous words have the same word embedding representation as the
polysemous words.
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Finally, two vector documents were generated. One document, named char.vec, saves
word embeddings for characters. The other one, named sense.vec, saves word embeddings
for words.

The data representation formed in this paper has two different granularities, but it
expresses three levels of information in the associated text. The first level is the character
information represented by the word embeddings of characters, the second level is the
word information represented by the word embeddings of words, and the third level is the
polysemy of a word represented by the different word embeddings of that word.
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3.4. Generating Label Sequences for Data

The result of sentence segmentation is a TXT document, in which each line is a sentence.
The characters in a sentence are marked with their positions. Combined with the triggers
defined previously, BIO annotations were made for the sentences. BIO annotation is a
common method for sequence annotation tasks. B stands for ‘beginning’, which means the
first character of a trigger, I stands for ‘inside’, which refers to other characters in a trigger
aside from the first character, and O stands for ‘outside’, which refers to the characters
of nontriggers. There are suffixes in BIO annotations. For B and I annotations, the event
category is used as a suffix, such as B-Flood, I-Flood, etc. After annotation, three columns
were generated for each sentence. The characters of the sentence are in the first column, the
position of each character is in the second column, and the BIO annotation corresponding
to each character is in the third column. A dataset with sequence annotations is called
a “BIO” dataset. According to the number of sentences required for model training and
testing, the training set, the validation set, and the testing set are generated by randomly
selecting sentences from all the news data. To verify the model, the standards of the
sequence annotations, whose name contains “golden”, are generated for the testing set
and the validation set separately. A golden file records the standard information regarding
the triggers in four columns, namely, news ID, the position, the length, and the type of
a trigger.

3.5. Data Preprocessing

The inputs of the model are the training “BIO” set, the validation “BIO” set, the testing
“BIO” set, the validation golden file, the testing golden file, and the word embeddings
of characters and words introduced above. First, three dictionaries were sorted out for
three datasets, which are a sequence label dictionary, a character dictionary, and a word
dictionary. The dictionaries are shared by the three datasets, excluding duplicate data items.
In addition, individual arrays were generated for each of the three datasets. An array is used
to store the characters, the words, and sequence labels of a dataset. The other array stores
the serial numbers of characters, words, and sequence labels in their respective dictionaries.
These arrays are called “value array” and “key array”. The word embeddings of characters
and words are stored in a two-dimension tensor. In a two-dimension tensor, the number of
rows is the number of sentences, and the number of columns is the embedding size. For
the validation golden file and the testing golden files, two dictionaries were defined to
store the information. The key is news ID, the position, and the length of a trigger, and the
value is the event type of a trigger. Input files and the corresponding data structures are
shown in Figure 4.

3.6. Event Detection Framework

The framework consists of 5 layers. From bottom to top, they are the input layer,
the word embedding layer, the BiLSTM layer, the CRF layer, and the tag layer. The core
LSTM of the model is lattice-structured LSTM. Lattice-structured LSTM processes not
only Chinese character sequences, but also Chinese words that play a positive role in the
recognition of triggers. The final CRF layer judges the outputs of the BiLSTM and provides
the final serial tags. The event detection framework is shown in Figure 5.

The bottom layer of the framework is the data layer. There are two types of data. One
type contains Chinese characters, while the other type consists of Chinese words, which
may be polysemous. The layer above the data layer is the word embedding layer, in which
Chinese characters and words are converted into word embeddings, which are the inputs
of the model.

For characters, the word embedding of each character, Ci, is:

Xc
i = e(Ci) (1)
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For words, the word embedding of each word, w, is:

X
wj
b,e = e(wb,e) (2)

The subscripts b and e indicate the positions of the beginning character and the ending
character respectively, of word w in a sentence. j represents the j-th sense of a polysemous
word. For a non-polysemous word, the value of j is 1.
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The layer above the word embedding layer is the BiLSTM layer. The forward direction
of the model starts from the beginning of a sentence, and the backward direction starts
from the end of a sentence. For the same input, the results from the forward LSTM and the
backward LSTM are concatenated as the final result.

The core LSTM consists of three parts. One part is a conventional LSTM cell, which
receives the word embeddings of characters, including three gates: an input gate i, an
output gate o, and a forget gate f. The LSTM functions are:

ic
i

oc
i

f c
i

c̃c
i

 =


σ
σ
σ

tanh

(WcT
[

xc
i

hc
i−1

]
+ bc) (3)

cc
i = f c

i � cc
i−1 + ic

i � c̃c
i (4)

hc
i = oc

i � tanh(cc
i ) (5)

where ic
i , oc

i , and f c
i denote the input, output, and forget gates, respectively. c̃c

i denotes
an intermediate state of C, WcT and bc are model parameters, σ() represents the sigmoid
function, tanh() represents the activation function, xc

i denotes the word embedding of
character Ci, cc

i is the state of the i-th LSTM cell, and hc
i is the output of the i-th LSTM cell.

The second part of the core LSTM is the lattice-structured LSTM cell, which receives
the word embeddings of words. Each sense of a word is calculated by the lattice-structured
LSTM cell independently. The cell contains 2 gates: an input gate i and a forget gate f. The
lattice-structured LSTM cell functions are: iwm,n

j
f wm,n
j

cwm,n
j

 =

 σ
σ

tanh

(WwT

[
x

wj
m,n
hc

m

]
+ bw) (6)

cwm,n
j = f wm,n

j � cc
m + iwm,n

j � c̃wm,n
j (7)

where iwm,n
j and f wm,n

j denote the input gate and the forget gate, respectively. x
wj
m,n is the

word embedding of a word that starts from position m and ends at position n, j stands
for the j-th sense of word wm,n, cwm,n

j is the cell state of the lattice-structured LSTM cell,
hc

m is the output of the m-th conventional LSTM cell, and cc
m is the cell state of the m-th

conventional LSTM cell.
The third part of the core LSTM is a gate, which merges the results from the lattice-

structured LSTM cell and the conventional LSTM cell. It is a single neural network:

gc
m,n = σ(W lT

[
xc

n
cwm,n

]
+ bl) (8)

where cwm,n stands for the merged result of all the senses of wm,n with m ∈ {m′
∣∣∣wd

m′ ,n ∈ D}.
The final cell status of the core LSTM corresponding to this character ci is:

cc
i = ∑

m∈{m′ |wd
m′ ,j∈D}

αc
m,j � cwm,j + αc

j � c̃c
j (9)

The gate values gc
m,n and ic

n are normalized to αc
m,n and αc

n by setting their sum to 1:

αc
m,n =

exp
(

gc
m,n
)

exp(ic
n) + ∑m′∈{m′′ |wd

m′′ ,n
∈D} exp

(
gc

m′ ,n

) (10)
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αc
n =

exp(ic
n)

exp(ic
n) + ∑m′∈{m′′ |wd

m′′ ,n
∈D} exp

(
gc

m′ ,n

) (11)

Since the lattice-structured LSTM cell has no output, the output of the core LSTM is hc
i .

After the forward LSTM and the backward LSTM finish, their outputs are concatenated.
The concatenated result is the input of the fully connected layer. The fully connected layer
transforms the input into a one-dimensional vector, in which the values are probability
values for the associated sequence labels. Then, the one-dimensional vector is transferred
into the next layer, the CRF layer.

The CRF layer processes the input with a trained probability transformation matrix.
After the calculation, the labels that have the maximal probability values are the outputs
of this layer. For an input sequence S = {c1,c2, . . . , cn}, a corresponding label sequence
B = {y1,y2, . . . , yn} is the output. The probability distribution is:

P (B|S ) =
exp
(

∑N
i=1 (W

yi
CRFhi + b(yi−1,yi)

CRF ))

∑B′∈C exp(∑N
i=1 (W

y′i
CRFhi + b

(y′i−1,y′i)
CRF ))

(12)

where C contains all the possible label sequences for sequence S, and B′ represents an

arbitrary label sequence. Wyi
CRF is a model parameter specific to yi, and b(yi−1,yi)

CRF is a bias
specific to yi−1 and yi.

The Viterbi algorithm [48] was used to obtain the highest scoring label sequence. The
loss function of our model is the log likelihood at the sentence level:

L =
M

∑
i=1

log(P(Bi|Si)) (13)

where M is the number of sentences, and Bi is the correct label sequence for sentence Si.

3.7. Model Construction

The model has only a one-layer neural network and defines a core BiLSTM unit.
Four weight parameters and four bias parameters are set in the LSTM cell (Equation (3)).
Its input data are the word embeddings of characters. The lattice-structured LSTM cell
processes words, for which three weight parameters and three bias parameters are set
(Equation (6)). One weight parameter and one bias parameter are set for the gate, which
merges the states of the other two parts (Equation (8)). Finally, the negative log likeli-
hood loss function and the Viterbi algorithm in the CRF layer should be programmed
(Equations (12) and (13)).

3.8. Hyperparameter Settings of the Model

The dropout mechanism [49] was used in the model, and the dropout rate was set to
0.5. Stochastic gradient descent was utilized as the optimizer. The learning rate was set
to 0.015, and the learning rate decay was set to 0.05. The embedding sizes of characters,
words, and hidden states are 64, 200, and 160, respectively. The number of epochs was set
to 20.

3.9. Evaluation Metrics for the Model

Accuracy (Acc), standard micro-averaged precision (P), recall (R), and F1 were used
as the evaluation metrics. Accuracy was used to evaluate the correlation between the
sequence annotations predicted by the model and the standard sequence annotations in
the golden files. Precision is the result of the number of labels predicted correctly divided
by the total number of labels. Recall is the result of the number of labels predicted correctly
divided by the number of standard labels. F1 is calculated from P and R.
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4. Results and Discussion

According to the experimental procedure described above, three experiments were
carried out, and 50%, 70%, and 100% of the typhoon dataset were randomly chosen for the
three experiments. In each experiment, the data were randomly divided into a training set,
validation set, and testing set at a ratio of 6:2:2. The experiment with 70% of the dataset
was taken as an example to analyze the results. Finally, the data from common webpages
were used to test the model and perform some analyses.

4.1. Training and Testing

For training and testing, 11,559 pieces of data were randomly selected, which equates
to 70% of the total data. The training set contains 6835 pieces of data. The validation set and
the testing set both contain 2311 pieces of data. A total of 1116 words with no repetitions
are in the sense.vec file, and these word are either polysemous or non-polysemous. In
the training set, 83,736 words appear in the sense.vec file with repetition, and 20,064
polysemous words are included. In the validation set, 27,167 words appear in the sense.vec
file, with 6493 polysemous words. In the testing set, 28,082 words appear in the sense.vec
file, with 6618 polysemous words.

After 20 rounds of the model training procedure, two sets of evaluations were obtained.
One set determines whether the locations of triggers are accurately located, and the other
determines whether the types of triggers are correctly classified after the precise locations
are obtained. The evaluations are shown in Table 2. For simplicity, the values in this table
are displayed for every five rounds.

Table 2. Values of accuracy (Acc), precision (P), recall (R), and F1 of trigger location and trigger
classification every five epochs for the validation set.

Epoch
Location of Triggers Classification of Triggers

Acc P R F1 Acc P R F1

1 99.76 99.40 96.54 97.95 99.60 96.23 93.46 94.82
5 99.95 99.58 99.28 99.43 99.95 99.58 99.28 99.43
10 99.97 99.62 99.72 99.67 99.96 99.48 99.58 99.53
15 99.97 99.75 99.48 99.62 99.97 99.72 99.45 99.58
20 99.98 99.72 99.79 99.76 99.97 99.58 99.65 99.62

After training, all the values of the two evaluation sets were greater than 99%.
Figure 6 visualizes the accuracy, precision, recall, and F1 values for every round. Ev-
ery child window exhibits two curves that separately represent the same evaluation of
the trigger location and the trigger classification. From the figure, it can be seen that the
shape of the evaluation curve for trigger location is basically the same as that of trigger
classification. The two curves are very close. The evaluation values of the trigger location
were slightly higher than those of the trigger classification, suggesting that some triggers
were located correctly, but their classifications are wrong.

Next, the testing set was used to evaluate the final model. Two sets of evaluations
were also obtained. Detailed values are provided in Table 3. Figure 7 shows a comparison
between the two sets of evaluation values.

Similar to the evaluations on the training set, the evaluations of the trigger location
were slightly higher than those of the trigger classification. The values of Acc, P, R, and F1
of the classification were all greater than 99%. This shows that the model can complete the
task of typhoon event detection.
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Table 3. Values of accuracy, precision, recall, and F1 of trigger location and trigger classification for
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99.96 99.70 99.54 99.62 99.96 99.67 99.50 99.59
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Three validation experiments were carried out with 50%, 70%, and 100% of the
typhoon dataset. By averaging the results of the three validation experiments, the final
evaluations of the model were obtained and are shown in Table 4. The final result shows
that this model can effectively detect a typhoon.

Table 4. Average values of accuracy, precision, recall, and F1 of the model after three validation
experiments.

Location of Triggers Classification of Triggers

Acc P R F1 Acc P R F1

99.97 99.65 99.69 99.67 99.96 99.59 99.64 99.62

4.2. Influence of Data Quantity and Data Type

First, the impact of data volume on the accuracy of the model was analyzed, where
50%, 70%, and 100% of the dataset were used to train and verify the model. The evaluations
of the model in terms of trigger classification were compared under different data quantities.
Table 5 shows the different quantities of data, the numbers of clauses in the training set,
and the evaluations on the testing set with respect to trigger classification.

Table 5. Numbers of clauses in 50%, 70%, and 100% of the dataset and the values of accuracy,
precision, recall, and F1 for trigger classification with 50%, 70%, and 100% of the dataset in the
testing phase.

Quantity Number of Clauses
Classification of Triggers

Acc P R F1

50% 4924 99.94 99.24 99.50 99.37
70% 6904 99.96 99.67 99.51 99.59
100% 9864 99.99 99.88 99.90 99.89

The number of clauses of the typhoon event in each training set is significantly
different. Table 5 and Figure 8 also compare the evaluations with different data quantities.
The R indices with 50% of the data and 70% of the data were basically coincident. The
evaluation values obtained with 100% of the data were the best. This shows that increasing
the amount of data can improve the resulting model.
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In the training set, the number of event types also affects the model by determining
whether the model can learn all the event features. There are sixteen event categories
in this experiment. The numbers of the event categories in different proportions of the
training sets are shown in Table 6. Taking 50% of the dataset as an example, it comprises
105 typhoon generation events, 1113 typhoon development events, 976 typhoon landing
events, 2 typhoon termination events, 1034 wind events, 1146 rain events, 193 wave events,
and 213 tide events. There are 426 cases of warning events, 619 cases of transportation
events, 33 cases of education events, 69 cases of flood events, 48 cases of infrastructure
events, 115 cases of building and crop events, 5 cases of commerce events, and 333 cases of
statistics events.

Table 6. Number of categories of 50%, 70%, and 100% of the dataset in the training phrase.

Category
Quantity

50% 70% 100%

Generation 105 124 167
Development 1113 1547 2134

Landing 976 1309 1896
Termination 2 1 4

Wind 1034 1372 2076
Rain 1146 1663 2297
Wave 193 217 372
Tide 213 315 458

Warning 426 651 891
Transportation 619 839 1263

Education 33 47 57
Flood 69 100 132

Infrastructure 48 92 89
Building and Crop 115 157 226

Commerce 5 4 7
Statistics 333 503 703

Although the data quantities in the datasets and the number of each event category are
different, the proportions of event categories in each training dataset were consistent. All
the event categories in classification system were covered. Figure 9 shows the proportions
of the various event types in the different training sets. This proves that rich features
provided for the training process are helpful for optimizing the model.
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4.3. Detecting Typhoon Events on General Webpages

To further test the model, three verification experiments were carried out. The data in
Experiment 1 are pure typhoon information from other webpages, including 111 sentences.
The data in Experiment 2 are a mixture of typhoon information and non-meteorological
information from other webpages, totaling 477 sentences. The data in Experiment 3 are
a mixture of typhoon information, meteorology information, and non-meteorological
information from other webpages, for a total of 523 sentences. Three datasets were used
to verify the same model. Here, the trigger classification evaluations are compared in the
three experiments. The verification results are shown in Table 7.

Table 7. Values of accuracy, precision, recall, and F1 of the trigger classification results in the three
experiments, where the data are from general webpages.

Experiment Acc P R F1

Experiment 1 99.91 98.78 98.78 98.78
Experiment 2 99.92 98.53 98.94 98.73
Experiment 3 99.38 77.48 98.01 86.54

Figure 10 shows the visualization results of the evaluations.
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It can be seen from the figure that the performances of the four evaluation metrics
were different for the three datasets. The accuracy values were basically the same. The P of
Experiment 1 was the highest, and the P of Experiment 2 was almost the same. However,
the P of Experiment 3 was low. This shows that the model is suitable for general news and
can accurately predict triggers when typhoon data are mixed with other non-meteorological
news items, but meteorological information can compromise its precision. Regarding the R
indices, the values of the three experiments were high, indicating that the success rate of
correct result prediction was still very high, despite interference from different information
types. In summary, the model can detect typhoon information on general webpages. If
the information types on a given webpage are similar to typhoons, such as meteorological
information and disaster information, the interference results are obvious.

For each experiment, the mispredictions of the model were analyzed. These mispre-
dictions are summarized into three classes. The first class contains prediction errors. This
means that the triggers were detected but classified into the wrong type. The second class
includes missing predictions, which means that the triggers were not detected. The third
class involves situations where new triggers were generated by the model and classified
into an existing event type. This class shows that the model can learn similar event triggers.
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In Experiment 1, the P and R values were very high. There were only three mispredic-
tions. One belongs to the first class of mispredictions. The trigger “停业” (close down) was
classified into the “Education” type, but it should belong to the “Commerce” type. The
second misprediction belongs to the third class. The model learned a new trigger “倒损”
(reverse and loss). The third belongs to the second class. The trigger “倒杆” (pole collapse)
was not found.

The four evaluations metrics of Experiment 2 were all very high. Three mispredictions
occurred, and they belong to the first class. The three triggers were “风暴增水” (storm
surge), whose type is “Tide”, “风浪” (storm), whose type is “Wave”, and “连根拔起”
(uprooting), whose type is “Building and Crop”. Two new triggers were learned by the
model: “吹损” (blow and loss), which was classified into the “Building and Crop” type,
and “受困” (trapped), which was classified into the “Statistics” type. Three pieces of
non-typhoon news were mistakenly classified into state events because the triggers found
in the news were the same as the triggers of state events.

In Experiment 3, the value of P decreased significantly. It was indicated that the model
predicted more triggers than those in the reference standard. This is because the dataset
of Experiment 3 is mixed with common meteorological news, in which the same triggers
were detected, but they have nothing to do with typhoons. Due to the interference of
meteorological news, there were 86 mispredictions.

From the analyses of these experiments, it is known that more data and more compre-
hensive event types are beneficial for better training the model. Whether the validations
are carried out on the typhoon dataset or the datasets from general webpages, the model
can effectively detect typhoon events in news reports.

5. Conclusions

In this paper, a neural network method was used to detect typhoons in Chinese news
reports. First, a detailed classification system for typhoon events, which has not been
defined before, was proposed. Due to the polysemy of Chinese, two data granularities,
characters and words, were adopted as the inputs of the model. The skip-gram model was
combined with HowNet to generate word embeddings for words and characters in order
to make use of rich word senses and solve the problem of word segmentation. This paper
also introduced the BiLSTM-CRF model with a lattice structure, which can leverage both
word information and character information. Finally, a dataset for experimentations was
generated from the China Weather Typhoon Network. After conducting the experiments,
the Acc, P, and R values of the model reached 99%. Using typhoon data from other
websites, the evaluation metrics also surpassed 98%. When the typhoon news is mixed
with meteorology new and disaster news, the performance of the model will degrade.
Experiments showed that the method proposed in this paper can accurately detect typhoon
information in Chinese news reports, solving the problems of word segmentation and
Chinese polysemy.

However, there are two points that can be improved. In the experiments, the total
amount of data was not large, and the amount of data for each event type was small,
unbalanced, and sparse. The reason for this is that typhoons themselves are relatively
sparse in online news. Second, the trigger words may be out-of-vocabulary (oov), so the
words cannot be obtained from an external knowledge base. In future, our plans include:
(i) to collect more data from news or other resources, such as microblogs and VGI, regarding
typhoons, (ii) and to solve the problem of oov.
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