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Abstract: Achieving the seventeen United Nations Sustainable Development Goals (SDGs) requires
accurate, consistent, and accessible population data. Yet many low- and middle-income countries lack
reliable or recent census data at the sufficiently fine spatial scales needed to monitor SDG progress.
While the increasing abundance of Earth observation-derived gridded population products provides
analysis-ready population estimates, end users lack clear use criteria to track SDGs indicators. In
fact, recent comparisons of gridded population products identify wide variation across gridded
population products. Here we present three case studies to illuminate how gridded population
datasets compare in measuring and monitoring SDGs to advance the “fitness for use” guidance.
Our focus is on SDG 11.5, which aims to reduce the number of people impacted by disasters. We
use five gridded population datasets to measure and map hazard exposure for three case studies:
the 2015 earthquake in Nepal; Cyclone Idai in Mozambique, Malawi, and Zimbabwe (MMZ) in
2019; and flash flood susceptibility in Ecuador. First, we map and quantify geographic patterns
of agreement/disagreement across gridded population products for Nepal, MMZ, and Ecuador,
including delineating urban and rural populations estimates. Second, we quantify the populations
exposed to each hazard. Across hazards and geographic contexts, there were marked differences
in population estimates across the gridded population datasets. As such, it is key that researchers,
practitioners, and end users utilize multiple gridded population datasets—an ensemble approach—to
capture uncertainty and/or provide range estimates when using gridded population products to
track SDG indicators. To this end, we made available code and globally comprehensive datasets that
allows for the intercomparison of gridded population products.

Keywords: Sustainable Development Goals; hazards; Earth observations; remote sensing; demogra-
phy; urbanization; gridded population

1. Introduction

The United Nations Sustainable Development Goals (SDGs) aim to end global poverty
by 2030 and ensure a sustainable future [1]. To accomplish this, the SDGs outline a set of
seventeen interlinked and shared objectives to improve economic and health outcomes in
low- and middle-income countries (LMICs) while simultaneously reducing environmental
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degradation and tackling climate change for all countries [2,3]. The SDGs were designed
to overcome the measurement challenges of the Millennium Development Goals [4] by
outlining a clear set of indicators to track progress. Accordingly, global partnerships—
such as the Sustainable Development Solutions Network [5] and the Global Partnership
for Sustainable Development Data [6]—were established to provide countries with best
practices to monitor SDG indicators and to support decision making to achieve the SDGs [7].
These partnerships increasingly advocate for countries to leverage the considerable amount
of Earth observations (EO) data to track SDG indicators. In particular, analysis-ready EO
data present a systematic, affordable, and longitudinal pathway to track SDG indicators that
are specifically tractable for decision makers [8–12]. However, researchers, practitioners,
and decision makers collectively lack guidance on how to best utilize wide-ranging and
context-specific EO data to monitor SDG indicators.

This lack of guidance creates challenges for the SDGs’ “leave no one behind” agenda.
Not only does tracking many SDG indicators require accurate and accessible information
on where people live, but achieving the SDGs entails providing services to people. Indeed,
73 SDG indicators require population data to track them [5]. Yet, due to the lack of
reliable and consistent census data for many countries [13–15], we do not have information
regarding where people live at sufficiently fine spatial scales to measure, monitor, and map
changes in the distribution of populations relevant to many of the SDGs [13]. As such,
EO-derived gridded population products present a vital source of population information
to track the SDGs that continue to gain attention [5,16–19]. Each gridded population
product offers spatially explicit representations of population distributions in a comparable,
consistent manner that can be well suited to monitor SDG indicators across disparate
geographies and time points. We chose to focus on gridded population data for two
reasons. First, the gridded population products are receiving increasing use by a wide
range of researchers, practitioners, and decision makers. Second, the methodologies and
EO input data used to develop gridded population products continue to advance rapidly.

Given the wide range of gridded population products available, new “fitness for
use” guidelines outline the tradeoffs and benefits the various gridded products offer for
monitoring many SDG indicators [5,20]. However, the findings from recent studies [21–25]
that have compared how gridded populations products allocate population illuminate
the need for comparison of these datasets in the context of measuring and monitoring
the SDGs. For example, a recent comparison of gridded population products against
government-derived gridded census data in Sweden found wide variation in the accuracy
of gridded population datasets to measure pixel-level population estimates [21]. Similarly,
another recent study identified wide disagreement in both the location of and population
estimates for urban settlements in Africa across gridded population products [25].

Broadly, the variation across products is explained by three reasons (for a recent
review, see [20]). First, each gridded population product relies on different types of EO-
based ancillary input data and production methods. Second, gridded population products
differ in spatial resolution, projections, and temporal coverage. Third, for all but one
product (Table 1), the process of creating the gridded distribution of population involves a
disaggregation of census or administrative unit area counts into individual cells by relying
on various EO-based (e.g., land cover type, settlement presence, nighttime light intensity)
and geospatial covariates (e.g., buildings, roads, elevation) that vary in characteristics,
quality, and accuracy [20]. Simply put, each gridded population product will likely tell
a different story. In countries where reliable or recent fine-resolution census data are not
available—precisely the context in which EO-enhanced gridded population datasets were
designed to be employed—few independent fine-resolution micro censuses exist against
which to assess the accuracy of gridded population products. Furthermore, aside from
World Population Estimate 2016 (WPE-16), all current global gridded population products
lack uncertainty estimates [5,20]. Until robust validation studies are available or uncertain
estimates are produced, there remains a need to assess how different population data
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sets may influence the methods and results employed to monitor and evaluate progress
towards SDGs.

Here we present three case studies to illuminate how gridded population datasets
compare in measuring and monitoring SDGs and to advance the “fitness for use” guidance.
Our focus is on SDG Target 11.5:

“By 2030, significantly reduce the number of deaths and the number of people
affected and substantially decrease the direct economic losses relative to global
gross domestic product caused by disasters, including water-related disasters,
with a focus on protecting the poor and people in vulnerable situations.”

In the context of SDG Target 11.5, we compare how five gridded population data
products (Table 1) measure the population exposed to the 2015 earthquake in Nepal and
Cyclone Idai in Mozambique, Malawi, and Zimbabwe (henceforth referred as MMZ) in
2019, as well as populations susceptible to flash floods in Ecuador. By focusing on a range
of geographic and country-specific contexts across several hazards, our results provide
insights into the ways in which the construction of different gridded population products
across geographies affects the resulting calculation of the potentially affected populations.

Furthermore, we explore how gridded population products can be applied to other
global frameworks, such as towards the Sendai Framework for Disaster Risk Reduction
Targets [26]. Specifically, to achieve the first four targets (a–d), disaster risk monitoring re-
quires accurate estimates of impacts on people and/or property [27]. Our work contributes
to the Sendai Framework Global Target B: “Substantially reduce the number of affected
people globally by 2030, aiming to lower the average global figure per 100,000 between
2020–2030 compared with 2005–2015.” Beyond the importance of gridded data for calculat-
ing these indicators, however, we note that accurate population estimates are also vital to
emergency management and humanitarian agencies in the post-disaster response phase,
when assessments of the number of people affected directly translates to supplies and dis-
aster finance being prioritized (or deprioritized) across spatial units of interest [28]. Thus,
the work presented here contributes to an understanding of the potential for operational
uses of various gridded population products.

We chose five gridded populations products (Table 1) due to their availability at the
time of analysis and their global coverage. Our analysis focuses on the comparison of
these different gridded products and why estimates are similar or dissimilar in different
socio-economic and hazard contexts. Given the lack of “ground truth” micro census
population estimates for the regions compared, we do not assess the accuracy of the
gridded population products themselves. However, the analysis provided does inform
end users of the potential pros and cons of using these datasets in the context of measuring
SDG 11.5.

We have two interrelated objectives. First, we map and quantify geographic patterns
of agreement/disagreement across gridded population products for Nepal, MMZ, and
Ecuador, including delineating urban from rural populations estimates. Several method-
ologies have been used to compare products [21–25]. For the initial step, we identify the
number of rasters that agree if a given pixel is inhabited or not. Next, we assess pixel-level
variation across the five gridded population products by plotting the minimum pixel
values against pixel ranges to identify outliers and showcase the contrast in pixel-level
measurements. Then, for each gridded product, we examine transects through the primary
urban centers impacted by the hazards to both visually and quantitatively demonstrate the
variability in population estimates by product across the urban-rural continuum [29].

The second objective aims to situate our first objective within the context of measuring,
monitoring, and mapping SDG 11.5. For each dataset, we estimate the total number of
people, stratified by urban and rural populations, exposed to each hazard. For Nepal,
we compare estimates across seismic intensity levels during the 2015 Earthquake. With
Cyclone Idai, we compare estimates of population inundated by water detected by Sentinel-
1 EO platform and exposed to wind speed zones. Lastly, in Ecuador, we quantify and map
populations living in zones across levels of susceptibility to flash floods. We emphasize that
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our results do not quantify error or validate population estimates across gridded population
products. We note that the urban land cover designation we employ (Section 2.1) is for
comparative purposes only. Our analysis does not assess how gridded population products
measure urban populations and urban boundaries (for further detail see [25,29]). All our
code and data used in this analysis is open source and freely available for other scholars
and practitioners to develop their own use cases. This includes global raster datasets that
allow for the intercomparison of gridded population products.

2. Materials and Methods
2.1. Dataset Descriptions
2.1.1. Population Data

We focus on three geographies of interest—Nepal, the region of Mozambique, Malawi,
and Zimbabwe (MMZ), and Ecuador (Figure 1)—to explore how the gridded population
products measure populations related to SDG 11.5 across a range of geographic contexts.
Nepal, a relatively small country, is landlocked between China’s Tibet Autonomous Region
and India, and is very mountainous. As hazards do not respect political boundaries, we
present MMZ to measure exposure in a cross-border use case. Indeed, population exposure
to Cyclone Idai spanned from Mozambique’s low-elevation coastal zones, to Malawian
settlements near Lake Malawi, to the relatively high-elevation settlements in Zimbabwe.
Ecuador presents both a mountainous and a coastal geography to examine hazards, as
well as higher levels of economic development compared to the other two geographies
of interest. We intentionally chose countries and study areas that coincided with hazard
events that matched the gridded population product dates and span LMIC contexts.
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The five gridded population products we use are (Table 1): World Population Estimates
2016 [30]; the Global Human Settlement Layer Population 2015 (GHS-15) [31]; Gridded
Population of the World version 4 2015 (GPW-15) [32]; LandScan 2015 (LS-15) [33]; and
WorldPop 2016 (WP-16) [34]. For a complete description of how each gridded population
product is produced, see [20,25], as well as the PopGrid Data Collaborative [35].

Aside from GPW-15, the gridded population datasets used in this study rely on re-
lationships between EO data and human settlement patterns to disaggregate the finest
available administrative unit level population data into pixels (Table 1). A higher adminis-
trative level corresponds to a finer resolution administrative unit. Additionally, only LS-15
focuses on daytime, or ambient population, whereas the other products aim to capture
nighttime residential population [35]. Last, aside from GHS-15, which disaggregates admin-
istrative unit-level population only within pixels identified as containing built settlements
(constrained), all other products disaggregate administrative unit-level population over all
land pixels globally (unconstrained). All products we use are at 1 km spatial resolution.
We use GPW-15 as a baseline for comparison, as it is the underlying population data for
both GHS-15 and WP-16. Finally, we include United Nations population estimates for each
geography of interest for 2015 (Table 2) [36].

Table 1. Summary of near-global coverage gridded population datasets included in this study. For further information,
see [20] and the PopGrid Data Collaborative [35].

Dataset Producer EO Data Population Constrained Model Description Citation

GPW-15:
Gridded

Population of the
World v4.11, 2015

CIESIN,
Columbia
University

None Residential No
Equal allocation of
population to cells

within admin. units
[32]

GHS-15:
Global Human

Settlement
Layer-POP, 2015

European
Commission,

Joint Research
Centre (JRC)

Landsat Residential Yes

Binary dasymetric,
proportional allocation

to built-up areas
extracted primarily
from 30 m Landsat

imagery

[31]

WP-16:
WorldPop Global,

Unconstrained,
2016

WorldPop,
Univ. of

Southampton

Landsat,
DMSP-OLS,

VIIRS,
MODIS,
MERIS

Residential No

Random Forest model
with 24 covariates and
weighted dasymetric

redistribution

[34,37]

LS-15:
LandScan, 2015

Oak Ridge
National

Laboratory

Landsat,
MODIS,

DMSP-OLS

Ambient
(24-h average) No

Multivariable
dasymetric model with
4 covariate types and

weighted
redistribution

[33,38]

WPE-16:
ESRI World
Population

Estimate, 2016

Esri Inc. Landsat Residential No
Dasymetric algorithm

with 16 covariate
weighting data sets

[30]
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Table 2. Allocation of population and pixel-level agreement across five gridded population products for Nepal, MMZ, and
Ecuador circa 2015. For each geography of interest the number and level of input administrative units is listed. Note urban,
rural, and total populations are in millions.

Geography Urban
Pop

Rural
Pop

Total
Pop

Pct
Urban

Urban
Max

Rural
Max

Urban
Pixels

Rural
Pixels

Uninhabited
Pixels

Nepal 3990 level 3 units
WPE-16 2.66 30.71 33.37 7.97% 45,982 25,237 275 118,437 76,844 (39%)
GHS-15 3.3 25.16 28.46 11.6% 46,472 117,462 271 104,208 91,077 (47%)
GPW-15 2.88 27.84 30.72 9.38% 32,592 28,114 275 175,048 20,233 (10%)

LS-15 2.85 28.69 31.54 9.04% 57,668 44,892 275 145,639 49,642 (25%)
WP-16 3.64 28.6 32.24 11.29% 48,358 46,939 275 167,188 28,093 (14%)
UN-15 5.32 23.34 28.66 18.56%

MMZ—Mozambique 413 level 3 units, Malawi 12,647 level 3 units, Zimbabwe 92 level 2 units
WPE-16 6.84 59.52 66.36 10.31% 26,168 17,138 1695 232,593 1,356,048 (85%)
GHS-15 8.34 52.13 60.47 13.79% 81,852 156,171 1810 176,110 1,412,416 (89%)
GPW-15 3.46 51.9 55.37 6.25% 26,555 17,190 2011 1,467,545 120,780 (8%)

LS-15 6.51 50.93 57.45 11.33% 61,126 40,592 1976 1,370,043 218,317 (14%)
WP-16 5.01 51.81 56.82 8.82% 26,995 25,233 2009 1,409,324 179,003 (11%)
UN-15 17.61 43.75 61.36 28.7%

Ecuador 1047 level 3 units
WPE-16 7.97 10.28 18.26 43.65% 18,108 14,867 1457 41,897 247,071 (85%)
GHS-15 8.19 7.86 16.05 51.03% 31,851 43,017 1510 41,755 247,160 (85%)
GPW-15 2.06 13.83 15.89 12.96% 4172 4172 1664 235,809 52,952 (18%)

LS-15 7.58 8.24 15.82 47.91% 44,304 31,740 1645 192,868 95,912 (33%)
WP-16 5.35 10.87 16.23 32.96% 8782 8428 1663 224,407 64,355 (22%)
UN-15 10.24 5.91 16.14 63.44%

2.1.2. Hazards Impacts & Data
2.1.2.1. Nepal Earthquake

On 25 April 2015, a 7.8-magnitude earthquake struck approximately 80 km northwest
of Kathmandu, the country’s capital, at 6:11 UCT [39]. Official estimates state that the
earthquake killed more than 8000 people, injured 21,000 more people, and displaced at least
2 million people in total [40]. Some 600,000 homes were destroyed, with another quarter
million damaged [41]. The government estimated that reconstruction costs would surpass
$7 billion, or a third of Nepal’s GDP in the prior fiscal year [42]. Data and information on
the earthquake was obtained from the US Geological Survey (USGS) [39]. USGS ShakeMap
shapefiles were used to estimate earthquake impacts by “Instrumental Intensity”, which
is a proxy for Modified Mercalli Intensity (a qualitative index that can not strictly be
determined by instruments).

2.1.2.2. Cyclone Idai

Cyclone Idai made landfall near Beira, Mozambique, on 14 March 2019. The storm
had sustained wind >120 km/h. By March 16, the storm had tracked across Southern
Mozambique into Zimbabwe. Flooding was observed throughout Malawi, Mozambique,
and Zimbabwe, directly impacting 1.85 million people across MMZ [43]. The immediate
financial requirement of the response was estimated to be nearly $300 million [43].

To measure maximum flood extent, we use a 90 m raster available from the World Food
Program that captures maximum flood extent as of 21 March 2019 [44]. The raster is derived
from Sentinel-1 data obtained from 12 to 21 March 2019 and ARC Flood Extent Depiction
Model (AFED) detecting non-persistent water (7–16 March and 20 March 2019). We
resampled the 90 m flood raster to 1 km and reprojected it to match GPW-15. Data on wind
speeds were downloaded from the Global Disaster Alert and Coordination System [45],
with shapefiles delineating zones impacted by 60, 90, 120 km/h wind speed thresholds.
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Ecuador Flash Flood Susceptibility

In Ecuador, as well as on a global scale, flash floods are one of the most deadly types
of flood with distinct spatiotemporal physical and impact-related characteristics [46–49].
Early warning systems exist for floods in many countries; however, they are rarely linked
to resilience programming that can decrease risk of a flash flood disaster. While a long
time series of impact data for flash floods (and any type of floods) does not openly exist in
Ecuador [50], financial estimates of flood impact in the country can be acquired in some
instances, with a reported US$238 million in flood impact in 2012 [51].

To represent the susceptibility for flash flooding at the catchment scale in Ecuador, a
new vector dataset is derived from geophysical and non-geophysical data [52]. The sus-
ceptibility layer was built using a principal component analysis (PCA) derived weighted
mean [53] of geographic indicators known to drive the flash flood potential of a catch-
ment, related to geomorphology, drainage systems, and surface characteristics [54–56].
Geographic indicators such as slope, curvature, stream order, area of contributing sources,
density of drainage, land cover, and sand content [57–60] were attributed to each catch-
ment, using the predefined level 12 watershed units of HydroSHEDS [61], developed by
the Conservation Science Program of World Wildlife Fund (WWF). The resulting flash
flood susceptibility composite layer is normalized and reclassified into an equal count
discrete flash flood susceptibility index from 1 to 10, low to high susceptibility, respectively,
and represents the relative ranking of Ecuador catchments according to their increased
susceptibility to generate flash flooding in the case of heavy rain.

Urban/Rural Data

To identify urban versus rural population estimates across the five gridded population
products, we use an urban-rural binary land cover classification derived from MODIS
data—the MODIS global urban extent product (MGUP) [62]. This dataset is available from
2002 to 2018 at 500 m spatial resolution. We resample the 2015 MGUP data to 1 km and
projected it to match GPW-15. We employ MGUP as a relatively independent estimation
of where urban settlements exist, as other MODIS products are an input in three of the
five gridded population products (Table 1). In addition, we recognize that MGUP is
one among many datasets that delineate urban from rural land cover globally and that
binary urban/rural categorizations have well-known limitations [29]. As such, the MGUP
urban/rural designation we employ is, to a degree, arbitrarily defined with an intent
more on trying to better understand underlying population distribution methods, not a
statement on what population is urban and what is rural.

2.2. Raster Processing & Analysis

The five global gridded population rasters and the MGUP urban/rural land cover
raster were spatially co-registered (see Supplemental Information for the detail) and clipped
using the GADM level 0 administrative units for Nepal, MMZ, and Ecuador (excluding
islands). Across all five gridded population datasets, for the three study areas we map
uninhabited pixels, calculate maximum and minimum population (as well as the range
(maximum–minimum) at the pixel level), and measure urban and rural population esti-
mates according to the MGUP urban/rural classification (Table 2). To identify outliers
and highlight the variation in pixel-level estimates, we plotted pairwise pixel minimum
population estimates against pixel ranges (Figure 2). We then examine 7 km by 61 km
transects through three urban areas—Katmandu for Nepal, Beira for MMZ, and Quito
for Ecuador—to visually and quantitatively demonstrate how the products’ population
estimates compare at the pixel level across the urban-rural continuum.

To compare estimates of populations impacted by the three hazards under study,
we sum the populations by hazard criteria for the five gridded population products,
separating urban and rural estimates. For the 2015 Earthquake in Nepal, we sum the
population exposed by the USGS Shakemap “Instrumental Intensity” contour polygons.
For Cyclone Idai, we sum the population exposed by wind speed buffer and flooded area.
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Finally, for the flash flood in Ecuador we sum the population exposed by the susceptibility
index layer.
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(b) MMZ, and (c) Ecuador. Values correspond to the number of rasters in agreement that a pixel is
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3. Results
3.1. Pixel-Level Comparisons

Four broad patterns emerged when comparing how the five gridded population
datasets allocate populations in Nepal, MMZ, and Ecuador. First, we found widespread
pixel-level variation in agreement across gridded population products of whether or not
a given pixel is inhabited. Broadly, GHS-15 and WPE-16 identify a smaller proportion of
inhabited pixels regardless of geography. We found that Nepal had the highest proportion
of agreement, with all five gridded population products agreeing that 76% of pixels are
either inhabited or uninhabited (Figure 2a). Only 67% for MMZ (Figure 2b) and 62% for
Ecuador (Figure 2c) had full agreement by all five products. WP-16, LS-15, and GPW-15
tended to distribute population to a far greater number of pixels, unlike GHS-15 and
WPE-16 (Table 2). For example, for MMZ, 85% of pixels in WPE-16 and 89% of pixels in
GHS-15 were uninhabited. In contrast, WP-16, LS-15, and GPW-15 identified that only 11%,
14%, and 8% of pixels in MMZ are uninhabited, respectively.

Second, we documented extreme pixel-level population estimation disparities across
gridded population products (Figure 3) and identified outliers. In pairwise comparison
between the minimum pixel values with the range identified across all five gridded pop-
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ulation products, for Nepal and MMZ, 27 rural pixels with minimums of 0–1000 people
had ranges that exceed 50,000 people. Rural outliers in Ecuador do not have the same
magnitude as Nepal or MMZ. Yet we still identified 8 rural pixels with minimum values of
0–1000 that have a range that exceeds 25,000 people in Ecuador. In the most extreme exam-
ple, one pixel on the border of Nepal and India was estimated by GHS-15 to have nearly
120,000 residents (Figure 3a, Table 2). GPW-15 and WP-16 allocate 2392 and 730 people,
respectively, to the same pixel, and the other two products identify fewer than 125 people.
A visual inspection of high-resolution WorldView imagery from Google Earth reveals that
the pixel mostly corresponds to a river with sand bars. For context, recently the United
Nations Statistical Commission released standards identifying pixels within urban cores as
having a population density of at least >1500 people per km2 [63].
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Figure 3. To identify outliers and pixel-level variation across gridded population products, the
minimum population estimates (thousands) for each pixel are plotted against the population range
(thousands), separated by rural and urban pixels, for Nepal (a,b), MMZ (c,d), and Ecuador (e,f).
An example of an outlier is evident in panel (a) with one rural pixel having a range of more than
120,000 people.
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Third, we found a clear pattern that WPE-16 total population estimates greatly ex-
ceeded the other four datasets. For instance, in MMZ, we found that WPE-16 exceeds
the total population measured by the other gridded population datasets by 6–11 million
people (Table 2), and exceeds UN population estimates for all three geographies of interest
as well. As another example, while GHS-15 tended to prioritize allocating population to
urban settlements compared to the other gridded population datasets, WPE-16 identified
more urban residents in Nepal, by as much as 500,000 people, than the other four gridded
population products.

Fourth, GHS-15 allocated a greater share of the total population to urban areas (as
defined by the MGUP dataset) than the other four products for all three regions under
study. For example, in Ecuador, GHS-15 estimated that 51% of the total population is
urban. LS-15 was ranked second for Ecuador, allocating 47.9% of the total population to
urban areas, followed by WPE-16 with 43.67% of the total population estimated as urban.
In MMZ, GHS-15 again led in terms of the share of total population allocated to urban
areas, again followed by LS-15. In Nepal, WP-16 and GPW-15, respectively, followed
GHS-15 in terms of the share of total populations allocated to urban areas. Nonetheless,
all five gridded population products underestimated the total urban population for all
three geographies of interest when compared to 2018 United Nations World Urbanization
Prospect estimates [36]. Indeed, even GHS-15 estimated nearly 50% fewer urban residents
in MMZ than official UN counts.

Because the MGUP rural-urban binary designation does not capture how population
density varies across that rural-urban continuum [29], Figure 4 illustrates how each gridded
population product allocates population moving away from major urban centers. For the
Kathmandu transect (Figure 4a), there is far closer agreement in populations among the
products compared to Beira (Figure 4b) and Quito (Figure 4c). GPW-15, LS-15, and WP-16
capture less dense populations to the west of Beira (Figure 4b), as well as to the east of Quito
(Figure 4c). In contrast, WPE-15 and GHS-15 do not capture these rural populations near
Beira and Quito. This finding reinforces the preference of GHS-15 to allocate population to
urban pixels.

Figure 5 presents the comparison of population estimates exposed to seismic intensity
across the five gridded population products, stratified by MGUP-identified urban and
rural settlements in Nepal. For the total population exposed to an intensity greater than
seven, the difference between the highest and lowest populations estimated to be exposed
by the products was more than 1 million people. WP-15 estimated the maximum number
of people exposed at 9.85 million people, whereas GHS-15 finds 8.64 million people. The
products furthermore measured a wide range in both the total number and the proportion
of urban populations exposed to an intensity > 7. On the low end, WPE-16 categorized
22% (2.11 million people) of the population exposed to an intensity greater than 7 as
urban, whereas, on the high end, WP-16 indentifed 33% (3.33 million people) of the total
population exposed to an intensity greater than 7 as urban. As such, the elevated number
of urban residents exposed according to WP-16 paralleled the previous finding that WP-
16 identified more urban residents in Nepal compared to the other gridded population
products (Table 2).

For intensities less than 7 (Figure 5), we found a broad range of population estimates
across the gridded population products. For example, for an intensity between 5 and
6, WPE-16 measured more than 7.73 million people exposed, yet GHS-15 found only
6.46 million people exposed. Generally, the gridded products were largely in agreement
for these lower intensities that the vast majority of people impacted lived in rural areas,
although LS-15 still identified nearly 500,000 urban residents exposed to an intensity
between 5 and 6, and 200,000 urban residents exposed to an intensity between 4 and 5.
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Figure 4. Transects (7 km by 61 km) of population estimates for each gridded population product cen-
tered on urban cores for (a) Kathmandu, (b) Beiria, Mozambique, and (c) Quito. MGUP urban/rural
delineation is indicated for each pixel in the transect in the bottom of the plot of each panel. Note
that the population sums presented in the line plots are the summation of 7 north-south pixels along
the 61 km west-east transect. The color bar corresponds to log10 pixel-level population counts for the
transects shown.
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3.1.1. Cyclone Idai Exposure in MMZ

Generally, for Cyclone Idai, estimates of populations exposed to high wind speeds
and living in flood-inundated areas in MMZ varied across the five gridded population
data products, both in total agreement and divided by MGUP-identified urban and rural
areas (Figure 6). Wind speeds of 60 km/h, though the least severe of wind categories, had
the greatest variation. For instance, WPE-16 measured 7.41 million people (80% rural), the
most impacted by wind speeds of 60 km/h. GPW-15 identified only 7.01 million people
(88% rural) exposed. Estimates of populations exposed to wind speeds of 120 km/h and
flood-inundated areas, the most damaging hazards, also showed substantial variation.
Again, WPE-16 ranked first, with 2.39 million people (83% rural) exposed to wind speeds
of 120 km/h. The other four gridded products had similar estimates of the total population
exposed to wind speeds of 120 km/h, which ranged from 1.89 to 1.95 million people,
though GHS-15 and LS-15 identify a greater proportion of urban populations impacted
compared to GPW-15 and WP-16. Similarly, estimates of populations living in flood-
inundated areas ranged from WPE-16 identifying 817,000 people (88% rural) to GPW-15
identifying 1.28 million people (99% rural). Only for wind speeds of 90 km/h were the
products relatively consistent—rural populations were almost exclusively exposed, with
high-end estimates of 1.56 million people by WPE-16 and a low-end estimate of 1.46 million
people by WP-16.
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Figure 6. The total population impacted by wind speeds and flooding from Cyclone Idai across MMZ estimated by five
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MGUP-identified urban populations.

3.1.2. Flash Flood Susceptibility in Ecuador

We found two main trends in the comparative analysis of population datasets and
the estimation of the rural and urban share within each susceptibility decile (Figure 7).
First, for most deciles, WPE-15 identified more population compared to the other four
gridded population data products. For example, for the 10th decile, which was the most
populated, WPE-15 estimated 2.96 million people, while on the low end, GPW-15 identified
2.47 million people. Second, across all susceptibility deciles GPW-15 estimated a greater
share of rural population compared to the other four gridded population datasets. This is
demonstrated by clear differences in rural/urban proportions in decile 3, whereby GPW-15
estimated almost all population as rural, compared to the under 50% estimation of rural
population identified using the other products. GHS-15 and LS-15, on the other hand,
allocated a greater share of population to urban areas. Again, using the 10th decile as an
example, which indicates the areas with the highest likelihood of flash flood susceptibility,
GHS-15 and LS-15 allocate 72% and 69% of the total population to urban areas, respectively.
WPE-15 (62% urban) and WP-16 (56% urban) tend to fall between the preference of GHS-15
and LS-15 for urban areas and GPW-15’s (32% urban) preference for rural areas.
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4. Discussion

Gridded population data provide valuable population counts and densitity estimates
for regions in the world where census data is lacking, coarse-scaled, or outdated [13]. The
comparable and consistent means by which individual gridded data products are created
ensures simple integration with other geospatial data products for use in measuring and
monitoring various SDG indicators. However, using SDG 11.5 and a hazard context for
three different geographies, we demonstrate that gridded population estimates can vary
widely depending on the product of choice. Given the broad geographic contexts of our
three case studies, our results suggest that gridded population products will similarly vary
across many low- and middle-income countries (LMICs).

While variation in gridded population datasets has been documented by previous
studies [21–24], many widely cited hazards studies (e.g., [64,65]), recent media narra-
tives [66], and United Nations reports [67] continue to employ a single gridded population
dataset without justification. In all of these cases, the authors neglect to acknowledge the
wide variation in pixel-level population estimates. Indeed, we note that a recent review
of estimates of population exposure to sea-level rise or living in low-elevation coastal
zones [68] identified multiple global studies published since 2016 that use gridded popula-
tion products. None of these studies employed multiple gridded population products in
their risk estimates. Single-source population estimates, if framed in the context of hazard
risk reduction related to SDG 11.5, are thus presented as facts to decision makers. This
has broad implications for the allocation of scarce resources. If deployed in the immediate
aftermath of a natural disaster, it could also affect humanitarian response and allocation of
disaster relief.

Take two examples: first, we found that GHS-15 and LS-15 tend to allocate a greater
share of population to the MODIS global urban extent product (MGUP)-designated urban
areas compared to the other three products. While the MGUP rural-urban delineation is
specific to the context of MODIS built-environment detection [62], and it is not the only
criterion to identify urban settlement locations with EO data [25,29], this finding suggests
that GHS-15 and LS-15 also prioritize allocating population to where the built environment
is detected by Earth observation (EO)-derived spatial correlates. WP-16 also has been
shown to prioritize built environment [69]; but our results indicate that WP-16 allocates
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population more evenly across land cover classes. Second, WPE-16 estimates a far greater
population in Nepal, MMZ, and Ecuador compared to both UN estimates (Table 1) [1]
and the other gridded population products. Should decision makers be presented with
hazard risk reduction solutions or disaster preparedness scenarios based on GHS-15, they
may implement policies that overly support urban populations. Communities not easily
identified by the spectral signature of the EO-based data product would then be neglected.
Similarly, relying only on WPE-16, in which population estimates are largely driven by
leveraging the Landsat archive, may overestimate populations exposed or impacted by a
hazard, leading to the over-allocation of resources, compared to policies developed with
the other gridded population products. As such, efforts to monitor SDG indicators like
SDG 11.5, which depend on detailed population data, can vary as a function of the gridded
population product employed.

It is important to note that tracking any SDG indicator will also depend on the
granularity of hazard data used in association with gridded population data. Indeed, in
the context of SDG 11.5 the granularity of hazard data will affect estimates. For example,
when we zoomed in on major urban centers from the three case studies presented (Figure 4,
Figure 8), significant pixel-level population ranges are identified that may not actually
affect the total population measured over larger geographic areas. The USGS earthquake
instrument intensity data (Figure 8a) is at a much coarser granularity over Kathmandu
than the EO-observed flood inundated area around Beira, Mozambique (Figure 8b), or the
flash flood susceptibility layer for Quito (Figure 8c). Yet, unlike the more standardized
analysis-ready hazard datasets we presented here, there is not a widely accepted set of
criteria for deciding which gridded population dataset should be used to measure exposure
to a given hazard.

While recent “fitness for use” guidelines provide key information for researchers, prac-
titioners, and decision makers [5,20], our results suggest that the single use of a gridded
population product should be avoided in tracking SDG indicators. These guidelines empha-
size that spatial scale, reliability, and granularity of underlying census data, the population
under study, and geography must be considered in data selection. Yet the variation across
gridded population products we found for a range of hazards across geographic contexts
signals that the single use of a product has realworld financial consequences. For instance,
using our results from Cyclone Idai and per capita dollar basic disaster emergency costs of
$112 per person [70], relief costs solely for those in flood inundated areas in MMZ range
from US$92 million using the WPE-16 estimate of 817,000 people to US$143 million using
GHS-15 estimate 1.28 million. Both estimates are below the official estimate of 1.85 million
people impacted by Idai and the immediate financial estimate of US$300 million [43]. As
such, we caution against the single use of a gridded population product. We reaffirm
the need for the validation of existing products and urge future producers of gridded
population products to provide error estimations.

Different gridded population modeling approaches and EO input data can result in
varying population estimates per grid cell [20]. However, the finer the spatial resolution of
input administrative units (Table 2) associated with population counts, the more similar the
output population values per pixel will be across products regardless of the disaggregation
approach. This is clear from Figure 4a, which shows much less variation in population
estimates across the urban-rural gradient around Kathmandu. Generally speaking, finer
administrative units tend to concentrate in higher population density areas. Administrative
units that are larger, and coarser in spatial extent, tend to associate with lower population
density areas, and are affected more by the different disaggregation approaches and their
underlying assumptions. The result is greater variation in population estimates per pixel
within the same administrative unit. We thus encourage national census agencies to release
data with associated boundary files for the highest resolution units possible.
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Figure 8. Pixel-level population range (maximum–minimum population estimated across gridded
population products) overlaid with administrative units used for deriving gridded population
datasets and the hazard under study. Panel (a) is situated over Kathmandu, with the earthquake
instrument intensity contours shown. Panel (b) covers Quito with the highest flash flood sustainability
area outlined in red. Panel (c) focuses on Beira, Mozambique and the mouth of the Pungwe River.
Red hatching is the 90 m flood layer from Cyclone Idai resampled to 1 km.

Our results further highlight differences between constrained and unconstrained
gridded populations products. Constrained approaches disaggregate population counts
linked to administrative units only within pixels identified as “settled.” In doing so, there
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may be a tendency to overestimate the number of people “distributed” within high-density
(urban) settings. Our results indicate that this is the case with GHS-15. In contrast, the
unconstrained approach will disaggregate population counts into any pixel identified
as “land,” which may overestimate the number of people allocated within low-density,
i.e., more rural, settings. In the case of GPW-15, the overestimation in low-density (rural)
settings is expected to be even more pronounced than in the other unconstrained products
given that the disaggregated population totals are evenly redistributed within all pixels
identified as “land” and there is no additional ancillary data used in the model.

While we recommend using multiple products in hazard analysis, if selecting a single
gridded population product, it is important to identify not only if the gridded population
product is constrained in some way, but also how it is constrained. Underlying data sources
of constrained products may have validation or uncertainty estimates that may vary by
region or time point. For input settlement products that represent the constrained “built”
areas in which population counts are disaggregated, there is a general expectation that
those gridded products will have a more accurate representation of population distribution.
However, the final gridded population product will be greatly impacted by the presence of
omission and commission errors in the input settlement dataset, with small/isolated rural
settlements potentially being more difficult to detect and certain types of land cover (e.g.,
rock outcrops or sandy soils) potentially being misclassified as settlement areas [71].

On the other hand, unconstrained approaches use a dasymetric approach to disag-
gregate input administrative population values within all pixels identified as “land.” This
will introduce error in the final gridded output for those areas that are actually uninhab-
ited. There will be some trade-off with a minimization of the presence of omission and
commission errors in whatever input settlement data is used in the modeling due to the
influence of other ancillary covariates representing factors correlated with population
density and presence. There is error in all products, but some basic understanding of
how the gridded data products are produced can help identify which product makes
the most sense for a given application. Reed et al. (2018) [72] demonstrates the relative
robustness of the unconstrained WorldPop dataset compared to the constrained HRSL
dataset. The similarities in error metrics for these products emphasizes the importance
of considering omission/commission errors in the input built datasets and subsequent
allocation of population values in the final product.

Finally, it should be noted that most of these gridded population datasets represent a
residential population, or where people are most likely to be when at home. LandScan is an
exception and represents the ambient population, or the average population distribution
over 24 h. That type of data product is potentially useful for assessing exposure as it
represents not only the static census-based residence information but also the ambient
nature of population movement over a 24 h period.

5. Conclusions

Vector-based administrative-level population data often fails to disaggregate popula-
tion at the spatial scales requisite to identify where people actually live on the planet. This
type of data can fail to provide useful information for the delivery of services required to
achieve the SDGs. As such, our findings reinforce the many advantages of using gridded
population products to track SDG indicators. This is especially important in the context
of measuring, monitoring, and mapping SDG 11.5. Indeed, reducing exposure to hazards
requires accurate population estimates, and for many LMICs, Earth observation-derived
gridded population products are the best available data. Likewise, gridded population
products can provide crucial information in post-disaster contexts as well. The case studies
we showcase here reinforce the broad utility of these products and advance our under-
standing of “fitness for use” for both SDG 11.5 and the 73 SDG indicators that require
accurate, comparable, and timely high-resolution population estimates.

Nonetheless, we highlight that for some geographical regions (and/or hazards),
population estimates will vary depending on the choice of gridded population product.
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Despite the variation we identify across gridded population datasets, we emphasize that
uncertainty is not per se a limitation in employing gridded population datasets to track
the SDGs. Without externally derived validation data or producer error metrics, it remains
difficult to provide definitive recommendations in terms of what product to use, where
and for what type of hazard. As such, we recommend further resources be dedicated to
micro census data collection and encourage producers to quantify uncertainty in future
gridded population products.

Most importantly, we recommend that researchers, practitioners, and decision makers
acknowledge that inherent uncertainty when using these products. Along with leveraging
the “fitness for use guidelines” [5,20], a key step to doing so is to perform a sensitivity
analysis [23] and/or present a range of estimates using multiple gridded populations
using an ensemble approach. To this end, we have provided the code used in the analysis
and made available a global raster dataset that allows for the intercomparison of gridded
population products. Furthermore, researchers and practitioners who develop tools for
decision makers to track the SDGs should incorporate multiple gridded population datasets.
Decision makers can thus develop policies and allocate resources informed by information
that captures some of the inherent uncertainties of leveraging EO data to measure human
populations across the planet. Indeed, single-use population estimates could open the door
for bad actors to select the gridded population product that maximizes progress towards
achieving an SDG. Lastly, we emphasize that the development of indicators, including the
use of datasets like gridded population products, should be a collective effort between
users and producers across decision-making levels [73].
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