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Abstract

:

Clean technological machining operations can improve traditional methods’ environmental, economic, and technical viability, resulting in sustainability, compatibility, and human-centered machining. This, this work focuses on sustainable machining of Al-Mg-Zr alloy with minimum quantity lubricant (MQL)-assisted machining using a polycrystalline diamond (PCD) tool. The effect of various process parameters on the surface roughness and cutting temperature were analyzed. The Taguchi L25 orthogonal array-based experimental design has been utilized. Experiments have been carried out in the MQL environment, and pressure was maintained at 8 bar. The multiple responses were optimized using desirability function analysis (DFA). Analysis of variance (ANOVA) shows that cutting speed and depth of cut are the most prominent factors for surface roughness and cutting temperature. Therefore, the DFA suggested that, to attain reasonable response values, a lower to moderate value of depth of cut, cutting speed and feed rate are appreciable. An artificial neural network (ANN) model with four different learning algorithms was used to predict the surface roughness and temperature. Apart from this, to address the sustainability aspect, life cycle assessment (LCA) of MQL-assisted and dry machining has been carried out. Energy consumption, CO2 emissions, and processing time have been determined for MQL-assisted and dry machining. The results showed that MQL-machining required a very nominal amount of cutting fluid, which produced a smaller carbon footprint. Moreover, very little energy consumption is required in MQL-machining to achieve high material removal and very low tool change.
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1. Introduction


Alloys have wide applications, such as for use as turbine and furnace components, and in the aerospace and petroleum industries [1]. Aluminum-based alloys have been most widely used in automotive industries due to their excellent formability [2]. There is a growing trend in Al-based alloy-based metal matrix composites (MMCs) in automotive applications, particularly for engine block manufacturing [3]. The Al/Mg base alloy, combining corrosion resistance with appreciable strength and ductility, is of interest in light-weight structural applications in the transportation industry [4]. Machining of MMC-based composites is challenging compared to conventional steels, so they are often identified as difficult-to-cut materials [5,6]. Some strategies, such as the design of cutting tools, incorporating an appropriate cutting environment, and tool change, are needed to make machining operations more convenient. Sustainable manufacturing is the only solution for developing products via environmentally-friendly, non-polluting, energy-efficient, and economical machining processes to ensure socio-economic wellbeing, safety, and health [7]. According to the Environmental Protection Association (EPA), the use of new cooling/lubrication techniques, such as dry-cutting, MQL, cryogenic cooling, and hybrid cooling techniques in machining, has been acknowledged as a cleaner sustainable machining production approach. Further works from the literature are collected in the following sections.



A number of inserts have been developed to machine hard-to-machine materials. Polycrystalline diamond (PCD) was found to be suitable for machining hardened metals and super-alloys under higher cutting speed conditions [8,9]. To strengthen the efficacy of the PCD tool, an investigation was conducted on Al alloy-based MMC with 20 wt.% of SiC particles, using WC, PCBN, and PCD tools, resulting in PCD providing the best performance as a cutting insert [10]. Furthermore, considering that the hardness of PCD is higher than that of SiC, the efficiency of different tool materials was analyzed while machining Al-based SiC alloy and it was concluded that PCD was superior to the PCBN tool, a coated ceramic tool, and cemented carbide instruments [11].



The PCD inserts with particle SiC and B4C-reinforced MMCs have also been examined for short fibrous Al2O3. Based on the wear rates and morphology of worn surfaces, abrasion by dislodged diamond grains and microcracking caused the wear of PCD. [12]. PCD and chemical vapor deposition (CVD) diamond-coated tools were investigated for tool life, and the initial flank wear on both the tools was generated by abrasion [13]. Chip–tool interface temperature is another important parameter associated with many machining operations. Inherently, high steel production machining offers a high temperature in the cutting area, which leads to substantial deviations and premature failure of cutting tools [14]. High cuts that negatively influence the lifespan of the tool, dimensional precision, and product surface integrity unavoidably characterize high-speed workmanship. However, a high-pressure oil jet can lower the cutting temperature and extend the lifetime of tools to the same extent as the chip–tool interface [15,16].



Rabiei [17] focused on the importance of cutting fluids to facilitate certain benefits during machining, such as improved tool life and a good surface finish. In some applications, between dry machining and flood cooling, an ideal lubrication solution can be found in the form of MQL, which is a viable solution to address the drawbacks of dry and flood-cooling processes [18,19]. Abhang and Hameedullah investigated the effectiveness of the MQL technique depending on the level of the process parameters and the work material, resulting in a reduction of chip-tool interface temperature as high as 30% compared to conventional cooling [20]. The studied effect of MQL on surface roughness in CNC turning determined that a minimal quantity of lubrication could significantly reduce the resultant output when compared with the traditional flood-cooling method [21]. Karim et al. investigated the effect of MQL in turning Al alloy composite using the Taguchi–PCA approach and determined the issue of the beneficial impact of MQL over the conventional cooling method [22,23]. MQL integrated into the turning of AISI 4140 steel could improve the cutting temperature and surface integrity. Adding special additives to the coolant and lubricant systems may also enhance the base fluid’s tribological properties by minimizing machining forces and decreasing chip–tool interface temperature [24,25].



While focusing on improving tool life, cutting force, and surface roughness, Lin explored the use of Taguchi analysis during the turning of S45C steel bar using P20 tungsten carbide. They found that the Taguchi method was a multiple performance optimization solver [26]. In an attempt to predict response parameters, Temel et al. [27] concluded that ANN is an effective method for predicting output variable with a minimum error for identifying mechanical and physical characteristics of Al2024-B4C MMC. Bachy and Franke [28] used ANN and RSM to develop laser process mathematical models, and resulted in generating the lowest errors using an artificial neural network, which justified ANN’s high precision response concerning surface methodology. Various researcher reported the use of artificial intelligence in the processing of Al-alloys [29,30,31]. Reddy compared RSM and ANFIS predicted surface roughness values, and the ANFIS results were superior to those of RSM [32]. A fuzzy model was developed using three different sets of process parameters and it was concluded that the ANFIS-based hybrid model was best suited to accurately predict surface roughness, with a MAPE value of 0.113542% compared to the developed ANN model [33].



Energy consumption evaluation is an integral part of life cycle assessment (LCA) and sustainability. Energy consumption varies with the machining stages and depends on the utilization of instruments assisting the machining [34,35]. The utilization of cooling and lubrication systems raised the power produced by the machine [36]. However, an analysis of electric energy usage is not sufficient to determine the sustainability of the machining process. Therefore, consumed resources’ incarnated energy has been introduced into research in recent years [37,38]. Carbon (CO2) emission and carbon footprint analysis is also a key indicator of LCA and sustainability. Ic et al. [39] optimized the processing parameters of a machine to turn Al-7075 alloy to minimize the emission of CO2 and to produce a low surface roughness. It was reported that the proper selection of coolant reduced the generation of CO2 emissions and was better for the environment. CO2 emissions have been found to be approximately zero in the MQL and cryogenically assisted machining process. Production costs are also essential for LCA and sustainability. The production costs of machined components were computed using Taylor’s cost method. The model comprised tool cost, machine cost, and tool change cost, but this model does not include a coolant effect on the production costs [40]. Jamil et al. proposed a cost model for dry, MQL, and LN2-assisted cooling of machining of Ti-alloy, and it was found that the production cost was reduced significantly [41].



The necessity for environmentally friendly machining has always been the motivating factor regarding cutting-fluid-usage reduction techniques. MQL is amongst the most promising machining strategies, allowing for a 90% reduction in cutting fluid consumption, although it also preserves surface quality and tool life. The prominence of MQL in machining necessitates an analysis of MQL progress. During machining operations, flood cooling is a popular method for extracting heat from the cutting field; however, it has negative consequences, such as it can cause respiratory illnesses among employees, environmental issues, and cutting fluid processing and disposal. As a result, environmentally sustainable lubrication solutions must be implemented to address flood lubrication issues. The MQL strategy can also help with machining issues like chip pressure welding to the cutting edge, which is the main reason for tool failure. Additionally, MQL improves the surface quality of machined parts. However, MQL is mainly concerned with reducing friction, rather than removing as much heat as possible by regulating heat generation at its source.



A detailed literature survey has revealed that there is a complete dearth of literature on life cycle assessment (LCA) and sustainability analyses of MQL-assisted machining of Al-Mg-Zr alloy. The sustainability aspect of the machining area requires a great deal of attention and needs to be comprehended in a structured manner in comparative studies. Unfortunately, most academics and manufacturing industries are still focused only on traditional methods. However, insincere efforts have been made in understanding the effects of environmental, economic, and technological analyses of MQL-assisted machining of Al-Mg-Zr Alloy. The present study has created another endeavor, to fill the gap due to the already-stated theoretical research gaps. The current research on MQL-assisted machining of Al-Mg-Zr alloy using a PCD tool has created the following objectives:




	
To determine the influence of cutting parameters on sustainable responses, viz. surface roughness and cutting temperature using ANOVA and the main effect of plots using the PCD tool;



	
To achieve optimal cutting parameters with the Taguchi method and multi-objective optimization with desirability function analysis (DFA);



	
To model cutting parameters with ANN and ANFIS;



	
To analyze life cycle and sustainability aspects of MQL-assisted machining of Al-Mg-Zr alloy.








To understand the extent of sustainability analysis on MQL-assisted machining of Al-Mg-Zr alloy, the present study was based on a fundamental analysis of three research questions:




	
Q1: Do cutting parameters significantly affect sustainable responses or not?



	
Q2: Do the cutting parameters differ from optimal settings?



	
Q3: Does a statistically significant interrelationship between parameters contribute to “sustainable machining”?








The rest of the paper is organized as follows: Section 2 details the materials and methods utilized for modeling and optimization, workpiece material, equipment and the instruments used as well as the design of the experiments. Section 3 describes the analysis of results using ANOVA, optimization with the Taguchi method, and multi-objective optimization with DFA, ANN, and ANFIS modeling. Section 4 displays a comparative analysis, including ANN and ANFIS results and life cycle and sustainability analysis, followed by conclusions, limitations, and the future scope of research, in Section 5.




2. Materials and Methods


2.1. Workpiece Material and Dimensions


Aluminum, magnesium, and zirconium were used in this work. A stir casting process with an RPM of 600 was used to prepare the alloy. EDX analysis was carried out to obtain the developed alloy composition, as shown in Table 1 and Figure 1. A cylindrical-shaped alloy was prepared for turning operations, with a length of 305 mm and a diameter of 70 mm.




2.2. Cutting Inserts


An SNMG 120408 polycrystalline diamond (PCD) cutting insert with a nose radius of 0.8 mm under minimum quantity lubricant (MQL) cutting conditions was used in the turning process using a center lathe.




2.3. Equipment and Instruments


The roughness was measured using an optical surface profilometer. Each measurement was repeated three time to reduce the error and the mean arithmetic average value was collected.



During the experiments, a thermocouple was used to monitor the cutting temperature. In addition, a digital multi-meter was used to record the electromotive force (emf) in millivolts, with one end of the multi-meter attached to the workpiece and the other end to the tool. The thermocouple calibration maintained the temperature measuring accuracy using comparison techniques. The calibration procedure was achieved according to the ASTM E220 standard test method by trained lab technicians [42].




2.4. Experimental Setup and Design of Experimentation


Experiments were performed according to Taguchi’s methodology [43]. The cutting parameters, such as cutting speed (Vc), feed rate (S0), and cutting depth (t), using five different levels, were considered. The experiments were conducted to decide the cutting parameter levels along with the tool manufacturing suggestions and the machine tool capacity using an L-25 OA array. The optimization was performed using desirability function analysis, as reported in previous research [44]. The cutting parameters and the allocation of the different levels are shown in Table 1. The standard L25 OA as per the cutting parameters levels is shown in Table 2. Each experiment was repeated three times as designed, and the average values of the responses for surface roughness (Ra) and cutting temperature cutting (θ) are shown in Table 3. Figure 2 presents the experimental setup and the method used for the study. The pressure was kept at 8 bar, and the flow rate during machining was kept constant at 120 mL/h.




2.5. ANFIS and ANN Based Predictive Modelling


The adaptive fuzzy inference system (ANFIS)-based network is a hybrid architecture comprising neural and fuzzy logic systems. An information-based technique is used in a neural network stage to provide function-approximation problems [33]. First, a fuzzy inference method with an initial fuzzy model is established, taking into account the fuzzy rules extracted from the input–output data. Then, the neural network is used to fine-tune the built-up original fuzzy model’s rules in the next step.



A Sugeno (output is linear or constant) type ANFIS model is used in the present work. The experiment takes three input parameters (depth of cut, cutting speed, and feed rate) and two output parameters (surface roughness and cutting temperature) into consideration. The ANFIS model is constructed using a Gaussian membership function (Gaussmf) with three membership functions for all input parameters and a linear membership function for the output parameter. The hybrid approach is used to maximize parameter performance.



ANN is a common prediction tool that helps to calculate various outputs from different parameters. ANN has three interconnected layers, and core features of the artificial neural network are its learning ability and the various learning algorithms [33]. To get a minimal variance between the experimental values and the output values, it is essential to decide the best learning algorithm and the optimum number of neurons.




2.6. Data Collection for Sustainability Analysis


PPC-3 power meter load controls were utilized to calculate energy consumption during different phases of machine tooling. In order to obtain the electrical energy consumption in various process stages (functional states of the machine tool), the estimated power was compounded by a known time frame. In the measurement of the lubrication capacity, a smart meter was used. The intelligent meter consisted of Raspberry Pi-3 and a Smart-Pi, keyboard and mouse, an HDMI adapter and a micro SD card. In addition, the proposed uniform approach calculates carbon emissions, as reported in a previous study [45].





3. Results and Discussion


3.1. Effect of Process Paramters on Surface Roughness and Cutting Temprature


An SN ratio shows the influence of each input variable parameter on each regulated parameter level, and the parameter has an impact on the surface roughness and cutting temperature. Since a higher SN is closer to a higher quality, a bigger SN ratio is better. Both Table 4 and Table 5 demonstrate that cuts at speeds ranked 1, followed by cutting depth rank 2, had the least impact on the results and the feed rate, as the cutting parameter affected the surface roughness most effectively and the cuts in the temperature quality were in accordance with the SN ratio.



Figure 3, Figure 4, Figure 5 and Figure 6 correspondingly show the principal effect parts for the mean and SN ratios of surface roughness and cutting temperature. It is usually preferable to increase the value of the SN ratio; hence, the ideal cutting conditions can be attained when the SN ratios are highest in all three entry parameters. The primary SN ratio effect plot (Figure 3 and Figure 5) shows that a low roughness and cutting temperature reached at a 0.25-mm cutting depth, 86-m/min cutting speed and a feed-rate of 0.12 mm/rev. Figure 4 and Figure 6 show that the ideal value at a cut-through depth of 0.25 mm, 86 m/min cutting speed and 0.12 mm/rev feed rate was seen for reduced surface roughness and cutting temperature. In order to get the optimum assessment of both surface roughness and cutting temperature, it was proposed that a lower cutting depth, lower cutting speed and low-to-moderate feed rate need to be used.




3.2. Analysis of Variance (ANOVA)


In this study, ANOVA was performed for the response of surface roughness and cutting temperature. The sum of the squares (SS), the degrees of freedom (df), the mean square (MS), the F-value, and the p-value for all input variables are shown in Table 6 and Table 7 for the MQL-aided cutting conditions. p-values below 0.05 indicate that the terms of the model are noteworthy for both responses. Moreover, it is easily understood from the analyses that the cutting speed and the depth of the cut are the most prominent factors, which is aligned with the results of the S/N ratio analysis. Thus, both the method factors can give an assertion about selecting the dominant factor affecting the process.




3.3. Optimization Using Desirability Function Analysis (DFA)


Multi-response optimization aims to determine the independent variable conditions that lead to optimal or nearly optimal values for the response variables. In this desirability function analysis, minimizing surface roughness and cutting force was the prime objective. Factor ranges defined for the basic optimization are shown in Table 8. A summary of the optimization to fulfil the essential purpose of minimizing the response parameter is demonstrated in Table 9 and Figure 7.




3.4. Proposed ANN Model


Various learning algorithms, such as LM, CGP, SCG and BFG, are used to determine the most appropriate learning algorithm for predicting surface roughness and cutting temperature. The number of hidden layers were modified to 9, 12, 15, and 20 to achieve the best possible proximity to the experimental results. For an increasing number of hidden layers, the response parameter values were calculated using the correlation coefficient (R2) comprising all four types of learning algorithms. Of all the algorithms, the LM algorithm was best suited for the training data of the surface roughness and cutting temperature. At the same time, SCG was the most suitable algorithm for testing data collection. When testing with cutting temperature experimental data collection, barring the best network structure for checking the cutting temperature data, i.e., 3-15-2, the best network structure for the remainder of the data set was 3-9-2, as shown in Figure 8. The proposed ANN structure showed that it has three neurons (depth of cut, cutting speed, and feed rate) in the input layer, nine neurons in the hidden layer, and two neurons in the output layer (surface roughness and cutting temperature). In Table 10, the statistical values of the learning algorithm responses are given.



In this study, 25 experimental data points were arranged for training and testing purposes. Thus, 72% of the data was used for training purposes, while 28% of the data was used for testing purposes; 18 datasets were used for training, and the remaining 7 datasets were used for testing.




3.5. ANFIS Based Predictive Modeling


The hybrid technique is used to examine the test dataset by loading it from the workspace into ANFIS. For all input parameters and linear type membership functions for output membership functions, FIS was formed using the Gaussian mission function Gaussmf and was shown in Figure 9. The hybrid technique was chosen as the 0 percent error tolerance and 100 epoch optimization approach was used until there was a minimum error in a correct result. Membership function and rules generated by FIS for both the outputs are shown in Figure 10 and Figure 11. The corresponding errors obtained for the surface roughness and the cutting temperature in the hybrid method were 1.107% and 1.172%, respectively, using the rule viewer, as shown in Figure 11. With this changing of the inputs, the resultant output values for the developed hybrid-type ANFIS model was generated.




3.6. Three-Dimensional Surface Plots


To understand the interaction effects of the input variables on the response factor, 3D surface plots were plotted based on a developed ANFIS-based model, as portrayed in Figure 12. From the surface views, it was found that a three-dimensional curve represented the mapping from any of the two input parameters to the output parameter. The Z-axis represents surface roughness and the cutting temperature, while the X and Y axes represent two input parameters. All the input parameters could be changed to see how they affected the output parameter. The surface plot displays the effect of the feed rate on Ra and θ is negligible compared to the impact of the cutting speed and the depth of cut. This demonstrates that the increase in cutting speed and depth of cut leads to the rise of Ra and θ. However, in the case of cutting speed, sudden blips are also noticeable for the output parameters. Conversely, when large values of cutting speed were used, the effect became important. Therefore, it can be concluded that cutting speed exhibited the maximum influence on the response variable (Table 5).





4. Comparative Analysis


4.1. Comparison of Experimental Data with ANN and ANFIS Predicted Model


Mean absolute percentage error is used to measure the error of the process and was defined as Equation (1). MAPE calculation for the predicted values is shown in Table 11.


  M A P E =   A P E   P j    



(1)




where   A P E =   t j − o j   t j   × 100  ; t is the target value, o is the output value, and P is the number of samples.



The errors between the experimental and predicted values of Ra and θ are 3.95% and 3.45% when using a model based on ANN. Subsequently, the hybrid prediction model based on ANFIS was used to detect the deflection of the expected values from the experimental values to verify the percentage of process errors. MAPE was 1.072% and 1.172% for surface roughness and cutting temperature when predicting using the ANFIS model. It could be concluded that the hybrid method predicted the resulting output much more accurately since the amount of deviation was minimal compared to the predicted values of ANN. Nonetheless, ANN could also reasonably predict this value. Figure 13 and Figure 14 show the disparity between the measured and predicted responses of Ra and Fz, which indicates the model’s efficacy, as the predicted values for various combinations were closer to those of the experimentally reported readings.




4.2. Life Cycle Assessment and Sustainability Analysis


In the present research study, the empirical models for calculating production time, energy efficiency, specific cutting energy, and carbon emission were developed using a bottom-up approach, as presented in previous research [43]. Here, LCA and sustainability performance analysis, as per the design of the experiment, was presented in terms of production time, energy efficiency, specific cutting energy, and carbon emission. Figure 15 shows the LCA and sustainability performance outputs for dry and MQL-assisted machining of Al-based materials using the PCD tool.



Every operation required a determined time to operate the machining process, called the “actual time” (Tam). Therefore, the total processing time included the idle time, air cutting time, cutting time, tool change time, and cooling/lubrication time, as calculated in Equations (2) and (3).


  P r o c e s s i n g   t i m e      T c    =  t i  +  t a  +  t c  +  t  t c   +  t    c o l   l u b      



(2)







The idle time is the sum of stand-by time, material handling, and setup time.


  I d l e   t i m e      t i    =  t  s b   +  t h  +  t  s u    



(3)







The total processing time for each experimental run after calculation is shown in Figure 15a. It can be seen that MQL-assisted machining takes less time for cutting job operation in comparison to dry-machining. The minimum process time was determined at the optimized setting and was 195 s. This was due to the tool having a longer tool life, which reduced the tool change time. In addition, the MQL cutting fluid helped to reduce the cutting temperature, dissipate heat from the machining zone, and improve the tool’s efficiency and life. Similar observations have been made in previous research work [4,46].



The machining energy efficiency (η) was also considered an attribute for LCA and sustainability and is computed as shown in Equations (4)–(6).


  M a c h i n i n g   e n e r g y   e f f i c i e n c y      η  =    Machining   Energy       E m      T o t a l   E n e r g y   C o n s u m e d      E T       



(4)




where power consumption can be calculated by various stages of the machine tool, as shown in Equation (5).


  M a c h i n e   P o w e r      P m    =  P i  t +  P a  t +  P c  t +  P  t c   t +  P    c o l   l u b     t  



(5)







Energy consumption is expressed in Equation (6):


      Energy   consumption        E m           =   ∫  0   t i     P i  t d t +   ∫  0   t a     P a  t   d t +   ∫  0   t c     P c  t d t +   ∫  0   t  t c      P  t c   t d t        +   ∫  0   t    c o l   l u b        P    c o l   l u b     t d t      



(6)







Figure 15b shows the machine energy efficiency in terms of the experimental run for dry and MQL-assisted machining. It can be seen that the machine energy efficiency varies in the range of 20–34%. Thus, the reduction in energy consumption and the reduction of waste energy in machine tools is not the only way to achieve a high energy efficiency. Thus, the primary objectives were to reduce energy consumption and waste generation. The results show that MQL-assisted machining has a high energy efficiency compared to dry machining because the tool life is longer in MQL-assisted machining, which reduces tool change. This further reduced stand-by energy utilization in the tool changing phase.



Specific cutting energy (SCE) was also one of the key indicators of sustainability analysis. SCE is the ratio of total energy consumed to the material removal rate [47]. To reduce the SCE, either the material removal is increased using the same energy or a reduced energy consumption is needed for the same material removal, as presented in Equation (7).


  S C E =    E m    M R R    



(7)







Material removal rate (MRR) is calculated as per Equation (8).


  M R R =  V c  × f ×  a p   



(8)







Figure 15c shows the SCE concerning the experimental run for dry and MQL-assisted machining. It can be seen that the SCE varies in the range of 2–4 J/mm2. From the results, it can be seen that MQL-assisted machining has a low SCE compared with dry-machining. The prime reason for this is dependent on the sharpness of the cutting edge of the tool. In the case of MQL-assisted machining, the tool cutting edge has a long-life cycle. Therefore, the tool’s life depends on its cutting edge sharpness, which requires a low cutting force and energy to perform job operations. Moreover, there is no built-up-edge formation in the process, which increases the tool life and maintains the cutting edge’s sharpness because MQL-lubrication disposes of the heat energy generated in the machining zone. As a result, the long-life sharp edge produced a high material removal, and less tool change, which reduced cutting power consumption, which reduced the SCE.



Carbon emissions (CO2) can be termed as another significant indicator of sustainability. The energy consumption indirectly calculates carbon emissions via machine tools. The total carbon emission (CEtotal) is calculated as per Equation (9).


  C  E p  = C E S ×    E i  +  E a  +  E c  +  E  t c   +  E l    + C  F  C T   ×    t c     T L    + C  F  M Q L   ×  Q  M Q L   ×  t c   



(9)







Figure 15d shows the variations in CO2 concerning experimental run for dry and MQL-assisted machining. The carbon emissions under the obtained sustainable machining process were in the range of 200 to 300 kg-CO2. However, it can be seen that the CO2 emissions were comparatively much lower in MQL-assisted machining as compared to dry machining. This is because, in MQL machining, a very nominal amount of cutting fluid is used, which generates a smaller carbon footprint. Moreover, less energy consumption is required in MQL machining to achieve high degree of material removal and a very low tool change. In this, savings in energy, time, money, as well as for the environment occur, making MQL a sustainable machining process [43,48,49,50].



The obtained results are in line with previously published research work. Khan et al. reported investigating Al2O3-based nano-fluid-assisted MQL machining in terms of technological and economic factors [51]. Various sustainable parameters, such as energy, cost, and carbon emission were studied. It has been reported that nano-fluid-assisted MQL machining reduces the cost per unit of the product and achieves a low carbon manufacturing goal [52]. Gupta et al. studied the environmental and sustainability aspects of hybrid-cooling-assisted machining of Ti-6Al-4 V alloy [53]. It was reported that LN2 and MQL were the most effective cooling systems and helped in reducing the production time, energy, cost, and carbon emissions. Similar to the above-mentioned studies, the current study also presented that MQL machining reduces production time, energy, cost, and carbon emissions while processing Al-based alloys. Other sustainability indices, such as human wellbeing, pollution, vibrations, etc., will be considered in future research.





5. Conclusions


Current research focuses on the sustainability aspect of machining Al-based alloy using the PCD tool. At the same time, various machining attributes (surface roughness and cutting temperature) were also addressed to interrelate the effect of input parameters on the resultant responses. The addition of Zr in the material preparation significantly impacted reducing the cutting temperature under MQL cutting conditions. Based on the research, the following conclusions can be made.



From ANOVA analyses, it is understandable that the cutting velocity was the most dominant factor, followed by the depth of cut, to induce a preferable value for both the response parameters, which was also aligned with the SN ratio results attainted. As such, both methods can give assurances regarding the identification of the dominant factors affecting the response variables.



The SN ratio response graph demonstrates that, to obtain the optimum surface roughness and cutting temperature, a combination of parameters with a depth of cut of 0.25 mm, cutting speed of 86 m/min, and feed rate of 0.10 mm/rev was desirable. On the other hand, DFA showed the optimum surface roughness and cutting temperature, with a combination of 0.305 mm for the depth of cut, 86 m/min for cutting speed, and a 0.10 mm/rev for feed rate. Moreover, the highest perceived value of 0.997 could be attained amongst the 92 solutions while setting the mentioned parameters.



The ANN-based model effectively established a link between the input factors and response variables for the testing dataset and the training dataset. It could also be observed that the mean absolute percentage error fell to a good range of values of 3.25% to 3.95% for the response variables. The deviation chart indicated the acceptability of the Sugeno hybrid ANFIS prediction model, with mean absolute percentage errors of 1.071% and 1.72%, respectively, for surface roughness and cutting temperature, demonstrating the capacity to predict the performance of the responses more reliably than the ANN model.



MQL-assisted machining has been proven to be a sustainable machining process as compared to dry-machining. In MQL machining, owing to the very nominal use of cutting fluid, it generates a smaller carbon footprint. Moreover, significantly less energy consumption is required in MQL machining to achieve a high material removal and very low tool changes were needed. In this, there are savings in terms of energy, time, money, and the environment, making MQL a sustainable machining process.



It appears that the minimum quantity of lubrication could play a prominent role in maintaining the sustainability aspect of machining of the chosen material. Nevertheless, before applying this method for frequent industrial applications, more research needs to be done on the machining behavior considering higher cutting speeds and various nose radii of the PCD tool.



A limitation of current research work is that other sustainability indexes, such as human wellbeing, pollution, vibrations, etc., are not covered and will be considered in future research work.
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Figure 1. EDX analysis of the Al-Mg-Zr alloy. 
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Figure 2. Experimental setup under MQL conditions. 
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Figure 3. Main effect plots for SN ratios of surface roughness. 
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Figure 4. Main effect plots for surface roughness. 
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Figure 5. Main effect plots for SN ratios of cutting temperature. 
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Figure 6. Main effects plot for cutting temperature. 






Figure 6. Main effects plot for cutting temperature.



[image: Sustainability 13 07321 g006]







[image: Sustainability 13 07321 g007 550] 





Figure 7. Desirability bar chart for optimum solution. 
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Figure 8. Proposed ANN architecture (3-9-2). 
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Figure 9. Sugeno ANFIS-based predictive model. 
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Figure 10. Membership function for input variable (a) depth of cut, (b) cutting speed, and (c) feed rate. 






Figure 10. Membership function for input variable (a) depth of cut, (b) cutting speed, and (c) feed rate.



[image: Sustainability 13 07321 g010]







[image: Sustainability 13 07321 g011a 550][image: Sustainability 13 07321 g011b 550] 





Figure 11. ANFIS-generated rule viewer for (a) surface roughness and (b) cutting temperature. 
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Figure 12. Variation of (a) surface roughness and (b) cutting temperature on different combinations of inputs (depth of cut, cutting speed, and feed rate). 






Figure 12. Variation of (a) surface roughness and (b) cutting temperature on different combinations of inputs (depth of cut, cutting speed, and feed rate).



[image: Sustainability 13 07321 g012]







[image: Sustainability 13 07321 g013 550] 





Figure 13. Comparison between experimental and predicted results of surface roughness. 
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Figure 14. Comparison between experimental and predicted results of cutting temperature. 
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Figure 15. (a) Processing-time, (b) energy efficiency, (c) specific cutting energy, and (d) carbon emissions against the experimental run and cooling modes. 
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Table 1. Composition of the developed Al/Mg/Zr alloy.
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	Element
	Weight %
	Atomic %





	Mg
	34.81
	51.67



	O
	11.34
	12.63



	Al
	52.18
	34.47



	Zr
	1.67
	1.22
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Table 2. Experimental input parameters and resultant responses.






Table 2. Experimental input parameters and resultant responses.





	

	
Variable 1

	
Variable 2

	
Variable 3

	
Response 1

	
Response 2




	
Run

	
t: Depth of Cut

(mm)

	
Vc: Cutting

Speed

(m/min)

	
S0: Feed Rate

(mm/rev.)

	
Ra: Surface

Roughness (µm)

	
θ: Cutting Temperature

(°C)






	
1

	
0.25

	
86

	
0.1

	
0.508

	
135.79




	
2

	
0.25

	
112

	
0.12

	
0.625

	
152.24




	
3

	
0.25

	
138

	
0.14

	
0.784

	
173.45




	
4

	
0.25

	
143

	
0.16

	
0.815

	
177.53




	
5

	
0.25

	
178

	
0.18

	
1.030

	
206.09




	
6

	
0.45

	
86

	
0.12

	
0.49

	
134.66




	
7

	
0.45

	
112

	
0.14

	
0.735

	
165.50




	
8

	
0.45

	
138

	
0.16

	
0.894

	
186.77




	
9

	
0.45

	
143

	
0.18

	
0.925

	
190.85




	
10

	
0.45

	
178

	
0.1

	
1.140

	
219.41




	
11

	
0.65

	
86

	
0.14

	
0.728

	
162.43




	
12

	
0.65

	
112

	
0.16

	
0.845

	
178.88




	
13

	
0.65

	
138

	
0.18

	
1.004

	
200.09




	
14

	
0.65

	
143

	
0.1

	
1.035

	
204.17




	
15

	
0.65

	
178

	
0.12

	
1.250

	
232.73




	
16

	
0.85

	
86

	
0.16

	
0.795

	
170.98




	
17

	
0.85

	
112

	
0.18

	
0.955

	
192.20




	
18

	
0.85

	
138

	
0.1

	
1.114

	
213.41




	
19

	
0.85

	
143

	
0.12

	
1.145

	
217.49




	
20

	
0.85

	
178

	
0.14

	
1.360

	
246.05




	
21

	
1.25

	
86

	
0.18

	
1.015

	
197.62




	
22

	
1.25

	
112

	
0.1

	
1.175

	
218.84




	
23

	
1.25

	
138

	
0.12

	
1.334

	
240.05




	
24

	
1.25

	
143

	
0.14

	
1.365

	
244.13




	
25

	
1.25

	
178

	
0.16

	
1.580

	
272.69
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Table 3. Cutting parameters and different levels.
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	Variables
	Units
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5





	Depth of cut (t)
	mm
	0.25
	0.45
	0.65
	0.85
	1.25



	Cutting speed (Vc)
	m/min
	86
	112
	138
	143
	178



	Feed rate (S0)
	mm/rev.
	0.1
	0.12
	0.14
	0.16
	0.18
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Table 4. Response table for SN ratios (surface roughness).
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	Level
	Depth of Cut
	Cutting Speed
	Feed Rate





	1
	0.7528
	0.7074
	0.9948



	2
	0.8372
	0.8671
	0.9692



	3
	0.9728
	1.0268
	0.9948



	4
	1.0743
	1.0575
	0.9863



	5
	1.2943
	1.2724
	0.9863



	Delta
	0.5415
	0.5650
	0.0256



	Rank
	2
	1
	3







Note: Smaller is better.
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Table 5. Response table for SN ratios (cutting temperature).
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	Level
	Depth of Cut
	Cutting Speed
	Feed Rate





	1
	−44.47
	−44.01
	−45.81



	2
	−44.97
	−45.11
	−45.59



	3
	−45.77
	−46.09
	−45.79



	4
	−46.30
	−46.26
	−45.77



	5
	−47.36
	−47.40
	−45.90



	Delta
	2.89
	3.39
	0.32



	Rank
	2
	1
	3







Note: Smaller is better.
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Table 6. Analysis of variance for surface roughness.
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	Source
	SS
	df
	MS
	F-Value
	p-Value
	Contribution





	Model
	1.80
	3
	0.5995
	1152.52
	<0.0001
	significant



	t
	0.8956
	1
	0.8956
	1721.90
	<0.0001
	49.48%



	Vc
	0.9028
	1
	0.9028
	1735.65
	<0.0001
	49.87%



	S0
	7.688× 10−9
	1
	7.688 × 10−9
	0.0000
	0.9970
	



	Residual
	0.0109
	21
	0.0005
	
	
	



	Cor. Total
	1.81
	24
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Table 7. Analysis of variance for cutting temperature.
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	Source
	SS
	df
	MS
	F-value
	p-Value
	Contribution





	Model
	29,087.40
	3
	9695.80
	1462.35
	<0.0001
	significant



	t
	13,136.15
	1
	13,136.15
	1981.23
	<0.0001
	44.94%



	Vc
	15,951.25
	1
	15,951.25
	2405.82
	<0.0001
	54.57%



	S0
	0.0005
	1
	0.0005
	0.0001
	0.9932
	



	Residual
	139.24
	21
	6.63
	
	
	



	Cor. Total
	29,226.64
	24
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Table 8. Goals and factor range for optimization of surface roughness and cutting temperature.
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Factor

	
Goal

	
Limit

	
Weight

	
Importance




	
Low

	
High

	
Low

	
High






	
t

	
is in range

	
0.25

	
1.25

	
1

	
1

	
3




	
Vc

	
minimize

	
86

	
178

	
1

	
1

	
3




	
S0

	
is in range

	
0.1

	
0.18

	
1

	
1

	
3




	
Ra

	
minimize

	
0.49

	
1.58042

	
1

	
1

	
4




	
θ

	
is in range

	
134.66

	
272.698

	
1

	
1

	
4
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Table 9. Summary of the values obtained from optimization.
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	No.
	t
	Vc
	S0
	Ra
	θ
	Desirability
	





	1
	0.305
	86.000
	0.180
	0.496
	134.660
	0.997
	Selected



	2
	0.264
	89.307
	0.180
	0.494
	134.660
	0.983
	



	3
	0.396
	86.000
	0.180
	0.546
	140.719
	0.970
	



	4
	0.414
	86.000
	0.180
	0.555
	141.906
	0.965
	



	5
	0.445
	86.000
	0.100
	0.573
	143.992
	0.956
	



	6
	0.504
	86.596
	0.100
	0.609
	148.422
	0.933
	



	7
	0.573
	89.931
	0.100
	0.667
	155.706
	0.887
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Table 10. Statistical data of the response parameters using different learning algorithms.
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Learning Algorithm

	
No. of Neurons

	
Training Data

	
Testing Data




	

	

	
R2

	
R2




	

	

	
Ra

	
θ

	
Ra

	
θ






	
LM

	
9

	
0.99732

	
0.99847

	
0.99643

	
0.9964




	
LM

	
12

	
0.99612

	
0.99727

	
0.9915

	
0.9927




	
LM

	
15

	
0.99103

	
0.99218

	
0.9574

	
0.9584




	
LM

	
20

	
0.98431

	
0.98546

	
0.96487

	
0.96597




	
LM

	
24

	
0.96356

	
0.96471

	
0.97672

	
0.97773




	
CGP

	
9

	
0.99242

	
0.99357

	
0.9943

	
0.9973




	
CGP

	
12

	
0.99185

	
0.9928

	
0.9915

	
0.9927




	
CGP

	
15

	
0.99151

	
0.99266

	
0.99388

	
0.9948




	
CGP

	
20

	
0.99136

	
0.99251

	
0.99467

	
0.9956




	
CGP

	
24

	
0.99145

	
0.99260

	
0.99521

	
0.9964




	
SCG

	
9

	
0.99137

	
0.99252

	
0.99488

	
0.9974




	
SCG

	
12

	
0.99156

	
0.99271

	
0.9944

	
0.9967




	
SCG

	
15

	
0.99199

	
0.9929

	
0.99464

	
0.9976




	
SCG

	
20

	
0.99161

	
0.99271

	
0.99352

	
0.9975




	
SCG

	
24

	
0.99182

	
0.99286

	
0.99351

	
0.99658




	
BFG

	
9

	
0.99208

	
0.99328

	
0.99638

	
0.9973




	
BFG

	
12

	
0.99215

	
0.99415

	
0.99631

	
0.9971




	
BFG

	
15

	
0.99187

	
0.99297

	
0.99563

	
0.9966




	
BFG

	
20

	
0.99171

	
0.99276

	
0.99532

	
0.9962




	
BFG

	
24

	
0.99181

	
0.9928

	
0.99373

	
0.9947
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Table 11. MAPE calculation using ANN- and ANFIS-based predictive models.






Table 11. MAPE calculation using ANN- and ANFIS-based predictive models.





	
Run

	
Exp. Result

	
ANN Predicted Result

	
ANFIS Predicted Result




	

	
Ra

	
θ

	
Ra

	
θ

	
Ra

	
θ




	

	
(μm)

	
(°C)

	
(μm)

	
(°C)

	
(μm)

	
(°C)






	
1

	
0.508

	
135.79

	
0.49

	
132.34

	
0.508

	
133




	
2

	
0.625

	
152.24

	
0.611

	
151.34

	
0.625

	
152




	
3

	
0.784

	
173.45

	
0.654

	
170.89

	
0.735

	
173




	
4

	
0.815

	
177.53

	
0.8

	
174.23

	
0.816

	
175




	
5

	
1.030

	
206.09

	
1.025

	
197.66

	
1.03

	
206




	
6

	
0.49

	
134.66

	
0.523

	
133.62

	
0.49

	
135




	
7

	
0.735

	
165.50

	
0.687

	
156.26

	
0.735

	
162




	
8

	
0.894

	
186.77

	
0.882

	
181.88

	
0.872

	
184




	
9

	
0.925

	
190.85

	
0.911

	
188.22

	
0.926

	
187




	
10

	
1.140

	
219.41

	
1.09

	
211.9

	
1.14

	
217




	
11

	
0.728

	
162.43

	
0.644

	
151.44

	
0.728

	
154




	
12

	
0.845

	
178.88

	
0.836

	
169.13

	
0.845

	
175




	
13

	
1.004

	
200.09

	
0.956

	
195.1

	
0.96

	
200




	
14

	
1.035

	
204.17

	
1.043

	
200.76

	
1.04

	
202




	
15

	
1.250

	
232.73

	
1.2

	
225.43

	
1.25

	
227




	
16

	
0.795

	
170.98

	
0.77

	
166.98

	
0.796

	
171




	
17

	
0.955

	
192.20

	
0.946

	
183.32

	
0.955

	
192




	
18

	
1.114

	
213.41

	
1.034

	
206.66

	
1.11

	
213




	
19

	
1.145

	
217.49

	
1.126

	
209

	
1.15

	
217




	
20

	
1.360

	
246.05

	
1.33

	
237.44

	
1.36

	
246




	
21

	
1.015

	
197.62

	
0.936

	
188.74

	
1.004

	
195




	
22

	
1.175

	
218.84

	
1.12

	
211.76

	
1.155

	
214




	
23

	
1.334

	
240.05

	
1.304

	
222.13

	
1.33

	
240




	
24

	
1.365

	
244.13

	
1.311

	
237.56

	
1.34

	
244




	
25

	
1.580

	
272.69

	
1.56

	
264

	
1.58

	
273




	

	
MAPE

	
3.95

	
3.45

	
1.072

	
1.172
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