
sustainability

Article

Energy Loss Impact in Electrical Smart Grid Systems
in Australia

Ashraf Zaghwan 1,* and Indra Gunawan 2

����������
�������

Citation: Zaghwan, A.; Gunawan, I.

Energy Loss Impact in Electrical

Smart Grid Systems in Australia.

Sustainability 2021, 13, 7221. https://

doi.org/10.3390/su13137221

Academic Editors: Tomonobu Senjyu

and Detlef Schulz

Received: 25 May 2021

Accepted: 22 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Entrepreneurship, Commercialisation & Innovation Centre, University of Adelaide,
Adelaide, SA 5005, Australia

2 Faculty of the Professions, Adelaide Business School, University of Adelaide, Adelaide, SA 5005, Australia;
indra.gunawan@adelaide.edu.au

* Correspondence: ashraf.zaghwan@gmail.com or ashraf.zaghwan@adelaide.edu.au

Abstract: This research draws attention to the potential and contextual influences on energy loss in
Australia’s electricity market and smart grid systems. It further examines barriers in the transition
toward optimising the benefit opportunities between electricity demand and electricity supply. The
main contribution of this study highlights the impact of individual end-users by controlling and
automating individual home electricity profiles within the objective function set (AV) of optimum
demand ranges. Three stages of analysis were accomplished to achieve this goal. Firstly, we focused
on feasibility analysis using ‘weight of evidence’ (WOE) and ‘information value’ (IV) techniques to
check sample data segmentation and possible variable reduction. Stage two of sensitivity analysis
(SA) used a generalised reduced gradient algorithm (GRG) to detect and compare a nonlinear
optimisation issue caused by end-user demand. Stage three of analysis used two methods adopted
from the machine learning toolbox, piecewise linear distribution (PLD) and the empirical cumulative
distribution function (ECDF), to test the normality of time series data and measure the discrepancy
between them. It used PLD and ECDF to derive a nonparametric representation of the overall
cumulative distribution function (CDF). These analytical methods were all found to be relevant
and provided a clue to the sustainability approach. This study provides insights into the design
of sustainable homes, which must go beyond the concept of increasing the capacity of renewable
energy. In addition to this, this study examines the interplay between the variance estimation of
the problematic levels and the perception of energy loss to introduce a novel realistic model of
cost–benefit incentives. This optimisation goal contrasted with uncertainties that remain as to what
constitutes the demand impact and individual house effects in diverse clustering patterns in a specific
grid system. While ongoing effort is still needed to look for strategic solutions for this class of
complex problems, this research shows significant contextual opportunities to manage the complexity
of the problem according to the nature of the case, representing dense and significant changes in the
situational complexity.

Keywords: energy loss; energy supply; energy demand; end-users; complex systems

1. Introduction

Despite the significant progress in monitoring and control technology in recent years,
the energy loss rates in the grid system remain alarmingly high, and advocates warn that
the increase in the number of Australian Electricity Market Operators (AEMO) creates a
need for new approaches to wind up the issue. Considering the fact that the energy loss is
significant, the issue was put under revision, and it was declared that this issue should be
reviewed as a new version of guidelines could be met.

The power of the incompetence of end-users in mitigating energy loss could be one of
the most inscrutable phenomena of the modern demand-side management of electricity
(DSM), but it certainly has an impact. At this point, the demand for electricity will play a
crucial role in upcoming smart grids that aim to link end-users and energy consumption
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in more efficient and better-balanced electrical grid systems. The nonlinearity of human
behaviours that cause peaks and troughs leads to an enlargement of the gap between
the supply of and demand for electricity. ‘Peak and off-peak demand periods’ are over-
whelming the electrical grid system and are only resolved by providing better management
for the demand side of electricity [1–6]. However, although various perspectives have
provided diverse insights into this area, further work is needed to provide a consistent
and integrated view on how to proceed. The current aim is to discuss the demand-side
parameters, keep them efficient by re-considering the energy loss in the grid system, and
promote the smart energy behaviour that is currently lacking. A literature review for this
paper was conducted to establish a clear view of the three main aims: first, to review
the state-of-the-art nonlinear dynamic engagement of end-user behaviour in smart grid
projects, from both a theoretical and an empirical perspective; second, to summarise the
key findings concerning the reported enablers and barriers for engaging end-users in smart
energy behaviour; and third, to provide recommendations or ‘success factors’ for end-user
engagement and recognise the many key challenges remaining for future research and
development in Australia.

2. DSM Impact Globally

There has been a growing body of literature on the roots of the malfunctions that
cause losses in grid systems, particularly the role of DSM in developing economies [7–26]
(see Table 1).

Table 1. Recent impacts of DSM on five continents.

Country of DSM Evaluation Object Indexes for
End-User’s Role Country of DSM Evaluation Object Indexes for

End-User’s Role

Sweden and Portugal
(2021) [7]

Decentralised energy
storage

Demand autonomy
attitudes and

business models

166 regions in
Germany (2020) [17]

Independent energy
autonomy from
supply systems

Increasing solar by
end-users adds

economic benefit

Great Britain
(2018) [8]

Decentralised, fossil
fuel, and intermittent

energy sources

Reliability of
electricity networks

Worldwide
(2021) [18]

The spectrum role of
decentralised energy

for inclusive
economic growth

Integrate energy
demand to other

sources at minimum
cost

China (2020) [9]

Decentralised
framework for low

emission and
controlled carbon tax

Multi-stakeholder
coordination with

multi-energy
interaction

Germany (2020) [19]

Decentralised renew-
able/conventional

manufacturing
systems

Employ residual
power to control

excessive charge and
stabilise the grid

Switzerland (2019)
[10]

Decentralised
business options for

managing generation
system

Developing
prosumer poses a
threat to electric

utilities

South Africa (2020)
[20]

Decentralised RE,
disempowering the

grid, and local
communities

RE companies’
engagement with
communities is

sufficient

Cameroon (2020) [11]
Decentralised

supply/renewables
to maximise output

Techno-economic
benefits to end-users

at low cost

California/New York
in the US (2020) [21]

Solar restructuring
and regulatory rules

affect outcomes

The choice of Society
to reinforcing solar

energy and grid
system integration

Canada and Sahara
Africa (2021) [12]

Off-grid and
decentralised hybrid
renewable electricity

systems

End-users’ access to
sustainable energy

132 islands in
Philippines (2019)

[22]

Centralised and
decentralised

electricity supply
options

Interconnect
renewables to

submarine cable
hybrid system

Europe North Sea
Region (2021) [13]

Reinforcing grid
infrastructure to

manage distributed
energy storage

systems

A micro-energy
market for smart

energy trading with
sustainable

implementation

Great Britain (2020)
[23]

Decentralised
demand-side energy
planning, effective
real-time demand

and forecasting
measures

Energy plans for
assets operating in

domestic houses and
small communities
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Table 1. Cont.

Country of DSM Evaluation Object Indexes for
End-User’s Role Country of DSM Evaluation Object Indexes for

End-User’s Role

US (2021) [14]

Drivers, contexts,
processes, policies,

and interactions
affect microgrid

adoption

Power outages and
climate change are

key pressures for the
adoption of
microgrids

Europe (2017) [24]

Decentralised power
to avoid grid losses
connected at seven

voltage levels in
reference to an EHV

Distribution energy
loss in grid demand
caused by end-users

in local proximity

Germany (2020) [15]

Technological
decentralisation and

the role of the
projects at the local

level

Four dimensions:
microgrid, location

infrastructure, agility,
balancing and supply

Pakistan (2021) [25]

Minimising energy
cost of geo by

combining
intra-datacentre with
a blockchain-based

inter-datacentre
framework

Cost of power
outages, security, less

demand, and
inflexibility of energy

dynamics

Bangladesh (2020)
[16]

Policy implications of
energy

decentralisation

Adopt solar by
supporting

education, health,
standard of living,
information access

and safety

Australia (2020) [26]

A multi-agent-based
decentralised

relaxed-constrained
energy management

for a microgrid

Manage demand to
reduce the peak of

the load by reshaping
the appliance’s load

Greater complexity in electrical demand systems is twofold, with one rise due to
increasing the demand capacity and the other displayed as a factor of increasing the
number of subjective consumers over time. Most DSM studies, as well as the sample
database in Table 1 gathered from the recent five years of research, cover more than twenty
countries on five continents. While arguments on these types of DSM studies are explicitly
based on efficiency to ensure further access to electricity for developing economies, two
stand out as definitively falling into environmental and social impacts. On the other hand,
some other studies displayed the barriers due to a lack of technological adoption. However,
rarely does evidence in the literature focus on the authenticity of energy loss and its impact
on deriving an overall decentralisation solution.

Electricity power supply and demand are discrepant spatiotemporal utilities. How-
ever, enabling decentralised energy system transformation premises is adding a possible
impact and multiple measures fronting energy loss. This problem of demand volatility
has been further increased due to the growing penetration of renewable energy sources as
it lacks a clear economic incentive for stakeholders that eventually translates to financial
pressure. This cost burden issue sheds light on the necessity of maintaining demand
stability and supply security as one of the significant challenges in the future [19,27].

In addition to this, and when it comes to the human factor, some studies tend to deliver
answers that are eventual and firm. Unfortunately, that is not often the case in complex
systems such as DSM. Although most studies have cognition about energy loss regardless
of different views, these definitions stop somewhere where we could not agree more. This
fact complicates any effort to decide which solution is transitional, leading stakeholders
to argue about what should and what should not count. We think this research area still
shows signs of being neglected mainly in developing nations. Therefore, our research effort
provides analytical interpretations that have taken into account this cavity by involving
interplay evidence dominated by the authenticity of energy loss.

3. Network Impact in Australia

Australia’s electricity networks comprise over 860,000 km of distribution networks
and over 50,000 km of transmission lines. These networks are managed and operated by
23 businesses to deliver over 252 terawatt-hours (TWh) of total electricity generated for
approximately 20 million customers [28,29]. A significant factor causing an increase in
energy productivity (gross domestic product/energy consumption) is attributed to the
growth in energy use for electricity generation (see Figure 1). Thus, there is a meaningful
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future increase in electricity generation based on the electricity demand and, mostly, a rise
in the generation mix of lower-efficiency coal rather than renewables.
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Figure 1. Australian Energy Update 2016 [29]. Source: Licensed from the Commonwealth of Australia
under a Creative Commons Attribution 3.0 Australia Licence.

Coal is the primary fuel used for electricity in Australia, a source that has declined
compared with past decades, but which is currently returning to higher and continuing use.

While coal remained the primary fuel source to generate electricity in 2014–2015, it
has more recently fallen to 63%, which is well below its fuel mix share of above 80% at
the beginning of the century [29]. In 2014–2015, coal-fired generation increased in South
Australia, Queensland, and Victoria, with black coal rising by 2% and brown coal by 11%.
This growth followed five consecutive years of decline in brown coal-fired generation
and seven years in black coal-fired generation. The higher prices of gas and decreased
hydro generation due to a lack of water availability reflect the switch to coal. This likewise
coincides with the removal of the carbon price [30]. Natural gas-fired generation represents
21% of total electricity generation in Australia.

Table 2 shows that renewable energy makes up approximately 14% of Australia’s total
electricity generation. The lower water levels in hydro dams led to a decline in hydro
generation of 27% in 2014–2015, causing a decrease in the renewable generation of 7%.
Hydro continues to be the largest contributor to renewable energy, with a share of 39%.
This share is, however, at its lowest since the drought of the mid-2000s. Wind sources have
become the second highest renewable behind hydro with its 33% contribution of renewable
electricity and 5% of total electricity generated in Australia. Solar generation has been
noticeable, growing in scale to 23%, but only addresses 2% of total electricity generation in
Australia. This capacity of solar is only limited to large-scale solar installations. However,
rooftop solar PV installation is still assumed to be the most reliable source for total solar
generation in Australia [30].
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Table 2. Average annual growth of power generation [30]. Source: Licensed from the Commonwealth
of Australia under a Creative Commons Attribution 3.0 Australia Licence.

2014–2015 Average Annual Growth

GWh Share
(per Cent)

2014–2015
(per Cent)

10 Years
(per Cent)

Fossil fuels 217,871 86.3 3.1 0.4
Black coal 107,639 42.7 1.8 −2.1

Brown coal 50,970 20.2 10.6 −0.8
Gas 52,463 20.8 −3.6 9.7
Oil 6799 2.7 35.6 9.3

Renewables 34,488 13.7 −6.9 5.3
Hydro 13,445 5.3 −27.0 −1.9
Wind 11,467 4.5 11.8 23.5

Bioenergy 3608 1.4 11.4 −1.0
Solar PV 5968 2.4 22.9 59.3

Geothermal 1 0.0 27.3 2.7

Total 252,359 100.0 1.6 0.9

As described in Table 2, a high proportion of irregular output comes from wind
generation and is used for thermal generators. This adds to the advantage of an increase
in the overall capacity of the energy generation mix. It would also add a higher degree of
intermittency for stakeholders in the overall electricity supply [31].

The increasing intermittency of generation causes increased volatility in wholesale
electricity spot prices. This influence has been observed in South Australia recently [31].
Following the increased spot price volatility, it would also increase the risk level that mostly
retailers and consumers will carry. One means by which the volatility of spot prices can
be managed is by purchasing higher-cost hedge contracts. These costs affect consumers
through higher retail prices, which are passed on by electricity retailers [32].

As such, a large-scale renewable energy target (LRET) increases complex integrations
that influence the costs of wholesale electricity [31,33]. Increased consumption puts upward
pressure on costs. LRET encourages renewable energy investment to suppress wholesale
costs, but this could well cause generator retirements over time. Intermittent forms of
renewable generation will lead to higher spot market volatility, increasing costs, and
retailers’ risks. These impacts cause upward pressure on wholesale electricity costs, as
summarised in Table 3.

Table 3. Influence of LRET and generator retirements on wholesale electricity [31,33].

Influence on
Wholesale

Electricity Costs

Influence on Retail
Electricity Prices

Effect on Wholesale
Spot Price Volatility

Introduce more
renewable generation Decrease Increase Increase

Thermal generation
retirements Increase Increase Increase

4. Trading Impact

The supply of electricity in Australia has a massive economic benefit. The annual
turnover was AUD 22 billion during the financial year 1997–1998, total asset worth was es-
timated at AUD 67 billion, and 33,099 people were employed in this sector. The generating
capacity recorded for the Australian electricity industry was approximately 48,000 MW [34].
Total electricity consumption registered in 1997–1998 was approximately 161,762 GWh,
and over 180,000 GWh was produced in the same year. There are some 8.5 million cus-
tomers, of whom 85% are residential customers, responsible for the consumption of 30%
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of the total consumed electricity. The average residential consumption per customer was
approximately 2500 kWh per year, referring to 1997–1998 [35]. However, currently, the
average has escalated to 6500 KWh. A household fuel and power expenditure survey in
1998–1999 showed that 72% of this value was consumed for electricity [36–38].

The annual averages, which are usually quoted for the wholesale electricity market,
were masked by the feature of volatility in prices. Notice that Victoria’s average daily prices
on many occasions went above AUD 2300 per megawatt-hour at certain times in peak
hours. During peak time intervals, trades of spot prices climbed to the NEM price cap of
AUD 12,500 per megawatt-hour in mid-2010 (see Figure 2) [39]. Extreme price movements
are one of the challenges facing wholesale electricity providers, and, for this reason, the
wholesale providers use the financial market instruments to hedge against unexpected
extreme trends (see Figure 3).
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Ascending prices are stacked on bids for producing electricity received by AEMO for
orders defined for each dispatch period. Generators are then progressively scheduled into
the needed production to cover the epidemic demand. This procedure starts with the least
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costly generation option. Therefore, the cost of generating power increases and decreases
in response to the demand for electricity affected by consumer behaviour.

The electricity delivered by networks is mostly traded on behalf of two wholesale
electricity markets in Australia [39]. The first market is NEM administered by AEMO
which operates in NSW, Queensland, the ACT, South Australia, Victoria, and Tasmania [28].
The second operating market is WEM administrated by IMO which operates the South
West Interconnected System. The target of both markets has as their objective the supply of
energy from generation stations to customers in the least costly and most efficient way.

The drivers for each augmentation to transmission and distribution networks shown
in Figure 4 take into account the criteria of security, quality, reliability, and safety standards.
The weighted average loss of electricity through transmission and distribution networks
combined is estimated at 5800 GWh (20.8 PJ) and equal to 6.7% of total inputs. Some studies
found 15% of losses in transmission lines are due to transformers, with conductors making
up the remaining 85%. The Australian weighted average loss for distribution networks
and out of the total input is approximately 5.4% (2008–2009 to 2010–2011) and is equal to
9300 GWh p.a., which equals 33.48 PJ. Losses for individual networks in distribution areas
operated by different retailers range from 3.7% to 9.1% [28].
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There are significant differences, certainly, between supply and demand for electricity,
but they share something remarkable. Each has managed to construct its own one-sided mi-
croclimate, in which peak or off-peak would technically be the sources of energy loss. This
is a very serious matter with tragic consequences that, by any means, distress operational
symptoms, associated as part of the unfavourable overall spectacle.

Electricity can be identified as an equally uniform commodity that is ultimately dif-
ficult and hard to adjust to brand differentiation or products. Electricity cannot be dealt
with as goods in itself but as an input to produce other services and goods that are con-
sumed as a final product. Therefore, the demand is sensitive for what is derived and is not
as price-sensitive. Of course, the problem is the apparent confusion amongst electricity
marketing administrators about what could preserve the expected profit ‘electricity bid-
ding and wholesale processes’ which constitute the behaviour of a nonlinear dynamic of
electricity demand.
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It is evident that there is a financial risk for the participants in the National Electricity
Market (NEM). This risk is associated with the significant degree of spot price volatility
in every trading period (half an hour), which needs to be managed. Currently, there
are two options for financial contracts. First, hedge contracts (see Figure 4) lock the
electricity pricing in at a firm price at a given time in the future to reduce the financial
exposure and provide spot market stability [33]. The alternative to the ‘hedge contract’ is
a typical agreement between customers and generators to reduce the risk of spot prices.
Hedge contracts may be arranged under long-term or short-term contracts and are not
regulated according to rules but to help operate the market and AEMO’s administration
independently. Unfortunately, the outcome of these contracts only provides more time
rather than balancing between the supply and demand of electricity. These contracts
arrange the price of electricity traded through the pool, known as the ‘agreed price’ or
‘strike price’ [33]. The advantage of these contracts is that they reduce the risk of the
spot price’s potential volatility but cannot avoid its influence. The strike price operates
when generators pay customers the gap when the spot price is above the strike price.
Consequently, customers (retailers) will pay generators the difference between the strike
price and spot price when the spot price is found to be below the strike price. Apparently,
the risk of the spot price exists due to demand fluctuation.

5. Cost and Price Impacts

Electricity prices throughout the 1990s were curbed against price inflation features.
Recent years have seen a notable increase in Australia’s electricity prices following pressure
to increase the feature of ‘consumer price inflation’ [41]. In light of the range of factors
influencing increased electricity prices, they are apparently moving upon cost-based pricing
concepts, including increased investment to expand/replace ageing infrastructure which
leads to increases in input costs; the direct impact of utility prices incurred at peak times
added to aggregate inflation, and firms lodge higher input costs resulting from rising
electricity prices and for other services.

The concentricity of ‘regulators’ models’ is based on how to provide revenues in
advance for a pre-specified period to recover the expected efficiency costs incurred while
delivering the regulated goods of ‘electricity’. As such, the expected revenues must be
in line with the structured nature of any competitive market. Economic regulation takes
various forms, each of which has implications for how a regulated firm’s costs influence
the allowed revenues out of prices it charges to customers. The rationale for electricity
cost price regulation is rooted in treating ‘market failures’. On the other hand, Australian
political preferences and institutional frameworks have devolved enormous regulatory
power to independent regulatory agencies nominated based on criteria of high quality, as
presented in Figure 5 above. Australia has also been supporting its use of regulation by
contracts with no dependency on outsourcing of regulatory functions to other parties [42].

Figure 6 refers to the governing structure designed toward electricity demand–supply
relationships in Australia defined as the Australian Energy Regulator (AER). This indepen-
dent body has the authority to play the role of electricity regulator in the NEM, originated
by the Australian Competition and Consumer Commission (ACCC) that came into force
in 2010 via the Competition and Consumer Act 2010. An associated requirement with
this regulation is the Australian Energy Market Commission (AEMC) response for energy
market rule settings. The AEMC is available under the Standard Council of Energy and
Resources (SCER) controlled by, and which answers directly to, the peak intergovernmental
forum in Australia known as the Council of Australian Government (COAG). Figure 6
above illustrates the existing top-down structure and relationships of the COAG, SCER,
AEMC, AEMO, and AER toward suppliers, retailers, and electricity [43].
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The AER has multiple functions to maintain monitoring of the market activities and
behaviour within the NEM framework and keep up to date with market conditions to
meet compliance issues. The AER is also responsible for defining the significant variations
between actual and forecast prices of electricity and for tracing the contract markets’ move-
ments, together with the analysis of rebidding behaviour and spot market outcomes [44].
The AER plays the role of setting the network charge components of retail electricity prices.
The estimation must cover the amount of revenue wished for to cover a network provider’s
costs over a five-year regulatory control period in addition to operation and maintenance
(O&M), tax liabilities, asset depreciation costs, and return on capital.

Selling electricity has a ‘lumpy nature’ of investments. This means each particular
year has different annual allowed revenues (AAR) represented by the sum of the right-side
building blocks in Figure 7 (Depreciation, Return, and OPEX) [45]. OPEX is sometimes
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included in CAPEX as ‘pay-as-you-go’ items that are efficiently undertaken by OPEX in a
particular year (see Figures 7 and 8). A cumulative historical investment collected for a
firm can be exhibited through the net cash recovered from regulatory depreciation, which
in many cases requires a ‘coiling’ via the regulatory asset base (RAB) to assume the right
deterministic model for CAPEX and returns on capital.
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The tariff structures of Australia’s electricity distribution network are increasingly
outdated and unfair. Current tariff structures do not reflect either the drivers of network
costs or various customer uses of the network. Realistically, consumer load profile diversity
will continue to grow as the use of solar panels, energy efficiency, and air conditioning
increases [44]. The value must drive the focus on energy growth from the angle of distrib-
utor energy resources (DER) and the energy storage they create, instead of transferring
costs among stakeholders (users). It would need to review electricity network tariffs that
are in place today. The use of tariff options is effective in ‘flattening’ the load curve and
reducing the peak demand to reduce losses at peak times. The role of tariffs bound to
demand loads grows. Tariffs attempt to provide greater utilisation of the network capacity
towards reducing the effects of increasing losses.

In the basic form, interval smart meters facilitate a greater range of implementing tariff
options for ‘distributor network service providers’ (DNSP). Additionally, interval smart
meters are used to gather information on the perception of consumer consumption patterns
for improvements in network management. Multiple tariffs were deployed and data
were collected from interval meters to deliver more cost-reflective tariffs for household
consumption during peak and load baseline times, i.e., time of use tariffs (TOU), and
capacity- and demand-based tariffs [50]. The eventual influence of tariffs is mainly designed
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to modify the load shape to optimise network capacity. As illustrated in Figure 9, the
influence of tariffs found in the route of residential peak demand during the day has been
practically changed [51]. The highest 5% of the demand has been trimmed and shifted
from peak times to other off-peak times, which are good outcomes [28].
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In the basic form, interval smart meters facilitate a greater range of implementing
tariff options for ‘Distributor Network Service Providers’ (DNSP). Additionally, interval
smart meters are used to gather information on the perception of consumer consumption
patterns for improvements in network management. Multiple tariffs were deployed and
data collected from interval meters to deliver more cost-reflective tariffs for household
consumption during peak and load baseline times, i.e. Time Of Using Tariffs (TOU),
and Capacity and demand based tariffs [50]. The eventual influence of tariffs is mainly
designed to modify the load shape to optimise network capacity. As illustrated in Figure 9,
the influence of tariffs found in the route of residential peak demand during the day has
been practically changed [51]. The highest 5% of the demand has been trimmed and shifted
from peak times to other off-peak times, which are good outcomes [28].

In real terms, prices for electricity increased on average 72% within a period of one
decade to June 2013. Disregarding the slightly improvement of peak load shifting; It
is seen practically; tariffs did not lead to decreasing the load on the peak times. This
also concurrent with the increase for electricity demand has been 107% in Sydney, 73%
in Brisbane, 41% in Adelaide and 30% in Perth. The contradiction found here is that
the economic justification through the introduction of the interval meters uses tariff cost
reflectively, to improve the use of network utilisation and reduce network demand. The
side effect of this process of using meters and available tariff options obviously increases
the use of the grid networks’ total capacity, expanding from less to more network energy
loss [28]. Thereby, tariffs, tasked with improving network usage and decreasing the peak
demand effect, have not yet helped flatten the demand load and decrease the peak effect
(see Figure 10).
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It is irrefutable that RAB delivers cost-plus regulating features that are achieved from
the retrospective records of cost accounting values. Regulatory regimes have different
asset records, different planned values subsequent to asset values and different accounting
practices. These features need different mechanisms for adjustments, disallowances and
time lags, and also the practising of particularly highlighted rules that require different
re-evaluation to assets under construction and ongoing assets book entry. Therefore,
there is no ideal link between RAB and the centralised asset values (electricity generation,
transmission, and distribution).

6. Energy-Loss Impact

Demand loads and generators for transmission and distribution are unequal, making
the output of the transmission networks uneven as the bulk supplies to the distribution net-
works are connected to it [52]. The average loss occurring in distribution and transmission
networks is about 6% and interconnector loss of less than 1%, as combined average loss is
estimated to make the total loss in Australian electricity networks 7%, proportional to the
nature of daily energy demand and energy forecast horizon (see Figure 11). In general, the
energy loss in grid systems is still under investigation because energy loss resulting from
unfixed and differently integrated factors make it hard to consider the loss fixedly.
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Some regulation Impact Statements had been formed to define efficient ways for
network expansion. Those statements highlight that there is a lack of reliable and publicly
available information on losses and trends occurring through transmission and distribution
networks. Besides, network businesses and specialised agencies are not tasked with
consistently and systematically gathering and reporting losses in information off the grid.
This lack of transparency could be addressed as an addition to the reporting requirements
through the electricity regulatory frameworks [52].

The Commonwealth made one meaningful attempt to foster greater understanding
and support for measuring the implementation of distribution and transmission networks.
In a frequent refrain, programmes such as ‘Energy Efficiency Opportunities’ (EEO) are
assumed to achieve ‘cost-effective energy efficiency’. This programme divides energy
usage into two segments: energy used through business operations (Type 1) and energy
used through transmission and distribution (Type 2) [53]. Objectives are still targeted in
accordance with the improvement options of Types 1 and 2 to reduce the losses from either
electricity transmission and distribution or business operation by electricity providers.
In 2012, the Australian Energy Market Commission released a report indicating that no
benefits had been delivered from Type 2 energy loss saving projects.

Moreover, a recent analysis saw no other achievement in meeting the Common-
wealth’s policy objectives. It seems that no energy efficiency improvements are expected
to be achieved. By increasing the electricity costs for consumers, there is an additional
administrative burden on electricity businesses.

Although the ‘Grid Australia’ report predicts Australia’s most efficient electricity
grid yet, notwithstanding the shortcomings highlighted above, Types 1 and 2 for losses
reduction (energy used via transmission and distribution) are still valid. Both EEO and
the NEM take account of the current regulatory obligation of the NEM [53]. The NEM
primarily focused on efficiency, which creates a conflict between the objectives that have
no risks supported by the programmes of EEO.

Realistically, the electricity baseload requirements will be mainly provided by tech-
nologies based on fossil fuels [1]. Objectives are still targeted in accordance with the
improvement options of Types 1 and 2 to reduce the losses from either electricity trans-
mission and distribution or from business operation by electricity providers. As regards
‘Climate Works’, the improvement in each single percentage point (1%) in the grid per-
formance is assumed to cost AUD 1.2 billion [53]. Further, Grid Australia found that a
decrease in energy loss from 8% to 6.5% needs to improve 20% of the energy transfer from
generators to end-users (transmission and distribution systems). Therefore, how much
would that probably cost?

7. Methods

Following the guideline in demand-side management settings allows us to shed more
light by testing data based on feasibility during stage one and sensitivity analysis in stage
two, and by demonstrating findings validation in stage three. These analytical stages
should help determine which guidelines of energy loss domains are implemented more
effectively than others in electricity demand practice. We decided to adopt these methods
because we believe that end-user behaviour could be understood as opportunistic states to
assess the extent of individual commitment ‘to what the electrical grid is dealing with’. A
sudden conflict or violence in such a complex system is likely to occur and possibly remain
dissimilar within various clustering scales. This tension status can primarily be derived by
measuring the level of conflict between the feasibility and the adopted study’s validity [54].
It refers to a mutually dependent relationship between these two different forms of the
meaning to cause as either elevating or degrading the systems’ quality indicator. Thus, it
possibly has negative (undermine) or positive (overestimate) tension between the concepts
of feasibility and validity.

Nevertheless, perfect measures are not usually achieved in a study and not under
circumstances where the scores are too low. Thus, the case would concern how much the
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procedure or instrument used to generate scores suits the tested sample. It is essential
to ensure whether the sample has (or to see if it has not) attained the required fit for a
proposed, tested module. The relevance of whether the data collected are feasible and
valid relies on measuring what they are supposed to measure. The research’s validity
implies the degree of confidence that can be inferred from the meaning attached to the
collected data. Thus, no study is valid unless it reaches the level of feasibility. However,
feasibility does not mean the study is valid because it accidentally does not measure what
it is expected to measure. Our intention in this study is to conduct minimal measurement
errors by considering the above factors that will be applied suitably to signify the chance
of feasibility and validity. Thus, there is a need to demonstrate this study and its purpose,
depicted in Figure 12 of the analysis module. We will limit ourselves to testing feasibility,
sensitivity, and validity. We will revisit the results of sensitivity analysis, and, in addition,
we will compare the optimisation results to a number of alternative validity tests. Both the
power and the simulation optimisation of the sample data will be tested, all available in
this manuscript.Sustainability 2021, 13, x FOR PEER REVIEW 19 of 35 
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7.1. Stage 1 Data Feasibility: (WOE) and (IV)

A wide range of studies address the aspect of feasibility from different perspectives
and through various measures [54]. However, this study’s feasibility aims to measure
whether a specific optimisation task of demand-side management is capable of being
carried out when applied at several different individual houses. It is essential to decide
whether this research’s feasibility is affordable for the designed objectives. Thus, stage
one is attributed to testing the practicality of using time series data for the proposed
optimisation method, described in stage two.

The feasibility stage focuses on using ‘weight of evidence’ (WOE) and ‘information
value’ (IV) tools to check the sample data segmentation and possible variables reduction.
The outcomes’ result of WOE and IV sheds light on the magnitude of the occurrence of
peak (u) and off-peak (l) demands of bad events and the magnitude of non-occurrence of
an average (AV) demand of good events, where this analysis is highly limited to predicting
binary outcomes of events and no events.

A set of two formulated WOE and IV trials are proposed to increase the chance of
discovering any imputation for missing values for greatly speeding up the step of selecting
and reducing invalid variables. WOE and IV simulation will efficiently evaluate the
predictive power of variables from three perspectives: continuous, ordinal, and categorical
variables. This study only focuses on ‘continuous variables’ as we intend to measure tiers of
an infinite number of possible values of peak, average, and off-peak demands numerically.
To conclude, WOE and IV are used in stage one to select, reduce, analyse, and evaluate
the binary outcomes of continuous dependent variables (interval electricity demand) for
individual end-users. WOE and IV provide meaningful insights about the set of data we
are using in this study, within a five-point scale of non-useful for prediction, weak, medium,
strong, or suspicious predictive power.

WOE1 and WOE2:

WOEA
i = ln

 NA
i

SN
PA

i
SP

 (1)

SN =
n

∑
i=1

NA
i and SP =

n

∑
i=1

PA
i (2)

IVA =
n

∑
i=1

[(
NA

i
SN
− PA

i
SP

)
×WOEA

i

]
(3)

where

NA
i : The number of negative data items;

PA
i : The number of positive data items;

N: Total number of values;
i: Demand value;
A: Total number of end-users;
WOE1: Original weight of evidence;
WOE2: Alternative weight of evidence;
IV1: Original information value;
IV2: Alternative information value;

Conceptually, there is a strength associated between the study feasibility and validity
at the level that makes us unable to separate them from each other. This unavoidable
process of overlapping between the concept of feasibility and validity becomes exceedingly
complex when the scales of validity increase (sample size, agents’ dissimilarity) and
feasibility decreases (relevant factors such as technical, economic, and legal). Contrary to
this, easily measurable indicators may ignore the complexity of energy loss, making the
indicator more challenging to measure fact-based issues in depth, thus minimising the
study’s feasibility. Although no specific rules provide an absolute balance between the
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validity and feasibility concepts, both must be bound to a great agreement to provide the
appropriate tension needed for the systems’ quality indicator.

7.2. Stage 2 Optimisation Simulation: (SA)

In stage two, we used sensitivity analysis (SA) to investigate household systems’
optimisation in two scenarios: fossil fuel power supplied from the grid against mixed
demand supplied from fossil fuel power generation and renewable power installed at
individual houses [55]. We propose three main patterns of electricity consumption: (l),
(u), and (AV), against three main parameters of electricity demand: (CL), (GL), and (GG).
Thus, the modelling demand of electricity for individual end-users is mainly established
to recognise the role of installed solar power generation systems (GG) as an ‘asset unit
approach’ at homes to balance the grid system demand (CL and GL). The purpose of
simulation analysis is to predict the extent of (GG) at homes in the mitigation of the
effect of (l) and (u) and enhance the effect of (AV). Therefore, built-in tools such as GRG
Nonlinear, LP/Quadratic, SOCP Barrier, Evolutionary, and Intemodelal in (SA) software
are used in modelling the electricity demand profiles of end-users collected from AEMO
data libraries. In other words, deployment time series data of home smart meters were
targeted in this study to forecast system performance and capability based on the features
of energy loss [56].

Minimise f(x) (4)

Subject to gi(x) = 0, i = 1, m (5)

X = (y, x), X= (y , x) (6)

g(y, x) = 0 (7)

g = (g1, . . . , gm) (8)

f(X) = f(y(x), x) (9)

Reducing the problem to an average range within lower and upper bounds:

Normalise F(x) (10)

Subject to li ≤ Xi ≤ ui, i = 1, n (11)

Assuming AOp ≥ BOp implies with a unique solution (12)

Problem reduction starting from x0 ≡ X, and i = 0 (13)

Testing the optimality of the new results of Xi = (yi, xi) (14)

H = ∂2 f = ∂xi/∂xj (15)

f(x + ∆x) ≈ f(x) +
n

∑
i=1

∆xi
∂f
∂xi

+
1
2

n

∑
i=1

∆xi∆xj
∂2f

∂xi∂xj
(16)

Control demand between lower (li) and upper bounds (ui): li = AVmin, ui = AVmax (17)

(EUn
ij)a

= (GC + CL)BOp (18)

(EUn
ij)b

= (GC + CL)AOp (19)

(EUn
ij)c

= (GC + CL−GG)BOp (20)

(EUn
ij)d

= (GC + CL−GG)AOp (21)

(OG)GC+CL = (DCBO)AOp − (DCAO)BOp (22)

(OG)GC+CL−GG = (DCBO)AOp − (DCAO)AOp (23)

where:
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X: n vector of non-basic variables (desired average);
Y: m vector of basic variables (original data);
li: Off-peak demand;
ui: Peak demand;
g: Constraint function;
BOp: Basic variables (original data);
AOp: Non-basic variables (optimisation results);
f: Objective function;
DCBO: Dispatch cost before optimisation;
DCAO: Dispatch cost after optimisation;
OG: Optimisation gain per EUR 250;
GC: General consumption demand;
CL: Controlled load demand;
GG: Solar panels at home;
RoG: Rate of gain;
RoE: Rate of error.

It is expected that no optimal solution resulted from the simulation optimisation
analysis, and that the optimal solution should occur when the boundaries of non-basic
values violate the desired ranges due to unmet system constraints. Accordingly, a new
optimisation attempt should be applied to start from Formula (4), and new iterative
functions of F(x) and y(x) would be applied. Nevertheless, the condition is to keep the
original optimisation set of (i = 1), subject to li ≤ Xi ≤ ui, where li and ui are the vectors
of minimum and maximum thresholds for i. Therefore, we used the GRG algorithm of
sensitivity analysis for the problem denoted in Formulas (4)–(6) to optimise the sequence
of problems of Formulas (11) and (12). To contribute to this, one needs to provide all the
values y(x) of the basic variables of the end-user demand.

7.3. Stage 3 Optimisation’s Validity: (EDF)

The most frequent empirical distribution function (EDF) test in the literature under-
lying many statistical procedures relies on different sampling sizes to reject or validate
the research hypothesis before and after the analysis of the empirical optimisation mod-
elling [57]. A proximation is that normality tests are sensitive and unfavourably increase
with small sample sizes (not applicable to the size of our data), leading to a poor judgement
that oppositely decreases with large sample sizes (applicable to the size of our data), which
leads to support for the researchers’ sensible conclusions.

At this stage, to avoid any inferences about being harmful and leading to dissatisfac-
tion or producing biased estimates with unrealistic variance, we proposed using normality
tests as a validation technique to measure the influence of simulation and optimisation
modelling toward reducing the likelihood of energy loss errors. As long as our proposed
model fit tests satisfy the previous outcomes of the analysis, we can rest easy knowing that
we are finalising the simulation and optimisation modelling by obtaining the best possible
estimates as the property of consistency among the estimator results.

Across various goodness-of-fit tests, there are widely accepted techniques of normality
testing [54,58–63]. Each technique has a specific precision commonly affected by relative
numbers of population size, sensitivity, and specificity. Each of these methods falls under a
specific procedure outlined in Table 4.
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Table 4. Goodness-of-fit tests.

No. Normality Test Sensitivity and
Specificity Sample Size Procedure

1 Pearson’s chi-square
(C-S) [58] 95%

Frequency ≥ 5 in each
bin
≥30

‘Comparison between sample data
distribution and theoretical distribution’ [58].

2 Shapiro–Wilk (S-W)
[58] 90% ≥55

‘A linear model to compare the expected
values of the ordered statistics and ordered

observations of the standard normal
distribution’ [58].

3 Anderson–Darling
(A-D) [58] 95% ≥120 ‘How close the points are to the straight line

estimated in a probability’ [58].

4 Cramér–von Mises
(C-M) [36] 95% ≥140

‘Minimum distance estimation between
theoretical and sample probability

distribution’ [58].

5 Jarque–Bera (J-P) [58] 95% ≥50
‘Difference estimation between asymmetry

and kurtosis of observed data and theoretical
distribution’ [58].

6 Lilliefors (L-F) [58] <(K-S) >140
‘Calculation of an approximation of the

sampling distribution by usinga modified KS
that uses a Monte Carlo technique’ [58].

7 D’Agostino–Pearson
(A-P) [58] 95% ≥80 ‘Measures combination of asymmetry and

kurtosis’ [58].

8 Jackknife (J-K) [61] 95% <30
‘Recompute the estimate from subsamples of
the available sample to estimate the bias and

a standard error’ [61].

9
Kolmogorov–
Smirnov (K-S)

[57]
90% >140

‘Proximity analysis applied between the
hypothesised theoretical distribution and the

empirical sample distribution’ [57].

To complete the analysis of this stage, we used the Kolmogorov–Smirnov (K-SStat)
normality test to observe and compare the achieved four sets of data distribution results
via two main hypotheses: H1 and H2.

K− SStat = supx |F
∗(x) − Fn(x)| = max |CRF1 −CRF2| (24)

H0: F(x) = F*(x) for all x from −∞ to +∞ (25)

H1 : F(x) 6= F ∗ (x) for at least one value ofx (26)

where:

sup: supremum (greatest value);
F*(x): hypothesised distribution function;
Fn(x): EDF estimated based on the random sample with known σ and µ;
σ: standard deviation;
µ: known mean;
α: p-value;
Cv: critical value;
CRF1: expected cumulative relative frequency;
CRF2: observed cumulative relative frequency.

Hypothesis 1 (H1). The simulation modelling distribution results are not significantly different
from the normal distribution of the original demand data.
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Hypothesis 2 (H2). The simulation modelling distribution results are significantly different from
the normal distribution of the original demand data.

The null Hypothesis 1 (H1) illustrates that the sample population is normally dis-
tributed, while the Hypothesis 2 (H2) supports the expected findings in stage two when
the sample population is not normally distributed. Another possible way to state this
assumption is that ‘the opposite can also occur’. This is what we decided here: to involve
tagging more testing techniques through some arbitrary cut-off points to support this
study’s outcomes. We want to test the critical value (Cv), probability value (α), and K-S
static and compare if these values are smaller or greater than the original data’s prede-
fined significance level. Given that the alternative hypothesis is true, this will help reject
the null hypothesis, introducing a definite confirmation that our Hypothesis 2 (H2) is
evident in this study. Thus, this research can carry on to more advanced levels of future
deterministic studies.

8. WOE and IV Tests

To demonstrate data validity, two analytical trials were conducted in stage one: (WOE1,
IV1) and (WOE2, IV2). The first and second attempts examine the binary dependent
variables’ similarities and dissimilarities based on timely electricity demand (see Figure 13).
The first attempt relies on the number of failures (no average demand) and successes
(average demand) as denoted by zero and one. The second attempt attributes the sum of
demands during success times (average demand) and failure times (no average demands).
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Figure 13. WOE1 and WOE2.

End-users of electricity cause instant demands which co-occur equally but with dif-
ferent load profiles of different homes. The simulation results in Table 5 show a negative
WOE1 = −0.2007 as well as a negative WOE2 = −0.2920. It can be noticed that these
numeric variables of WOE1 and WOE2 are good candidates for a regression model because
the demand profiles that cause grid system strain are continuously changing from the
highest values (u) to the lowest values (l) and vice versa.

From the result above, we can argue that based on our proposal concerning energy
loss, the greater challenges are encountered when the nature of end-user demand is either
continuously locked in low demand dimensions (l) or significantly locked in high demand
dimensions (u). Consequently, end-user demand clustering becomes intractable, and it
becomes exponentially harder to normalise the raw timely demand profiles. To put it the
other way around, this ‘curse of dimensionality’ has the nature of a dwindling fraction
that is hard to control by a set of features of dependent variables, (CL), (GL), and (GG), to
maintain the system at optimum demand levels (AV).
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Table 5. WOE, IV, and %Bad Rate.

Range Pins Records Good Bad No Events Events WOE1 WOE2 IV1 IV2
% Bad
Rate

0–29 1 507.9450 259.1380 248.8069
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30–58 2 487.5548 241.2927 246.2621 0.0368 0.0134
59–87 3 530.3947 214.7703 315.6244 0.0059 0.0049
88–116 4 482.3963 187.1223 295.2740 0.0026 0.0888

117–145 5 470.2308 170.1727 300.0580 0.0003 0.0006
146–174 6 537.6337 171.7984 365.8354 0.0020 0.0052
175–203 7 514.0614 141.1246 372.9367 0.0119 0.0149
204–232 8 540.2302 137.5412 402.6890 0.0204 0.0149
233–261 9 533.8289 133.5758 400.2532 0.0222 0.0149

>261 10 445.9397 111.0922 334.8475 0.0190 0.0522

Total 5050.2154 1767.6282 3282.5872 105 185 0.1677 0.2357

The weight of evidence technique (WOE) illustrates a useful assessment of the vari-
ables’ overall predictive power (IV). WOE helps transform the continuous dependent
variables (l, AV, u) and recodes them into discrete categories of the binary variables (oc-
currence and non-occurrence of events) to reveal the largest differences in WOEMax and
WOEMin within the data samples (see Figure 14). The WOE simulation result outlined in
two main score bands named (%Bad) and (%Good) to maintain how much the demand
system exchanges its position expresses the demand magnitude of all individual end-users,
and their subsequent impact effect on the IV result.
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Additionally, referring to Table 5 and based on (Records%), different pins’ results look
similar and reasonably distributed. As we found, the total relative ranking of WOE1 and
WOE2 across all the variables, (l), (AV), and (u), is negative, which is evidence of the high
risk caused by the current system characteristics (EUn

ij), which means that the distribution of
(%Good) is < the distribution of (%Bad). Additionally, the term ‘Bad’ ascribes unfavourable
events caused by different backgrounds, i.e., individual end-users, demand periods, and
load profiles (l, AV, u). The weaker performance was caused by the target variables (CL)
and (GL) supplied from the grid. Thus, from a sustainability point of view, the (supply)
variables (CL) and (GL) are unable to compete against the (demand) variables (l), (AV), and
(u), which is another reason that drags the IVs to lower values.

Based on the analysis result, the original information value IV1 = 0.1677 is slightly
lower than the alternative information value IV2 = 0.2357 (see Table 5). IV1 and IV2 formulae
yield within a close range order for ten tested tiers. The slight difference gap between
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results reflects the fact that the contrast between the groups of (%Bad) and (%Records) is
weaker than the contrast between the groups of (%Bad) and (%Good). More importantly,
the results of original and alternative IVs demonstrate that the data used in this study have
a reasonable ‘medium predictive power’. Additionally, as shown in Figure 15, the output
can also be illustrated from highest to lowest to realise the variables of bad rates for further
variable reduction and segmentation procedures.
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Figure 15. Evaluating the predictive power for the original and alternative IVs.

The purpose of WOE and IV results is to illustrate the level of predictivity of the data
when being used in a regression model between dependent variables (CL) and (GL) and
independent variables (l), (AV), and (u). We used a sample of 13.140 million variables
manipulated in 10 tiers to define and compare the original IV and the alternative IV and
investigate their trend compared to each other. The results in Figure 16 below and Table 5
above illustrate the average rate of occurrence (bad rate/unfavourable events) equal to
10%. The results of (IV1) were found to be slightly weaker than (IV2). IV results were found
to be equal to (0.1677) and (0.2357) for (IV1) and (IV2), respectively, with both of them
within ‘medium predictive power’ and valid to apply to the binary dependent variables.
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Figure 16. Information value (IV).

The analysis in Table 5 and Figures 13–16 represent a sufficient medium predictive
power that allows us to proceed with our analysis into the following stage two. To compare
the data layers and evaluate the contribution rate of each thematic layer used in this
analysis, we found the tendency of outliers caused by independent variable EUn

ij (end-
users’ half-hourly demand) is effectively suppressed by the occurrence of an irreducible
independent demand (I = CL+GL). The fact is that, particularly in our case study, increasing
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demand stability over time cannot be achieved by trimming the outliers of binary variables
as their conditional roles to work as continuous dependent variables (l, u, and AV) are to
satisfy the timely demand of independent variable EUn

ij . In other words, a part of reducing
the influence of increasing and decreasing the demand disparity is by applying alternative
transformation formulae of multiple properties, i.e., photovoltaic power generation and
storage battery. Those are two options to enable the identification of parameter values at
micro-levels to reduce the influence of energy loss, where this procedure can be considered
as a reaction of automatic binning. Binning such as PV and SB at an individual scale
for each consumer could correspond purposely and oppositely to reducing the impact of
multiple values that have a relative risk of peak (u) and off-peak (l) demands.

The contribution of stage one highlights the extent of individual households control-
ling and automating individual home electricity demand profiles and supporting the grid
system by shaping the load profiles within optimum ranges. As per our discussion, the
original and alternative WOE and IV results for the continuous dependent variables (timely
demand of electricity for individual end-users) have a reasonably even distribution with a
weak performance as the dependent variables (CL) and (GC) are unable to compete with
the demand variables (l) and (u). The lower and higher demand records highly impact the
continuous dependent variables (CL) and (GC). These demand outliers of the variables (l)
and (u) cause an out-of-proportion influence on the grid system.

9. Sensitivity Analysis (SA)

Addressing the optimisation results listed in Figures 17–19, the objective function is
set to the (AV) demand. Thus, we used a generalised reduced gradient algorithm (GRG) to
detect the nonlinear optimisation issue caused by end-user demand. Therefore, f(X) = f(y(x),
x) and (H = ∂2 f = ∂xi/∂xj) of the Taylor expansion were applied to reduce the occurrence
of (Ln

ij) in turn, thus reducing the number of changes to the desirable mean (AV).
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Figure 17. Comparison between DCBO and DCAO.
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Figure 19. Rate of gain (RoG).

To obtain useful output results able to be likened between two similar scenarios to
contrast them in a more simpler evaluation setting, we used a multiple-series line chart
with score matching results to compare the output demand data of optimisation against
the real cost trading influenced by CP, OCGT, and CCGT [56]. Energy loss causes various
costs but can be estimated in accordance with the variety in the end-user demand, i.e., i,
u, AV. This cyclic issue escalates to more complex levels when all physical limitations of
the power generation are rated. Therefore, this stage of the study neglects this complexity
and assumes that the scenario cost parameter relies on the variables’ values of the real time
demand set as a limit to the price-sensitive load depending on the cost incurred based on
the load capacity factor [27,56].

Figure 17 shows us that the concern of SA analysis is centred on threats of energy
loss to home sustainable systems and the need to assess evidence, which may be harmed
by many individual home systems that no doubt exist. While optimisation modelling
is our goal, SA analysis impacts the rate of demand behaviour of individual end-users
differently in optimisation scenarios of (GC+CL) and (GC+CL−GG). Therefore, the goal is
to estimate the float that occurs from energy loss activities associated with a specific cost to
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end-users. Figures 17 and 18 correspond to 25 groups; every ten end-users were pinned
in one group. The black and red dotted lines with marks display the actual dispatch cost
value generated from a nonlinear (DCBO) model for both (GC+CL) and (GC+CL−GG)
scenarios, associated with the blue and orange lines with marks to display the optimisation
percentile levels of a linear (DCAO). Based on these analysis results, it would be fair to
say that both optimisation scenarios of (GC+CL) and (GC+CL−GG) demonstrate that the
impact of DCAO causes a reduction in various ranges of energy loss (Ln

ij).
The optimisation analysis of DCAO offered the advantage of working with the values

based on the dimension affected by the initial rate of error (RoE) scale of DCBO displayed
in Figure 18. The optimisation DCAO results of (GC+CL)AOp found that a reduced rate of
errors (RoE) occurs due to energy loss from 54.0% to 62.78%. Whilst the new DCAO values
of (GC+CL−GG)AOp reduced the (RoE) from 49.99% to 88.33%, some researchers might
consider end-user organisations as autopoietic systems that behave autonomously and
have higher orders to self-produce and self-organise their individual systems. Although
these results are valid, they are still distracting and had not been fully understood when
we coined the term ‘energy loss’.

The rigorous focus on the intra-boundary system settles ongoing debates amongst
three main players: supply, retail, and electricity demand. Thus, how much energy loss
does each of these players cause, and how are they able to reduce energy loss? In a specified
observational domain, this question could be termed by appealing to further research of
distinct interoperability patterns that imply special integration between components.

Figure 19 illustrates the expected rate of gain (RoG) of home systems which can
be understood in the context of GG cells supporting home sustainability by reducing
the electricity demand consumed from generation sources of fossil fuel GC and CL. In
addition to that, and as one would expect, the home system (GC+CL−GG)AOP can be
efficient in the sense that the optimisation considers the asset of the individual home
of GG cells that can produce demand estimates within smaller demand variances when
compared to the homes’ demand optimisation scenario of (GC+CL)AOP. Although both
optimisation results of (GC+CL)AOP and (GC+CL−GG)AOP are not the same, both provide
a measure of the association between the demand of interest (DOI) and the rate (%) of
error (RoE) for the occurrence of peak and off-peak demands (see Figure 18), which this
type of escalation found to still be significant in both optimisation cases (RoG < 50%)
(see Figure 19). With respect to our optimisation goal of reducing energy loss, it should
mimic the DOI of optimisation results found in variance estimators of (GC+CL)AOP as
(GC+CL−GG)AOP; therefore, it is not suitable yet as a thorough consideration for optimal
system design. Obviously, the design of sustainable homes needs to be extended further
than the concept of increasing the capacity of using renewable energy at homes to realise the
level of problematic variance estimation and how problematic estimation can be detected
and dealt with.

10. EDF Normality Test (Kolmogorov–Smirnov)

We applied the K-S simulation method on three demand scenarios: (1) original time
series demand data; (2) optimisation time series demand data from power generation
sources that used fossil fuel; (3) optimisation demand data from power generation sources
that used a mix of fossil fuel with photovoltaic power generation at homes. With these
three analytical scenarios of the normality tests, we suggest investigating the goodness
of fit of continuous random variables, that is, through a visual comparison of the 250
random end-users to indicate the mean value of 48 interval times altogether or for each
data pin. Two methods adopted from the machine learning (ML) toolbox suggest two
options, piecewise linear distribution (PLD) and empirical cumulative distribution function
(ECDF), to derive a nonparametric representation of the overall cumulative distribution
function (CDF).

Therefore, the purpose of the PLD and ECDF tests in testing the normality of time
series data is to compare (the macro) PLD empirical distribution function (the mean of CDF
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for all data pins) against (the micro) ECDF empirical distribution function (the mean of
CDF for individual pins in the sample data, i.e., Figures 18, 19, 24–27). This is to measure
the discrepancy between PLD and ECDF. We assume that it will help us reveal if there
is a good agreement of results before and after simulation and optimisation, from the
two perspectives of collective and individual demand. We then provide an improved
approximation to the weights and predict the possible impact of the total demand asset
and its ability to be used to diminish the influence of energy loss for a sample n in the
range 218 ≤ n ≤ 2.5 million [56]. A minimum level of the p-value (α = 1%) was nominated
to investigate the significance level of the data’s power.

10.1. ECDF Test of (GC+CL)BOp and (GC+CL)AOp

The cumulative probability of K-Sstat was collected from 7.860 million data items for
250 end-users for 365 days (250 × 365 × 48 × 2). All data manipulated in 250 pins were
supposed to examine 48 interval times during a day for 365 days. The p-value results from
the 48 interval times during a day fluctuated from a maximum value of 3.265 × 10−108 to
a minimum value of 6.2847 × 10−6. Obviously, all the 48 p-values are significant, while
p-value <= 0.0000 (see Tables 6 and 8). This result widens the gap between the C-value and
p-value to confirm that the sample of time series data is not normally distributed; in turn,
we reject the null Hypothesis 1 (H1) (see Figure 20).
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Figure 20. ECDF1 and ECDF2 tests of (GC+CL).

The analysis of ECDF in Figure 20 is made up of multiple separate stratified samples
with an inverse probability relative to the clustering size at different interval times. A
simulation procedure was used for one level of significance α = 1% to evaluate the power
of K-SStat test statistics in testing random samples n (µ, σ2) of independent observations to
compare the demand scenario of the time series data (GC+CL) before and after optimisation.
Figure 20 summarises the simulated power of K-SStat in which the EDF of the theoretical
cumulative distribution function is contrasted with the EDF tested sample data. Both
plotted curves of (GC+CL)Bop and (GC+CL)Aop reported that the K-SStat tests have high
power values, where the p-values are less than 0.001, indicating a non-normal distribution
of data. The curves in Figure 20 show the maximum p-value = 3.265× 10−108 and minimum
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p-value = 6.2847 × 10−6 were higher than the C-value = 0.123295 for all of the 30 min of
the 48 interval times. This can be attributed to the non-normal distribution of the time
series data caused by dissimilar demands. This discrepancy is assigned to the end-user
behaviour as a major source of error in this experiment.

10.2. ECDF Test of (GC+CL−GG)BOp and (GC+CL−GG)AOp

The above interpretations of ECDF1 and ECDF2 are useful since they provide evidence
of weak sample relationships due to strong sample dissimilarity since the K-SStat value
increases continuously over the Cv values throughout all interval demand times. We set
data by adding GG to home demands, while the demand observation was kept constant for
the same samples to induce the energy loss phenomenon and to see how the new demand
estimators react to this issue. It is expected that the goodness of fit of the model tends to be
increased.

Figure 21 summarises the simulated power of K-SStat. Both plotted curves of
(GC+CL−GG)Bop and (GC+CL−GG)Aop reported that the K-SStat tests have high power
values, and p-values were less than 0.001, indicating non-normally distributed data.
The lines in Figure 21 show the maximum p-value = 1.4849 × 10−107 and minimum
p-value = 3.1194 × 10−30, which are higher than the C-value = 0.123295 for all of the 30 min
of the 48 interval times. This tends to indicate that although GG supports system optimisa-
tion, there is still a discrepancy causing the non-normal distribution which is attributed to
the end-user behaviour. Thus, in 250 observations, the property of normality among the
demand data is not yet achievable. Up to this point, the sensitivity simulations practised in
section (9) establish the pattern of statistical significance for all estimators, ECDF1, ECDF2,
ECDF3, and ECDF4. The demand case of end-user behaviour tends to disrupt the statistical
significance.
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11. PLD Normality Test (Kolmogorov–Smirnov)

The PLD of the population is drawn from one collective stratum. Subsequently, PLD
will be handy to show the expected optimisation influence of the total demand asset
of electricity within specific time series data. Although we consider the ECDF method
sufficient to compare K-SStat, p-value, and Cv estimators for the mean of each pin in
the overall sample, PLD is also valid; partly, clustering situations always occur, and thus
variance estimation (i.e., PLD) could be problematic since the subgroups reside in different
clusters. PLD will provide us with the fraction of total sample observations; more formally,
while ECDF computes the distribution function values at each point, PLD computes
probability values for all sample data to construct one discrete cumulative distribution.
Thus, the benefit is that some different practical observations can be made regarding the
K-SStat versus Cv when combining both ECDF and PLD methods.

Figure 22 and Table 6 show the result of PLD1 for the relative demand of (GC+CL)Bop
‘simulation prior optimisation’. K-SStat = 0.1204 denotes the maximum vertical distance
between the expected cumulative relative frequency (CRF1 = 0.4375) and the observed
cumulative relative frequency (CRF2 = 0.2696). Therefore, K-SStat (0.1204) < Cv (0.1232),
while α = 0.026559300. These results conform with the ECDF simulation results and equally
lead to rejecting H0. We expected the non-normality result in this particular model because
(GC+CL)Bop is the stereotypic demand that denotes the potential impacts of energy loss
incurred from end-user nature/behaviours.
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Table 6. Traditional demand before optimisation (GC+CL)Bop.

p-value 0.001 0.01 0.02 0.05 0.1 0.15 0.2

K-Sstat 0.12047 0.12047 0.12047 0.12047 0.12047 0.12047 0.12047
C-value 0.12329 0.10293 0.09597 0.08589 0.07740 0.07197 0.06784

Cv > k-S Cv < k-SStat Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S

As seen from Figure 23 and Table 7, the PLD2 ‘simulation prior optimisation’ result
of the relative demand for entire homes installed with PV sources before optimisation
(GC+CL−GG)BOp was found to be α = 0.020716770 and K-SStat (0.1245) = [CRF1(0.8120) −
CRF2(0.6875)] > Cv (0.1232). This result led to accepting H0; oppositely, ECDF was found
to accept H1. As it can be noted from the PLD2 result, the demand average of the empirical
distribution of all end-user clusters has a normal distribution. This was completely different
from the result of ECDF of the non-normal distribution, where the simulation test utterly
fails. We can learn from this that the tendency of ECDF2 is a reason to believe the model
modification of (GC+CL−GG)BOp is promising and persists in systems optimisation.
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Figure 23. PLD2 = f(GC+CL−GG)Bop.

Table 7. (GC+CL−GG)Bop.

p-value 0.001 0.01 0.02 0.05 0.1 0.15 0.2

K-Sstat 0.12452 0.12452 0.12452 0.12452 0.12452 0.12452 0.12452
C-value 0.12329 0.10293 0.09597 0.08589 0.07740 0.07197 0.06784

Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S

With respect to the latter indicators of ‘simulation after optimisation’ for both cases
of (GC+CL)AOp in Figure 24 and (GC+CL−GG)AOp in Figure 25, we applied the same
comparison approach. Figure 24 and Table 8 represent the PLD3 results of the relative
(GC+CL)AOp demand, which found α = 0.000872213 and K-SStat (0.1678) = [CRF1(0.4375)
− CRF2(0.2696)] > Cv (0.1232). This result is in disagreement with the ECDF equivalent
simulation (GC+CL)Bop result and led to rejecting H0. We must also acknowledge from
the PLD3 result that the clustering of average demands for all end-users has a normal
distribution. This is equivalent to comparing the normally distributed PLD3 with a non-
normally distributed ECDF, where the simulation test completely fails. Thence, we cannot
believe the optimisation of PLD3 led to the system’s appropriate modification of when to
simulate it from (GC+CL)BOp to (GC+CL)AOp. As (GC+CL) accurately represents the actual
required demand that satisfies the end-user’s need, this is a constant condition. Thus, we
assume the simulation optimisation of the (GC+CL) demand is useless because we cannot
neglect the common sense demand of the end-user, leading to a conflict in the boundary
between itself (individual demand) and its environment (smart grid system) [58].
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Table 8. (GC+CL)AOp.

p-value 0.001 0.01 0.02 0.05 0.1 0.15 0.2

K-Sstat 0.16786 0.16786 0.16786 0.16786 0.16786 0.16786 0.16786
C-value 0.12329 0.10293 0.09597 0.08589 0.07740 0.07197 0.06784

Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S

Describing the last scenario in Figure 25 and Table 9, the normality test for the PLD3
of simulation optimisation results in model (GC+CL−GG)AOp points out the importance
of describing the system’s agile approach. Empirical and theoretical distribution curves on
the plot represent a difference of bias specified in the legend of empirical and theoretical
distributions. The PLD4 result of the relative (GC+CL−GG)AOp demand represents α =
0.000000206 and K-SStat (0.2481) = [CRF1(0.9791) − CRF2(0.7309)] > Cv (0.1232). This result
agrees with the ECDF simulation result (GC+CL−GG)Bop, which led to the rejection of H0.

Table 9. (GC+CL−GG)AOp.

p-value 0.001 0.01 0.02 0.05 0.1 0.15 0.2

K-Sstat 0.24817 0.24817 0.24817 0.24817 0.24817 0.24817 0.24817
C-value 0.12329 0.10293 0.09597 0.08589 0.07740 0.07197 0.06784

Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S Cv < k-S

We investigated the normality distribution of discrete random variables (end-users),
that is, random variables supporting the K-S curve contain countable values that can
indicate an infinite interval of possible outcomes. Whatever the methods used, among
these comparisons, the goodness of fit was primarily understood in two different ways
to make a strong inference about how these simulation optimisation results translate
to an operational and applicational setting. The above results of the model fit provide
insight into how empirical conclusions can be drawn from different models to support
the validity of home sustainability, as stated in Figure 26. Using simulation optimisation
approaches to reduce the occurrence of energy loss is primarily found relative to the model
of (GC+CL−GG)AOp. This model is the most likely essential model among the four tested
options of PLD1, PLD2 PLD3, and PLD4.
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The demand of electricity rises when end-users embrace a hybrid of consuming
electricity in a way which suits their individual needs but still causes energy loss. In this
study, we tested the occurrence of energy loss against its ‘corrosive effects.’ The module
we tested indicates that tests made of those four cases reveal that all cases have had several
optimisation issues. The feasibility, sensitivity, and validity outcomes support a further
optimisation approach to solve the energy loss issue.

12. Need for Future Research

Figure 27 shows that energy loss is deemed too burdensome either on the electricity
grid or stakeholders. Thus, efforts should continue to support the views expressed on
network loss values and size by focusing equally on macro- and micro-levels in the grid.
However, various studies have brought to light some alarming results revealing fewer
efforts at micro-levels where end-users reside. Intervening for solutions at micro-levels
may need to take direct action. Seeking to bring unprecedented possibilities for delivering
efficient solutions may need focused action against the causative energy loss that originated
from end-user demands.
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The Australian Government has an ongoing strategy to divest its interest through
sales in electricity businesses through long-term leasing arrangements [59]. Additionally,
firms are measuring their businesses based on their ability to recover an incremental input
into costs by increasing their own prices. Consistent with this study’s aim to support policy
action, the Australian Government policies target 60% of carbon emissions to be reduced
by 2050. The Australian Government set targets for prioritising and reaching near-term
impacts to adequately take actions to improve energy efficiency and a trading scheme of
market-based emissions, and a mandated national target of renewable forms of electricity.
All those future goals are influenced directly by the perception of energy loss [1].

Why would we prefer to drag the intervention of DSM into further future research?
Needless to say, the ‘DSM’ only relies on legalese, shrinking, and repeating electricity
demand. There is no ambiguity that end-users are consuming electricity every day to
emerging symbols of energy loss as that continuously confirms the instance of strategic
blunder for managing the demand side of electricity. The electricity demand and end-users
are mainly part of a system protection scheme that should be continuously used when the
system needs stability, which is currently lacking.

This research has further demonstrated that tariff review and reform are the key. In
the future, it is expected to be harder to use cost-reflecting pricing to enable a greater
stakeholder alternative and integrate new technologies efficiently. This is because, in the
future, the size of the existing cross-subsidies will be entrenched and grow more deeply into
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the market. Helping customers optimise their own energy production and consumption is
critical in delivering societal benefits that need an integrated national approach to achieve
better long-term customer outcomes [44].

13. Conclusions

The influence factors of energy loss-based demands created by end-user consumption
behaviour were addressed in this study, following an examination of how the existing
electricity losses and pricing structure in New South Wales, Australia, concerning the flow
of electricity from end to end, are debated. The combination of socio-technical factors
that decisively lead to electricity demand losses was presented, tested, and interpreted.
Following that, this study shed light on the origins of the problem and the possible solutions.
Australia’s electricity market was presented in this study to help understand the link of
the macro-level of the electricity supply chain to the micro-level of the demand side of
electricity. Along with the electricity supply features, the electricity industry activities
are highly dependent on diverse residential consumers and the methodologies of their
relations to the electricity market in terms of the way they are integrated.

The exercise of evaluating the influence of end-users draws attention to the fact that
both renewable and traditional energy sources have influences that easily create economic
inefficiencies. To capture this unsolved issue of energy loss, we need to go beyond the literal
solution of the hedging-based approach. At this point, and at the end of our argument
in this study, setting demand-side strategies seemed to concern preserving energy and
managing the consumers’ demands. This is also essential for cost–benefit incentives
in order to define where the best returns can be secured when reforming new policies.
These findings should prompt smart grid policy action, including the incorporation of an
Australian national energy policy, and show that a portfolio approach is required relating
to the options to be selected from the sources of non-renewable and renewable energy.
This is because such policies should be contextualised to encourage electricity networks
to provide the means by which the power of electricity is transported from generators to
end-use customers.

The key message from this study is understanding that there is a constant need for
improvements in energy efficiency by adding sustainability measures such as renewable
energy (in the right way). Thence, merely adding renewable energy would not be sufficient
to outweigh the Australian community’s desire for increased prosperity and hence more
energy. Referring to the Australian Academy of Technological Sciences and Engineering
(ATSE), the view taken here is that Australian stakeholders would continue to see advances
in their economic prosperity as their wished-for demand is consistent with advances
in their wellbeing and growth [47]. In many cases, these advances oblige more energy,
and increased efforts toward sustainability by way of efficiency are acquired in power
generation and consumption.

A growing body of evidence in this study shows that the vast majority of energy loss
from the roots is consistent with the nonlinear dynamic behaviour of end-user electricity
consumption. Subsequently, it is not surprising that the electricity end-user influence is
a key driver in today’s electricity industry. Aside from what we have conducted in this
study, many other approaches can be used to tackle this practice gap. However, improving
the involvement of end-users and mainly residential consumers is a fundamental part of
electricity networks, which would help avoid energy misuse or loss and control energy
market analysis costs.
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