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Abstract: Biomass is an attractive energy source that can be used for production of heat, power, and
transport fuels and when produced and used on a sustainable basis, can make a large contribution to
reducing greenhouse gas emissions. Anaerobic digestion (AD) is a suitable technology for reducing
organic matter and generating bioenergy in the form of biogas. This study investigated the factors
allowing the optimization of the process of biogas production from the digestion of wheat straw
(WS). The statistical analysis of the experiments carried out showed that ultrasonic processing
plays a fundamental role with the sonication density and solids concentration leading to improved
characteristics of WS, reducing particle size, and increasing concentration of soluble chemical oxygen
demand. The higher the sonicating power used, the more the waste particles are disrupted. The
optimality obtained under mesophilic conditions for WS pretreated with 4% w/w (weight by weight)
H2O2 at temperature 36 ◦C under 10 min of ultrasonication at 24 kHz with a power of 200 W improves
the methane yield by 64%.

Keywords: anaerobic digestion; biogas enhancement; biomass; chemical pretreatment; ultrasound
disintegration; wheat straw

1. Introduction

Anaerobic digestion (AD) is widely used as a renewable energy source. AD produces
biogas that can be used directly as a fuel, in combined heat and power gas engines, or
converted into natural gas quality biomethane. The nutrient-rich digestate also produced
can be used as fertilizer. AD of biomass residues is considered one of the sustainable
options for producing green energy to meet global demand and ensure an adequate future
supply of clean energy and fuel [1,2]. Methanization, or the production of biogas from
agricultural waste and residues, as part of a circular economy approach, meets two major
challenges: the production of renewable energy to replace fossil fuels and contribute to
a future 100% renewable energy system and support for the transition of the agricultural
sector through the implementation of agro-ecological practices.

Figure 1 shows the methanization process. It consists of the degradation, under the
action of bacteria, of organic materials (or substrates) such as agricultural materials and
livestock effluents (plant biomass, manure, slurry), green and household bio-waste, waste
from the food industry, and sludge from wastewater treatment plants. This reaction, called
anaerobic digestion (in the absence of oxygen), produces biogas and digestate. Biomass is
the latest renewable energy to be exploited, subject to sustainability criteria. More than
10% of the EU (European Union) final energy consumption would come from biomass,
which would then represent half of the total renewable energy consumption in Europe.
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According to the European Union [3], in 2030, the use of biomass (final energy) will be 19
EJ (1 EJ = 1018 joules), which represents 19% of the total energy consumption, all sources
combined. At that time, the proportion of energy consumption from renewable sources
will be 41%.
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The world’s energy production has entered a transitional phase that will require us to
significantly reduce our consumption of fossil fuels, which are sources of greenhouse gases
and whose resources are not inexhaustible.

Today, the only renewable alternative to fossil fuels for the production of liquid fuels,
lubricants, and basic molecules for chemistry is biomass.

Some countries, such as the Netherlands, have reservations about the sustainability
of this energy source [4]. However, we must defend the renewable character of biomass
when it is managed intelligently. This resource uses cheap and widespread primary energy.
It can therefore be collected locally (wood, vegetable, and food waste). In fact, it has the
advantage of being dependent on a local market, unlike oil and gas (of fossil origin) which
are dependent on international markets.

The future of biogas must be seen in the context of the global energy system. Several
directions can be considered depending on the pace of technological innovation, the
ambition of energy policies, market dynamics, and societal trends.

Agricultural biomass, such as wheat straw (WS), is abundantly found in nature.
However, WS is used as livestock feed, discarded carelessly, or burnt in an open field which
involves serious environmental problems [5]. WS can be effectively treated by anaerobic
digestion, which is one of the most promising technologies for converting biomass into
biogas [6]. However, since the lignocellulosic material in WS is resistant to microbial attack,
the AD process is significantly slowed down [7].

Therefore, a WS pretreatment is necessary to improve its biodegradability by hy-
drolysis of its lignocellulosic recalcitrant components [8]. Pretreatment aims to enhance
accessibility to the three main components of lignocellulose (cellulose, lignin, and hemicel-
luloses) and increase biodegradation rate and overall main product yield in AD [9].

The impact of different pretreatment methods on biomass degradability is extremely
different and mostly depends on the feedstock characteristics [8,9]. Several biomass pre-
treatments have been studied such as grinding [10], ultrasound [11,12], chemical pro-
cesses [5,13,14], biological technique [15,16], and thermal methods [1,17].

Due to the crystallinity reduction and mass transfer increase, grinding involves the
breakdown of biomass size and crystallinity which improves the hydrolysis process [12].
Chemical reagents are predominantly used for pretreatment of lignocellulosic materials
because of their low cost and high efficacy [18].
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Alkaline pretreatment involves the addition of bases to biomass, such as sodium
and potassium hydroxide, which lead to an increase in the internal surface of biomass, a
decrease in crystallinity, a destruction of links between lignin and other polymers, and a
lignin breakdown. Alkaline pretreatment can delignify biomass by oxidation with high
carbohydrate retention. This allows the breaking of the ester and ether bonds between
lignin and carbohydrates [19]. Up to now, NaOH and KOH are the most effective alkali-
treatments for improving biomass digestibility. NaOH pretreatment has proven to be
effective to improve digestibility and increase the methane yield [7]. However, concerns
over sodium discharge in the process effluent, which is difficult to be recycled, may limit
its application on a commercial scale [11].

To improve biogas production, hydrogen peroxide which is a strong oxidant has
been used for biomass pretreatment [19]. It has a significant advantage of leaving no
residues in the biomass because it degrades into oxygen and water and hardly forms
secondary products [20]. H2O2 promotes the production of HOO− anion, which in turn
promotes the production of hydroxyl •OH and superoxide O2− radicals leading to high
delignification [12].

Ultrasound disintegration pretreatment disrupts the cell wall structure, increases the
specific surface area, and reduces the degree of polymerization by compression and cavita-
tion effects [21]. The cavitation produced due to the pulsating high-frequency ultrasonic
waves penetrates the polysaccharides and disrupts the mesh of cross-linking polymers that
facilitate biomass degradation [19]. Cavitation is the formation of a violent collapse of bub-
bles in the liquid, which can induce several transformations. The main effects of cavitation
phenomena include the free radical formation, such as hydroxyl radical generated due to
the decomposition of water molecules [22].

The aim of the study was to improve the methane production from wheat straw by
coupling several pretreatments. In particular, the coupling of ultrasonic disintegration
and chemical pretreatment with NaOH and H2O2 solutions for lignocellulose degradation
aimed to optimize biogas and biomethane production.

2. Materials and Methods

This section describes in detail the components of the experiments and the exper-
imental set-up and procedure, as well as the tests and pretreatments considered. The
end of this section presents the method and the tools allowing a statistical analysis of the
obtained results.

2.1. Substrate and Inocula

Wheat straw (WS) was taken from the stables of Hussein Dey slaughterhouse in
Algiers, Algeria. WS was air-dried and ground using a coffee grinder; the fine powder
was collected using a series of superimposed sieves. The dry WS with a diameter of
0.65–1.25 mm was collected and stored in a plastic bag at ambient temperature (around
25 ◦C) until further experimentation. Fresh bovine manure was taken from the stable of
bovine of the same slaughterhouse. Sewage sludge was taken from mixed sludge basin of
wastewater treatment plant of Baraki, Algiers. The main characteristics of these materials
are summarized in Table 1.
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Table 1. Wheat straw, bovine manure, and sewage sludge features.

Parameter Raw Wheat Straw Bovine
Manure Sewage Sludge

Total solids (TS) (g/L) 91.33 24.14 82.02

Volatile solids (VS) (g/L) 6.15 20.10 2.50

pH / / 7.90

Volatile fatty acid (VFA) (g/L) 0.05 / 1.60

Total alkalinity (TA) (g/L) 0.01 / 1.00

Hemicellulose (%) 51.60 / /

Cellulose (%) 41.30 / /

Lignin (%) 10.30 / /

2.2. Biochemical Methane Potential (BMP) Tests

Biochemical methane potential (BMP) tests were performed under mesophilic con-
ditions (36 ◦C) in batch digester of 500 mL as a working volume. Figure 2 shows the
experimental set-up used for this purpose. At the beginning of each experiment, the
digester was flushed with N2 gas for 4 min to ensure anaerobic conditions.
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Figure 2. The experimental set-up used for biochemical methane potential tests: (1) thermostatic
digester; (2) agitator; (3) pipe for biogas transport; (4) acidic solution to avoid CO2 dissolution; (5)
NaOH solution for CO2 capture; (6) and (7) outlet of displaced liquid.

The biomethane production was measured daily by the liquid displacement method,
with the use of acidic solution at pH2 (bottle 5 in Figure 2) to prevent the possible dissolution
of CO2 and 3M NaOH solution (bottle 4 in Figure 2) to capture CO2.

AD was conducted at mesophilic conditions (36 ◦C) thanks to a thermostatic bath.
The digester contents were mechanically mixed for 24 h per day using an electrically

powered agitator at a speed of 60 rpm.

2.3. Ultrasound Pretreatment

An ultrasonic wave is a mechanical and elastic wave that propagates through fluid,
solid, gaseous, or liquid media. The frequency range of ultrasound is between 20 kHz and
10 THz (One Tera Hertz = 1 THZ = 1000 GHz = 1012 Hz).

Depending on the application, two criteria for classification of ultrasonic waves can
be considered: the ultrasonic power and the frequency of the wave.

For a low power (less than 1 W), there is no interaction other than vibratory with the
matter, and ultrasound does not induce changes in the medium through which it passes.
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This concerns all applications of non-destructive testing [23] for frequencies ranging from
20 kHz to 10 MHz and medical diagnosis, as well as ultrasound imaging [24–27] and
Doppler [28] for frequencies above 1 MHz.

When the ultrasonic power is sufficient (a few Watts) and at relatively low frequencies,
the passage of the ultrasonic wave is accompanied by non-linear physical phenomena and
associated chemical transformations. We speak then of power ultrasound whose emission
is likely to modify the medium through which it passes.

These ultrasounds are also used in the medical field but with a therapeutic aim to
destroy benign or malignant lesions (tumors, calcifications, stones . . . ) and, in the industrial
field, as for example the disintegration of waste. It is this last application that is used, in
our work, as a very effective pretreatment of disintegration at a frequency of 24 kHz with a
power of 200 W: it is what we call ultrasonication disintegration.

Ultrasound disintegration (US) pretreatment allows material to be broken down on a
finer scale than grinding. US involves creating pressure waves, resulting in the formation
of cavitation bubbles in the liquid which disrupts the cell wall structure and increases the
specific surface area [21,22].

The ultrasonic equipment used in our experiments was the Hielscher ultrasonics
UP400S, Berlin, Germany, which is a powerful and reliable ultrasonic device for sonication
of large samples in the laboratory.

2.4. Experimental Procedure

Different chemical solutions were experimented on for the pretreatment of wheat straw
(WS): NaOH (0.5, 1, 2, 4% w/w), H2O2 (1, 2, 4, 8% w/w), and H2O solely. The experiment
with H2O solely was blank experiment; WS was hydrolysis with only distilled water H2O
without any chemical reagents. In each experiment, 2 g of biomass sample was added to 200
mL of solution stirred with moderate agitation (250 rpm) for 1h. The methodology adopted
in several of our experiments was to study NaOH and H2O2 pretreatment coupled with
ultrasonic pretreatment, with the objective of determining the optimal concentrations to
achieve the highest chemical oxygen demand (COD). In this context, 2 g of biomass sample
was added to 200 mL of water subjected to 30 min of ultrasound in different configurations
and concentrations of NaOH (0.5, 1, 2, 4% w/w), H2O2 (1, 2, 4, 8% w/w), H2O alone (WS
with only distilled H2O), and H2O with US (WS with only distilled water and US). Once
the optimal concentration was determined, we performed new experiments, this time
varying the ultrasound exposure time from 5 to 45 min. The evaluation of pretreatments
was measured by the quantity of dissolved organic matter COD. After pretreatments of
WS, samples were centrifuged, and we recovered the liquid phase for COD analyses.

Regarding BMP tests:

• First, for bovine manure and sewage sludge, we performed two BMP tests. AD was
monitored daily by measuring biogas and methane volume, pH, volatile fatty acids
(VFA), and total alkalinity (TA).

• Then, two BMP tests were performed with treated and untreated WS as substrate and
cattle manure as inoculum.

• We used a ratio VS inoculum/VS substrate = 2.
• Finally, we performed two BMP tests with filter-treated WS and unfiltered WS under

the same conditions as the previous BMP tests, with the filtrate being the liquid residue
from the WS pretreatment.

BMP tests were conducted for 10 days. AD was monitored daily by measuring biogas
and methane volumes, calculated at standard temperature and pressure (STP) conditions.

Chemical oxygen demand (COD), total solids (TS), volatile solids (VS), volatile fatty
acids (VFAs), total alkalinity (TA), and pH were determined according to the Standard
Methods of the American Public Health Association (APHA) [29].
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Heavy metals are present in municipal sludge in significant concentrations, and the
most frequently found are copper (Cu), zinc (Zn), lead (Pb), iron (Fe), and nickel (Ni). Heavy
metals are not biodegradable and can accumulate in the substrate to a toxic concentration.
If heavy metals are present in excessive quantities, they can cause inhibition of anaerobic
microorganisms, hence the interest in determining their concentration.

Before analyzing heavy metals contained in bovine manure and sewage sludge, the
samples were mineralized by microwave Milestone ETHOS One Sk-10 High-Pressure Rotor.
The equipment was produced in Italy.

Analyses of heavy metals for both bovine manure and sewage sludge were carried out
using spectrometry atomic absorption flame 240FS Agilent. This equipment was produced
in Malaysia.

The WS morphologies were observed using FEI Quanta 250 Scanning Electron Micro-
scope (SEM). The equipment was produced in Spain.

The contents of hemicellulose, cellulose, and lignin were analyzed according to the
method described by Van Soest et al. [30].

2.5. Statistical Analysis

All data were presented as mean ± standard deviation, and all experiments were
performed in triplicates. Statistical analysis was conducted using a one-way analysis of
variance (ANOVA), and the pairwise differences were evaluated using Tukey’s range test
to identify significant differences between each sample group [31]. The difference between
the results was considered significant if the p-value was less than 0.05.

ANOVA was carried out with a confidence level of 95%. Error bars in Figures 4–7 and
Figures 10–12 represent standard deviations σ of triplicate measurements.

In this analysis, we used the unbiased variance estimator, defined as:

σ2 =
1

N − 1

N

∑
i=1

(xi − m)2 (1)

where xi and m represent, respectively, the ith sample and an estimate of the mean of xi
(i = 1 to N) with N the size of the samples analyzed:

m =
1
N

N

∑
i=1

xi (2)

3. Results and Discussions

This section describes in detail the effects of heavy metals in the AD inocula and then
quantifies the effects of the different pretreatments on methane production. This section
concludes with considerations on the ultrasonic pretreatment with a focus on the energy
provided.

3.1. Effect of Heavy Metals Present in the Considered Inocula on Anaerobic Digestion

Firstly, heavy metal concentrations were determined in the inocula. Table 2 shows the
observed metals’ concentrations in bovine manure (BM) and sewage sludge (SS), compared
to those required for AD microorganisms.
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Table 2. Metal concentrations for bovine manure and sewage sludge compared with the concentrations of metals required
for anaerobic digestion.

Metal Con-
centrations

mg/kg

Bovine
Manure

Our Study

Bovine
Manure

Bolan et al.
[32]

Bovine
Manure

Zhang et al.
[33]

Sewage
Sludge

Our study

Sewage
Sludge

Bolan et al.
[32]

Sewage
Sludge

Mudhoo
et al. [34]

Required
for AD

Schattauer
et al. [35]

Required
for AD

Chernicharo
et al. [36]

Cu 18.27 21.00 31.04 72.50 54.70 44.70 64 10

Zn 43.40 115.00 126.33 491.24 294.00 360.00 - 60

Pb 2.01 2.10 2.24 5.00 2.47 10.40 200 -

Ni 12.09 9.00 - 15.76 15.00 3.80 30 100

Mn 25.88 111.00 - 30.14 142.00 136.00 55 3

Cr 32.64 20.00 1.09 50.40 75.10 8.00 52 -

Co 2.34 1.70 - 2.11 4.10 1.80 20 75

It appears in Table 2 that for the sewage sludge, Cu and Zn values (72.50 and
491.24 mg/kg, respectively) exceed the necessary concentrations for the growth of the
methanogenic microorganisms. Methanogens are a key group in AD because when
methanogenic activity is inhibited, the process is blocked at the acidogenesis step leading
to incomplete degradation of the organic matter and accumulation of VFAs [9]. In addition,
heavy metal toxicity is one of the main causes of bioreactor problems leading to signifi-
cant AD inhibition [37–39]. Many essential metals (e.g., Cu and Zn) are required for the
activation or functioning of many enzymes and coenzymes in AD. Heavy metals are not
biodegradable, but they can accumulate in the substrate in a toxic concentration amount.
Otherwise, excessive amounts of heavy metals can lead to the inhibition of anaerobic
microorganisms [40,41].

Secondly, to identify if there is any inhibition caused by these metals, two ADs were
carried out with bovine manure and sewage sludge, during which biogas, methane, pH,
VFAs, and TA were measured. The results are given in Figures 3 and 4.

The pH is one of the most significant parameters for the stability of AD, which could
affect the activity of acidogenic and methanogenic microorganisms [42].

For both inocula, Figure 3a shows that during the first step of the AD process (first
to fourth day), pH decreases from 8.4 to 6.5 and 7.9 to 6.3, respectively, for BM and SS.
This is due to the increased production of VFAs from 1.6 to 3.4 g/L and 1.9 to 6.7 g/L,
respectively, for BM and SS (Figure 3b). This result is in agreement with those obtained by
Nandi et al. [42] and Mota et al. [43].
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Indeed, at the beginning of the process (hydrolysis step), the extracellular enzymes,
which are produced by hydrolytic microbes, decompose complex organic polymers into
simple soluble monomers. Proteins, lipids, and carbohydrates are hydrolyzed to amino
acids, long-chain fatty acids, and sugars, respectively. These small molecules are then
converted by acetogenic bacteria to a mixture of VFAs and other minor products such
as alcohol [44]. The main VFAs present during the AD process are acetic, butyric, and
propionic acids, which are commonly accumulated during the start-up period in the
AD [45]. In the second step of AD (fifth to sixth day), we observed an increase in pH value
to 7.3 for BM and 6.9 for SS and diminution of VFAs to 0.8 for BM and 1.8 g/L for SS. This
complies with the results obtained by Blasco et al. [46]. This is explained by increasing
the pH value and the consumption of the VFAs by bacteria [47]. During this step, the
acetogenic bacteria convert the VFAs to acetate, carbon dioxide, and hydrogen. These
provide direct substrates for methanogenesis which correspond to the last step for the
AD process for methane production. Finally, during the third step (7th–10th) of the AD
process, we noted a pH value stabilization around 8 and 7, respectively, for BM and SS. The
equilibrium values of VFAs were about 0.65 and 1.75 CH3COOH g/Lfor BM and SS. These
results are in agreement with those observed by Rinco et al. [47].

Compared to bovine manure, sewage sludge showed a lower pH value and more
significant VFAs production. As theVFAs production in the hydrolysis step occurs at a
faster rate than their assimilation in acetogenesis or methanogenesis step, the methanogenic
activity of microorganisms is inhibited [18,40]. Of all microorganisms in the overall con-
sortium for the anaerobic conversion of organic matter to methane, Archaea is commonly
considered as the most sensitive to toxicity [48].

As it can be seen in Figure 3c, the TA variation is inversely proportional to pH. The first
step of AD (first to fourth day) is characterized by an increase in the TA values (expressed
in CaCO3 concentration) from 16.8 to 23.5 g/L and 17.5 to 32.6 g/L, respectively, for BM
and SS. In addition, for BM and SS, pH decreases to restore the alkalinity conditions which
lead to the outbreak of the methanogenesis step [49]. During the methanogenesis step (fifth
to sixth day), the TA value decreases to 13.9 g/L for BM and 19.2 g/L for SS. Alkalinity is
known to be a critical buffering factor for neutralizing VFAs during methanogenesis by
VFAs consumption [42].

In the third step (7th–10th), the TA stabilization occurred and final values were around
13.6 g/L and 18.8 g/L for BM and SS, respectively, indicating that the AD process already
reached stability. These results confirm those observed by Komemoto et al. [50].

Table 3 indicates that bovine manure produces 56% methane, and sewage sludge
produces only 32%. Based on the results obtained above that showed significant inhibition
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of AD due to the high concentration of Cu and Zn in sewage sludge, we maintained bovine
manure as inoculum for the rest of the study.

Table 3. Methane production yield for bovine manure and sewage sludge.

Bovine Manure Sewage Sludge

Biogas (mL/gVS) 197.50 99.00

Methane (mL/gVS) 111.50 32.00

Methane (%) in biogas 56.46 32.32

3.2. Effect of NaOH and H2O2 Concentration on WS Pretreatment

In order to evaluate the effect of WS pretreatment on the AD, NaOH (0.5, 1, 2, 4% w/w)
and H2O2 (1, 2, 4, 8% w/w) solutions were tested. According to the solution concentration,
results illustrated in Figure 5 show that, compared to WS hydrolysis with water, the
pretreatments with NaOH and H2O2 improve the amount of dissolved organic matter.
However, it seems that a 4% H2O2 solution corresponds to the optimal value which leads
to 1410 mg/L of COD. However, higher H2O2 concentrations influence negatively the
decomposition process. H2O2 pretreatment of lignocellulosic biomass breaks down lignin
and hemicellulose and releases a cellulose fraction with high degradability to the anaerobic
microorganisms [48]. Otherwise, H2O2 has a significant advantage because it avoids
toxic residues in the biomass and it degrades into oxygen and water [20]. Even NaOH
pretreatment can degrade the carbohydrates, cellulose, and hemicelluloses improving the
biomass digestibility, and it generates Na as residue that can be toxic for methanogenic
microorganisms [7,21].

 

Figure5. Effect of NaOH and H2O2 concentration on COD released.  

 

Figure 6. Effect of coupling US pretreatement with NaOH and H2O2 on COD released  

 

Figure 5. Effect of NaOH and H2O2 concentration on COD released.

3.3. Effect of Coupling US with NaOH and H2O2 Pretreatment

US pretreatment employs ultrasonic radiation to break down the complex network
of polymerization in biomass. Cavitations produced due to the pulsating high-frequency
ultrasonic waves penetrate polysaccharides and disrupt the mesh of cross-linking polymers
facilitating better biodegradation [19]. The pretreatment results of the coupling 30 min of
the US with NaOH and H2O2 are illustrated in Figure 6.
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Compared to the chemical pretreatment solely, for low concentrations of NaOH and
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The obtained results show that the solubilized organic matter of the substrate depends
on the pretreatment time. The optimal COD value of 2675 mg/L was reached after 10 min
of pretreatment, which implies that the discharges imposed on the substrate are powerful
and rapidly degrade the lignocellulosic biomass. Beyond 10 min, the COD value decreased
and reached 1829 mg/L after 45 min. This result could be explained by the degradation of
the COD solubilized by the hydroxyl radicals present in the solution [12].

3.5. Scanning Electron Microscope (SEM) Observations

To observe the structural changes of WS after the pretreatments, SEM analysis was
conducted. The morphological features of raw WS (Figure 8a) showed a regular and
compact surface structure with fibers arranged in bundles. After both NaOH and H2O2
pretreatments coupled with ultrasound (Figure 9), the surface of the WS samples, which is
mainly composed of lignin and hemicellulose, was destroyed. The lignin and hemicellulose
of pretreated WS samples were partially removed and broken, resulting in the exposure
of internal structures. After that, WS became loose and scattered and exhibited fiber
porosity on its surface compared to the raw WS. These observed results demonstrate that
pretreatment could destroy the cellulose, hemicellulose, and lignin network, removing
some of the external fibers and thereby accelerating the biodegradation process [20,49]. The
hydrolysis with the only H2O coupled with the US (Figure 8b) caused minimal changes on
the surface of the WS samples. The surface was relatively smooth and showed minimal
destruction compared to that using both NaOH and H2O2 pretreatments coupled with the
US. The WS structures of samples after both NaOH and H2O2 pretreatments coupled with
the US were destroyed indicating the efficiency of these pretreatments. However, despite
the efficiency of NaOH pretreatment coupled with the US, this pretreatment generates
residues that can probably oxidize the desirable structures such as sugars, VFAs, and
alcohols that inhibit the AD process [42].
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Figure 9. SEM photo for pretreated WS with chemical solution and 10 min of US: (a) 0.5% NaOH; (b) 1% NaOH; (c) 2%
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3.6. Impact of H2O2 Pretreatment Coupled with the US on Biogas Production

To determine the influence of coupling H2O2 to the US pretreatment on biogas and
methane production, we carried out two AD experiments: an experiment with treated WS
under the optimal conditions determined previously (4% w/w H2O2 and 10 min of US)
and another with raw WS. The results are presented in Figure 10 and Tables 4 and 5.

The US mechanically disrupts the cell structure of WS and promotes the release of
free radicals such as •OH, •HO2, and •H [20,21]. As hydrogen peroxide is a strong oxidant,
it degrades lignin to soluble compounds with low molecular weights. As these are more
accessible to the anaerobic microorganisms, the biogas and the biomethane production is
improved [48].
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Table 4. Methane production yield for pretreated and untreated wheat straw.

Pretreated Wheat Straw Untreated Wheat Straw

Biogas (mL/g VS) 218 130

Methane (mL/g VS) 136 49

Methane (%) in biogas 62 38

Methane improvement (%) for
pretreated WS 64 /
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Table 5. Wheat straw composition before and after pretreatment and degradation rate.

Pretreated Wheat
Straw

Untreated Wheat
Straw Degradation Rate

Hemicellulose (%) 51.60 23.20 55.04

Cellulose (%) 41.30 25.40 38.50

Lignin (%) 10.30 8.60 16.50

During the first step of AD (first to fourth day), Figure 10 shows that for both treated
and untreated WS, the volume of biogas and methane produced increases. This corre-
sponds to the beginning of the AD process (hydrolysis phase) during which large polymer
molecules are broken down into simple soluble monomers. Proteins, lipids, and carbohy-
drates are hydrolyzed to amino acids, long-chain fatty acids, and sugars. As lignin is a
hydrophobic heteropolymer in nature, it degrades very slowly and most of its degrada-
tion remains incomplete. This phase is followed by acetogenesis during which different
monomers (sugar, long-chain fatty acids, and glycerol) are converted into alcohols and
short-chain fatty acids by the acidogenic microorganism. Throughout this period, alcohol
and short chains of fatty acids are converted into acetate, carbon dioxide, and hydrogen.
After that, the produced acetate is used as a substrate by methanogenic bacteria for methane
production during the methanogenesis phase. The last step (fifth to sixth day) shows the
stabilization of biogas production and the end of the methane production.

The accumulation of hydrogen develops significant pressure which blocks the activity
of acetogenic bacteria that stop acetate production. Due to the symbiotic relation between
acetogenic and methanogenic bacteria, these utilize this hydrogen in methane production
and significant hydrogen pressure does not occur [42,49].

Consequently of what was explained above and compared to the untreated WS,
Table 2 indicates that pretreated WS produces more biogas and biomethane than untreated
WS. This corresponds to an improvement of 40% and 64%, respectively, for biogas and
methane production. In addition, it appears that treated WS produces more methane, 62%,
than untreated one, 37%. It appears that the treatment of WS accelerates the hydrolysis
rate which depends on the nature of the substrate and the size of a substrate particle [51].
Indeed, WS pretreatment with 4% w/w H2O2 coupled with 10 min of US allowed releasing
the organic matter contained in the biomass to make it accessible to microorganisms. This
leads to the performance improvement of AD and the increase in methane production
yield [7]. Otherwise, untreated WS inhibits the AD process due to its high content of
lignocellulosic material which makes it resistant to microbial attack [7,43]. In addition, the
degradation of hemicellulose, cellulose, and lignin reaches 55, 38, and 16%, respectively.

3.7. Effect of the Filtrate Resulting from the Pretreatment of WS with H2O2 Coupled with the US
on the Biogas Production

In this part of our work, we studied under the optimal conditions (4% H2O2 and 10
min US) the use of the filtrate from the WS pretreatment for biogas and methane production.
Figure 11 and Table 6 show the results obtained.

It appears in Figure 11 that the biogas production is almost the same for both cases,
while methane production is more important when the filtrate is used. Indeed, Table 6
and Figure 12 show that pretreatment of WS with filtrate leads to an increase in methane
production of more than 26%. This is explained by the presence in the filtrate of solu-
bilized organic matter resulting from the WS pretreatment: this partially breaks down
lignin and hemicelluloses and releases to the microorganisms cellulose fraction with high
degradability [5].
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3.8. Some Considerations about Ultrasonic Pretreatment

The Hielscher UP400S is the ultrasonic device that was used for sonication of samples
in our experiments. Its operation requires a standard probe, an operating frequency of
24 kHz, and a power supply of approximately 400 W.

Typical applications of this device include homogenization, deagglomeration, cell
lysis and disintegration, protein extraction, and liquid emulsification.

The batch experiments were performed in beakers without temperature control. The
treated samples had a volume of 0.5 L. The specific energy supplied was defined by the
following relationship:

Es =
P

vTS
t (3)

where P, t, v, and TS represent the ultrasonic power, sonication time, sample volume, and
total solid concentration, respectively.

The parameters allowing to obtain an optimal biomethane production are:
P = 200 W, t = 10 min, v = 500 mL, and TS = 25 g/L.
The optimum ultrasonic energy is

Es =
200

500 × 10−3 × 25 × 10−3 10 × 60 = 96 × 106 J/kg TS = 9600 kJ/kg TS (4)

We performed three AD experiments: one experiment with WS treated under the
optimal conditions determined previously at 4% w/w H2O2 and 10 min of US, another
with WS treated with 4% w/w H2O2 only, i.e., without ultrasonic pretreatment, and the last
experiment with only raw WS and thus without any pretreatment.

The results of these experiments obtained after 10 days are shown in Figure 12 and
Table 7: the production of biogas and methane increases clearly when there is an ultrasonic
pretreatment; nevertheless, beyond the seventh day, no increase of biogas and methane is
perceptible.

Table 7. Effect of ultrasonic pretreatment.

Pretreated Wheat
Straw with 4% w/w

H2O2 and US

Pretreated Wheat
Straw with 4% w/w

H2O2 only

Untreated Wheat
Straw

Biogas (mL/g VS) 218 185 130

Methane (mL/g VS) 136 110 49

Methane (%) in biogas 62 59 38

Methane improvement
(%) for pretreated WS 64 55 /

4. Conclusions and Perspective

Renewable bioenergy sources are playing a major role as sustainable fossil fuel. AD is
a main treatment for reducing the organic matter contained in WS and generating, at the
same time, methane-rich biogas. The present study indicates that excessive amounts of
heavy metals are present in sewage sludge, especially Cu and Zn with values of 72.50 and
491.24 mg/kg, respectively, which exceed the necessary concentrations for the growth of
the methanogenic microorganisms (60 mg/kg and 64 mg/kg for Cu and Zn, respectively),
leading to significant inhibition of methane production. Through optimization of various
WS pretreatments, we observed that pretreatment with 4% w/w H2O2 under 10 min of
ultrasonic at 24 kHz with a maximum power of 200 W is the most effective. Hence,
the optimum energy supplied is 9600 kJ/kg TS. This led to the optimal solubilization of
recalcitrant matter constituting the WS and corresponding to the COD value of 2675 mg/L.
The BMP tests carried out in mesophilic conditions resulted in an increase of methane
content by 62% in the biogas for pretreated WS with 4% w/w H2O2 with 10 min of US.
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BMP tests showed also that this pretreatment improved the methane yield by 64%. In
addition, the degradation of hemicellulose, cellulose, and lignin reached 55, 38, and 16%,
respectively. The use of the filtrate from the ultrasonic pretreatment results in an increase
in methane production of 62% in the biogas.

In this work, we showed the feasibility of an optimized biomethane production but
on a laboratory scale. However, industrial-scale biogas production, for example, for a Euro-
pean city, is a very complex process that can only be optimized by using a non-linear and
multi-parameter model. Conventional implemented methods at the biogas plants are not
adequate for monitoring the operational parameters and finding the correlation between
them. The short-term solution is the use of the concept of artificial intelligence [52–54]
where, for example, from deep neural networks (with several hidden layers) it is possible
to optimize and predict the biogas production.
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