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Abstract: The adsorption and desorption characteristics of cadmium (Cd) in uncontaminated soils
have been investigated in numerous studies. However, similar studies on Cd-polluted soils from
different sources, which exhibit complex physicochemical characteristics and internal interactions
between Cd and the soil particles, are scarce. Therefore, in order to elucidate the adsorption and
desorption characteristics of Cd in Cd polluted soils, six representative Cd-contaminated paddy soil
samples were collected from farmlands in the vicinity of a steel plant (Soil 1), a smelter (Soil 2), a
thermal power plant (Soil 3), two mining areas (Soil 4, the Dabaoshan mine, Shaoguan; Soil 5, a
lead-zinc mine located at Lechang), and a paddy field irrigated with sewage at Zhongshan (Soil 6) in
Guangdong Province, China. The analysis of the six soil samples showed that Cd adsorption fitted
well to pseudo-second order as well as pseudo-first order kinetics; however, the pseudo-second order
equation showed a better fit (R2 = 0.860–0.962), while Elovich and intraparticle kinetic models fitted
the adsorption kinetics poorly. Further, the adsorption isotherms fitted well to both the Langmuir and
Freundlich models, with the Freundlich model showing a better fit (R2 = 0.96–0.98). The following
order was observed for the Cd(II) adsorption amount and rate: S5 > S6 > S1 > S3 > S2 > S4; meanwhile,
the desorption amount and rate followed the opposite trend. Furthermore, the pH and soil organic
matter were identified as the soil characteristics with the most significant impact on the adsorption
and desorption behaviors of Cd(II) in the Cd-polluted soils.

Keywords: cadmium; paddy soil; adsorption and desorption; soil properties

1. Introduction

Cadmium is toxic to both plants and humans. Contamination by Cd is one of the
most critical problems in the world that arouses considerable public health concerns [1–3].
Reportedly, anthropogenic activities, such as wastewater irrigation, have resulted in serious
Cd contamination of paddy soils in some regions of China [4,5]. Cd in soils can easily be
taken up by crops [6–8], and high levels of Cd in soils can result in Cd accumulation in
crops and eventually in the bodies of humans via the food chain [9–11]. Upon entering the
human body, Cd can be toxic, even at concentrations as low as 0.001 mg/L [12], Itai-itai
disease is caused by the consumption of Cd-contaminated foods. The quantity [13] and
concentration [14,15] of Cd that accumulates in crops is related to the availability of Cd in
soils and can be affected by certain soil properties, including pH [16], soil organic matter
(SOM) content [17,18], iron and manganese oxide contents [19], clay mineral content [20,21],
and the composition of solids [22].
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A series of complex physical interactions and chemical reactions, including adsorption–
desorption, oxidation–reduction, precipitation–dissolution, ion exchange, and chelation
reactions, occur when Cd enters the soil. Cd adsorption and desorption, which are impor-
tant processes that occur on the soil surface, affect the concentration of the bioavailable Cd
in soils as well as the Cd uptake by plants [23,24]. However, these processes also depend
on the soil charge density and hydrolysis constant of Cd [5,25]. Previous studies have
shown that clay minerals can facilitate Cd adsorption in loess soil [26]. Tran et al. [27] ob-
served that soil pH and Cd concentration are the key factors that affect Cd adsorption and
desorption by goethite at low equilibrium concentrations. However, in a study involving
18 soil types, Wang et al. reported that pH and CaCO3 are the dominant factors that affect
Cd adsorption [28].

As mentioned above, Cd adsorption and desorption in different kinds of soils might
be regulated by different factors. However, in most previous studies on Cd adsorption
and desorption characteristics, uncontaminated soils were generally used; thus, there is
limited knowledge regarding Cd adsorption and desorption behaviors in Cd-contaminated
soils. The physicochemical properties of polluted soils are more complex than those of
uncontaminated soils [29]; therefore, it is necessary to investigate Cd adsorption and
desorption characteristics in polluted soils during the remediation of Cd-polluted soils.

In this study, six representative Cd-polluted type soils were sampled in Guangdong
Province. The main objectives of this study were to: (1) investigate the adsorption kinetics
and adsorption–desorption isotherms of Cd and (2) determine the effects of soil physico-
chemical properties on Cd adsorption–desorption by conducting batch experiments.

2. Materials and Methods
2.1. Soil Samples

Six representative Cd-polluted type soil samples were collected from the 0–20 cm
plough layer of paddy fields in six different locations: Soil 1, located at 1 km from a
steel plant at Shaoguan (24◦42′ N, 113◦38′ E); Soil 2, at 2 km from a smelter at Shaoguan
(24◦41′ N, 113◦35′ E); Soil 3, at 2 km from a thermal power plant at Shaoguan (24◦36′ N,
113◦35′ E); Soil 4, at 16 km from the Dabaoshan mine at Shaoguan (24◦46′ N, 113◦49′ E);
Soil 5, at 1 km from a lead-zinc mine at Lechang (25◦51′ N, 113◦24′ E); and Soil 6, at a
sewage-irrigated paddy field in Zhongshan (22◦54′ N, 113◦41′ E). All six soil samples were
paddy soil.

The soil samples were air dried and passed through 20 and 100 mesh.
pH: The soil pH value was determined based on a soil-to-water ratio of 1:2.5. The

method is described as follows: A 10.00 g sample of 20 mesh air dried soil was placed
into a 50 mL beaker, and 25 mL deionized water was added, then mixed for 5 min before
standing for 30 min, and supernatant was measured by phs-3c acidimeter.

SOM: The concentration of SOM was determined by the K2Cr2O7 method [30], and
the method is described as follows: A 0.20 g sample of 20 mesh air dried soil was placed
into a hard test tube, and 5 mL potassium chromate and 5 mL concentrated sulfuric acid
was added. This was then digested in an oil bath (170 ◦C–180 ◦C) for 5 min. The digestion
solution was transferred to a 250 mL triangular flask and titrated with 0.2 mol/L Fe2SO4
with 2–3 drops of o-phenanthroline as an indicator. The content of SOM was calculated by
the amount of Fe2SO4 consumed.

CEC: CECs were determined using the ammonium acetate centrifugal exchange
method [31]. A 2.00 g sample of 20 mesh air dried soil was placed into a 100 mL centrifuge
tube, and 60 mL 1 mol/L ammonium acetate (pH = 7.0) was added, stirred evenly, then
centrifuged for 3–5 min. The treatment was repeated 3–5 times until there was no calcium
ion reaction in the leaching solution (K-B indicator was added: blue indicated no calcium
ion). Sixty milliliters of 95% ethanol was added and stirred evenly before being centrifuged
for 3–5 min. The treatment was repeated 3–5 times until there was no ammonium ion
reaction in the leaching solution (Nessler’s reagent was added: no yellow indicated no
ammonium ion). The soil samples were washed by deionized water in a Kelvin flask; 0.5 g
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paraffin and 0.5 g solid MgO were addedand the solution distilled. Ammonium ions were
absorbed with 25 mL boric acid indicator solution, and the absorption solution was titrated
with hydrochloric acid standard solution.

Clay ratio: Clay ratio analysis was performed by the hydrometer method [31]. A
5.00 g sample of 20 mesh air dried soil was placed into a 50 mL centrifuge tube, and 40 mL
5% sodium pyrophosphate and 1 mol/L NaOH dilute dispersion was added. The solution
was then shaken overnight before 2.5 mL clay suspension was sucked at a depth of 2.5 cm
from the liquid level with a quantitative pipette, which was then dried and weighted. The
percentage of clay content was calculated.

FeDCB and MnDCB: FeDCB and MnDCB were extracted by the sodium dithionate-
citrate-bicarbonate (DCB) method [32]. A 1.00 g sample of 20 mesh air dried soil was placed
into a 100 mL centrifuge tube, before 20 mL 0.3 mol/L sodium citrate and 2.5 mL 1 mol/L
NaHCO3 were added. The solution was then heated to 80 ◦C in a water bath. Then, 0.5 g
sodium bisulfite was added; the mixture was centrifuged after stirring for 15 min. The con-
tents of Fe and Mn in the supernatant were determined by atomic absorption spectrometry.

FeAAO and MnAAO: FeAAO and MnAAO were extracted by the acidic ammonium
oxalate method (AAO) [32]. A 2.00 g sample of 20 mesh air dried soil was placed into a
250 mL triangular flask, and 100 mL H2C2O4-(NH4) 2C2O4 extract was added according to
1:50 soil liquid ratio. The mixture was shaken at 20–25 ◦C for 2 h without light and then
transferred to a 100 mL triangular flask for centrifugation and filtration. The contents of Fe
and Mn in the supernatant were determined by atomic absorption spectrometry.

T-Cd: T-Cd was determined by a flame atomic adsorption spectrophotometer (AAS)
after the HNO3–HF–HClO4 digestion process [33]. A 0.2000 g sample of 100 mesh air dried
soil was placed into a 50 mL PTFE crucible, and 5 mL HNO3, 5 mL HF, and 3 mL HClO4
were added. The solution was then heated at 180 ◦C for 3 h. The mixture was brought to
25 mL, shaken well, and filtered. The contents of Cd in the filtrate were determined by
atomic absorption spectrometry.

The physical and chemical properties of these soil samples are shown in Table 1. The
pH values of the six samples ranged from 4.85 (S4) to 6.71 (S6). Additionally, the SOM
concentrations of the six soil samples followed the order of S4 < S2 < S3 < S1 < S6 < S5;
their cation exchange capacities (CECs) followed the order of S1 < S2 < S4 < S3 < S6 < S5,
and their total Cd concentrations (T-Cd) followed the order of S6 < S4 < S5 < S3 < S1 < S2.
The values of other parameters, such as free iron oxides (FeDCB), free manganese oxides
(MnDCB), amorphous iron oxides (FeAAO), and amorphous manganese oxides (MnAAO),
are shown in Table 1.

Table 1. Physicochemical properties of selected soils.

Soil
Sampling

Sites
pH SOM a

(g/kg)
CEC

(cmol/kg)

Clay
Ratio

<0.002
mm (%)

FeDCB
(g/kg)

FeAAO
(g/kg)

MnDCB
(mg/kg)

MnAAO
(mg/kg)

T-Cd
(mg/kg)

S1 5.53 38.06 7.47 17.88 13.84 3.69 58.68 51.48 2.61
S2 5.13 35.17 8.06 19.01 16.54 4.19 18.31 11.14 13.08
S3 5.28 37.82 8.89 15.45 17.91 3.89 38.25 35.11 2.35
S4 4.85 29.05 8.66 16.33 25.18 5.63 92.24 88.30 1.12
S5 6.71 52.12 17.53 16.39 20.80 5.35 95.29 86.60 1.99
S6 6.28 46.67 14.76 27.05 11.70 6.33 214.89 190.00 0.60
a SOM, CEC, FeDCB, MnDCB, FeAAO, MnAAO, and T-Cd soil indicates organic matter, cation exchange capacity, free iron oxides, free
manganese oxides, amorphous iron oxides, amorphous manganese oxides, and total cadmium concentration, respectively.

2.2. Kinetics Adsorption Experiments

Kinetic adsorption experiments were conducted to determine the Cd adsorption rate
of the six soil samples at a constant temperature of 25 ◦C. A cadmium stock solution
(30 mg/L) was prepared from Cd(NO3)2, and a NaNO3 stock solution (0.01 mol /L) served
as the background electrolyte. Soil samples (1 g) were equilibrated with 20 mL of the
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mixture solutions in a 100 mL polyethylene centrifuge tube. The mixture was shaken at
200 rpm on a constant-temperature shaker for 5, 10, 20, 30, 60, 120, 240, 480, 960, and
1440 min at 25 ◦C. Thereafter, the suspension was separated from the solid phase via
centrifugation for 10 min at 5000 rpm. The Cd(II) concentration in the suspension solution
was determined using an AAS. The amount of Cd(II) adsorbed by the soil samples at
equilibrium qe (mg/kg) was calculated according to Equation (1) [34]:

qe =
c0 − ce

m
×V (1)

where C0 (mg/L) and Ce (mg/L) represent the initial and final concentration of Cd(II),
respectively, V (mL) represents the volume of the solution, and m (g) represents the mass
of the soil sample.

2.3. Adsorption Kinetics Models

To investigate the rate law governing Cd(II) adsorption onto the six soil samples,
Lagergren pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion
kinetic models were applied to analyze the kinetic data.

The pseudo-first order kinetic equation is generally expressed as [35]:

log(qe − qt) = log qe −
k1

2.303
t (2)

where qe (mg/kg) and qt (mg/kg) represent the amount of Cd(II) adsorbed per unit adsor-
bent at equilibrium and at elapsed time, t (min), respectively, and k1 (min−1) represents the
pseudo-first order rate constant for the adsorption process.

The pseudo-second order kinetic equation is generally represented as [35]:

dqt

dt
= k2(qe − qt)

2 (3)

where k2 (g/mg/min) represents the pseudo-second order rate constant. This pseudo-
second order kinetic equation can be linearized as shown in Equation (4) [35]:

t
qt

=
1

k2q2
e
+

1
qe

t (4)

According to this equation, the ratio time/adsorbed amount is a linear function of time.
The slope of the line corresponds to “qe,” and the lower the amount of Cd(II) adsorbed, the
greater the slope of the curve. The Elovich equation is expressed as [35]:

qt = β ln(αβ) + β ln t (5)

where α represents the initial sorption rate (mg/g/min) and β represents the adsorption
constant (g/mg) [36]. The intraparticle diffusion equation is expressed as [35]:

qt = kit0.5 + I (6)

where ki represents the intraparticle diffusion rate constant (mg/g/min0.5) and I (mg/g)
represents a constant that provides information regarding the thickness of the boundary
layer. According to this model, if the plot of qt versus t0.5 is a straight line, then the
adsorption process is controlled by intraparticle diffusion; however, if the data exhibit
multi-linear plots, then two or more steps influence the adsorption process.

2.4. Isothermal Adsorption–Desorption Experiments
2.4.1. Adsorption Isotherm Experiments

A batch equilibration method was used to investigate the isothermal adsorption of
Cd(II). A mixture containing 1 g of the soil samples and 20 mL of the Cd(NO3)2 solution



Sustainability 2021, 13, 7052 5 of 12

at concentrations of 0, 10, 20, 40, 60, and 80 mg/L (with a 0.01 mol /L NaNO3 solution as
the supporting electrolyte) was introduced into a 100 mL centrifuge tube. After shaking at
200 rpm for 16 h at 25 ◦C, the suspension was centrifuged at 5000 rpm for 10 min, and the
Cd(II) concentration in the solution was determined using an AAS. The total amount of
Cd(II) adsorbed at equilibrium, qe (mg/kg), was calculated using Equation (1).

2.4.2. Adsorption Isotherm Models

The data from the isotherm experiments were modeled by fitting them to Langmuir
and Freundlich equations. The Langmuir sorption isotherm is usually expressed as [37]:

Ce

qe
=

Ce

qm
+

1
KLqm

(7)

where Ce (mg/L) and qe (mg/g) represent the liquid-phase concentration and solid phase
concentration of the adsorbate at equilibrium, respectively, qm (mg/g) represents the maxi-
mum adsorption capacity, and KL (L m/g) represents the adsorption equilibrium constant.

The Freundlich isotherm is represented as [37]:

log qe = log KF +
1
n

log Ce (8)

where KF (mg/g) represents the Freundlich constant related to the sorption capacity and n
represents the heterogeneity factor.

2.4.3. Desorption

The soil residue in the 100 mL centrifuge tube from the isotherm adsorption experi-
ment was washed with alcohol three times, followed by rinsing with distilled water three
times (25 mL each time). Thereafter, 20 mL of 0.01 mol/L NaNO3 was added to the tube,
and the mixture was shaken for 16 h at 25 ◦C and centrifuged at 5000 rpm for 10 min for
the determination of the Cd(II) concentration at equilibrium.

The amount of Cd(II) desorbed by the soils at equilibrium, qde (mg/kg), was calculated
according to Equation (9) [37]:

qde =
C f ×V

m
(9)

where Cf (mg/L) denotes the final concentration of Cd(II) at equilibrium, V (mL) represents
the volume of the solution, and m (g) represents the soil mass.

2.5. Statistical Analysis

Excel 2010 and SigmaPlot 10.0 were used to analyze the experimental data. Pearson
correlation analysis was used to investigate the relationships between the soil characteristics
and sorption parameters. There are several physical and chemical properties that have
an effect on the characteristics of Cd adsorption onto soil particles, and these properties
influence and restrict each other. To identify the factors that play the major role in this regard
and eliminate secondary factors, a stepwise regression method was adopted. Regression
analysis was made by SPSS version 21.0 between the pseudo-second order rate constant
(k2), the maximum adsorption capacity (qm), the adsorption equilibrium constant (KL), the
Freundlich constant related to the sorption capacity (KF), the heterogeneity factor (n), and
eight different physical and chemical parameters of the soil (including pH, SOM, CEC,
Clay, FeDCB, FeAAO, MnDCB, MnAAO), respectively.

3. Results and Discussion
3.1. Adsorption Kinetics

Figure 1 shows the results of the Cd(II) adsorption kinetics experiments with increas-
ing time, from 5 to 1440 min. The shapes of the Cd(II) adsorption simulation curves
corresponding to the six soil samples were similar; however, their adsorption capacities
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were significantly different, except for those of S1 and S3. The adsorption amounts of Cd(II)
in all the soil samples increased remarkably within the first 30 min; however, after 60 min,
the Cd(II) adsorption amounts corresponding to all six soil samples reached a plateau.
Therefore, the Cd(II) adsorption process can be divided into rapid and slow stages, and the
turning point appeared at 30–60 min.
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Figure 1. Kinetics of Cd adsorption onto six soils.

Studies have shown that there are two adsorption types, namely, specific adsorption
and non-specific adsorption [38]. Non-specific adsorption refers to the fast adsorption of
metal ions onto soil particles via a simple Coulomb force, while specific adsorption refers
to a relatively slow adsorption of metal ions onto soil particles owing to the formation of
chelates or coprecipitation [39]. In this study, Cd(II) adsorption began with non-specific
adsorption, and the fast initial adsorption rate possibly suggests that the binding sites
on the external surface of the soil particles were sufficient for Cd(II) adsorption. As time
elapsed, the number of binding sites decreased, such that non-specific adsorption could
not take place; thus, specific adsorption became predominant. Similar Cd(II) adsorption
patterns have also been reported by Huang et al. [38] and Gao et al. [40].

3.2. Kinetic Equations for Cd(II) Adsorption

The parameters corresponding to pseudo-first order, pseudo-second order, Elovich,
and intraparticle diffusion kinetic models are shown in Table 2 and Figure 2. The correlation
coefficient values (R2) indicated that Cd(II) adsorption onto the six soil samples fitted well
to the pseudo-first order and pseudo-second order kinetic equations but fitted poorly to
Elovich and intraparticle diffusion kinetics. The pseudo-second order kinetic equation
showed the best fit for Cd(II) adsorption, as indicated by the higher R2 values (0.860–0.962).
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Table 2. Parameter Values for the models of Pseudo-first order, Pseudo-second order, Elovich, Intraparticle diffusion,
Langmuir, and Freundlich. R2 means the adsorption kinetic or the adsorption isotherm of Cd onto six soils.

Pseudo-First Order
ln(qe − qt) = ln qe − k1

2.303 t
Pseudo-Second Order

dqt
dt = k2(qe − qt)

2
Elovich

qt = β ln(αβ) + β lnt
Intraparticle Diffusion

qt = qe + kit0.5

qe k1 R2 qe k2 R2 α β R2 qe ki R2

S1 558.6 0.37 0.879 567.2 1.98 0.948 501.5 10.40 0.500 533.3 1.07 0.217
S2 514.8 0.28 0.867 526.9 1.26 0.962 427.5 15.88 0.579 474.4 1.75 0.289
S3 556.5 0.35 0.858 566.1 1.76 0.956 491.5 11.90 0.543 526.7 1.31 0.268
S4 471.1 0.24 0.850 484.7 1.07 0.955 373.7 17.69 0.580 426.1 1.93 0.285
S5 628.4 0.48 0.850 633.5 3.46 0.860 598.0 5.37 0.319 615.8 0.45 0.091
S6 591.6 0.41 0.892 599.1 2.36 0.952 542.9 8.90 0.494 570.0 0.92 0.217

Langmuir
Ce
qe

= Ce
qmax

+ 1
KLqmax

Freundlich
log qe = log KF + 1

n log Ce

qmax KL R2 KF n R2

S1 1454.0 0.28 0.96 344.4 2.10 0.98
S2 1428.5 0.12 0.98 196.2 1.78 0.98
S3 1436.7 0.24 0.96 316.1 2.05 0.98
S4 1204.9 0.11 0.96 168.4 1.91 0.98
S5 1668.0 1.20 0.98 696.8 2.94 0.99
S6 1540.3 0.43 0.97 451.2 2.15 0.98
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The Lagergren pseudo-second order kinetics equation can be used to describe the
adsorption rates of elements in liquid-phase systems, and it has been one of the most
commonly used equations for describing adsorption [41]. In this study, the good fit of the
adsorption data with this pseudo-second order model suggests that the rate controlling
step was chemical sorption, which is consistent with the results reported by Zhu et al. [42].

Both experimental studies and theoretical investigations have indicated that the “k2”
value usually depends on soil properties. Stepwise multiple regression analysis was used to
evaluate the effect of soil properties on the Cd(II) adsorption rate. Equation (10) indicated
that the soil property with the most significant effect on “k2” was pH. This is consistent
with the results of several previous studies [38,43–45]. The maximum “k2” value (3.46)
corresponded to soil sample S5, which had the highest pH value (Table 2), followed by
S6 > S1 > S3 > S2 > S4, with decreasing pH values.

Possibly, this phenomenon, which has been discussed in other similar studies [38,43],
occurred because when the pH is lowered, the competition between heavy metal ions and
the abundance of H+ for available binding sites increases, thereby limiting the adsorption
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of the heavy metal ions onto soil particles. Conversely, when the pH value increases,
the competition becomes weaker; thus, more heavy metal ions are adsorbed. Therefore,
low pH conditions favored Cd desorption from the soil particles into solution, increasing
the possibly of their migration into the environment. Additionally, the pH also showed
a significant effect on CEC, which is another major soil property that had an effect on
cadmium adsorption; therefore, increasing the soil pH may enhance the Cd(II) adsorption
rate owing to an increase in CEC [46]:

k2 = 1.16 pH—4.55 R2 = 0.91 p ≤ 0.05. (10)

3.3. Adsorption Isotherms

The adsorption isotherms for the adsorption of cadmium onto the six soil samples
are shown in Figure 3. From the isotherm curves, the cadmium adsorption capacity of
each soil sample increased as the equilibrium solute concentration increased. At low
equilibrium concentrations, the Cd adsorption amount increased almost linearly, and,
at high equilibrium concentrations, it tended to flatten; however, there were differences
among the six soil samples. Sample S5 showed the maximum Cd adsorption amount,
followed by S6 > S1 > S3 > S2 > S4.
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3.4. Isotherm Equations for Cd(II) Adsorption

Langmuir and Freundlich models were used to fit the data corresponding to the
isotherm adsorption of Cd onto the six soil samples. The squares of the determination
coefficients (R2) are shown in Table 2.

The Langmuir isotherm is suitable for the description of monolayer adsorption on
homogenous surfaces without any interaction between the absorbent and adsorbate and
has been extensively employed to describe the adsorption behavior of phosphate ions
onto soil particles. It has been widely applied in studying the progression of adsorption
and precipitation [26,39,47]. The maximum adsorption capacity (qm) and the Langmuir
adsorption constant (KL), which are related to bonding strength, were determined, and the
Langmuir isotherm was well fitted with the experimental data (R2 = 0.96–0.98), as shown
in Table 2. The adsorption bonding strength and the amount of Cd adsorbed onto the six
soil samples were in the ranges 0.11–1.20 L/kg and 1204.9–1668.0 mg/kg, respectively. The
maximum adsorption amount corresponded to sample S5, which showed the strongest
Cd(II) adsorption affinity.
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A stepwise multiple regression analysis among qm, KL, and the soil properties in-
dicated that SOM was the main soil property controlling the Cd(II) maximum adsorp-
tion capacity, while pH was the main factor controlling adsorption bonding strength
(Equations (11) and (12)).

A study conducted by Ahmed et al. [39] showed that, among the various soil con-
stituents, organic matter has the largest adsorption capacity, which is an important factor
that affects the soil adsorption capacity [38]. This is because SOM provides available surface
sites for metal adsorption and facilitates the formation of metal–ligand complexes on the
surface of soil particles. Further, they can also inhibit metal adsorption via the formation of
non-extractable complexes with metal ions [5,39]:

qm = 17.67 SOM + 751.8 R2 = 0.92 p ≤ 0.05, (11)

KL = 0.51 pH − 2.48 R2 = 0.89 p ≤ 0.05. (12)

The Freundlich isotherm is an empirical equation that showed better adaptability. It
has mainly been applied to heterogeneous surfaces with a non-uniform distribution of
adsorption heat over the surface of the adsorbent because it assumes that the different
adsorptive sites on the absorbent have different energies [48,49]. Cd adsorption isotherm
data from the six soil samples fitted the Freundlich model better than the Langmuir model,
as indicated by the higher R2 values (0.98–0.99). The Freundlich adsorption isotherm
constant, which is indicative of the adsorption capacity (KF), as well as the degree of
nonlinearity between the adsorption and solution concentration (n) are shown in Table 2.

The relationships between KF, n, and soil properties were described using a stepwise
multiple regression analysis (Equations (13) and (14)), which indicated that the pH was the
dominant soil property affecting KF and n, implying that the Cd adsorption capacity of the
soil samples increased with a decrease in pH:

KF = 260.21 pH − 1102.82 R2 = 0.93 p ≤ 0.05, (13)

n = 0.49 pH − 0.61 R2 = 0.95 p ≤ 0.05. (14)

3.5. Desorption Isotherms

The results of Cd(II) desorption from the six soil samples (Figure 4) showed that
Cd(II) desorption from the soil samples increased significantly as the Cd(II) adsorption
amount increased. Thus, Cd desorption was related to the adsorption process. Specific
adsorption decreased as the adsorption amount as well as the exchangeable adsorption
amount increased. Thus, an increasing number of ions adsorbed onto low potential energy
sites and easily desorbed at high adsorption amounts, leading to an increase in the amount
of the adsorbed Cd(II) that desorbed into solution. The Cd(II) desorption amounts were
significantly less than the adsorption amounts. This finding is consistent with previous
reports [5,27,50,51] and indicates that Cd(II) desorption from the six soil samples was
incomplete and only partially reversible.

Considering the adsorption isotherms of the six soil samples, sample S4 showed the
maximum Cd desorption amount, followed by S2, S3, S1, and S6, in order, with S5 showing
the lowest desorption amount. Adsorbed ions that can be desorbed by unbuffered salts are
ions that are absorbed electrostatically [5,52,53]. Therefore, the Cd(II) desorbed by NaNO3
was previously adsorbed via electrostatic attraction, so the desorption of Cd(II) represents
the relative contribution of electrostatic adsorption to the total adsorption of Cd(II). The
results of Cd(II) desorption corresponding to the six soil samples suggest that the Cd(II)
adsorbed on sample S4 was characterized by a relatively higher mobility, which, due to
Cd(II) adsorption via electrostatic attraction, was easily desorbed from the soil particles
into solution. The increase in the Cd(II) desorption amount corresponding to the six soil
samples may be attributed to the decrease in SOM content and pH. Specifically, SOM can
form stable complexes with Cd(II) that cannot be desorbed by NaNO3 [5,54].
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4. Conclusions

The results of Cd(II) adsorption kinetics experiments showed that Cd(II) adsorption
was characterized by a rapid initial stage, which lasted for approximately 30–60 min; this
was followed by slow desorption, indicating that the process involved two different mech-
anisms. Further, the kinetics of Cd(II) adsorption onto the six soil samples were adequately
described by the pseudo-second order equation, and data from the isotherm adsorption
experiments fitted well with both the Langmuir and Freundlich models; however, the
Freundlich model showed a better fit. Furthermore, the highest adsorption amount and
adsorption rate corresponded to sample S5, while the lowest values corresponded to sam-
ple S4. The soil properties with the most significant effect on the adsorption rate and the
maximum adsorption amount were the pH and soil organic carbon content, respectively.
Considering the adsorption isotherms, samples S4 and S5 showed the highest and lowest
Cd(II) desorption amounts, respectively, and this could be attributed to the effects of SOM
and pH.
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