Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model
Abstract
:1. Introduction
2. Methods and Data
2.1. Carbon Dioxide Emissions Estimation Model
2.2. STIRPAT Model and Extension
2.3. Estimation Procedure
2.4. Data Sources and Data Description
3. Empirical Analysis of Panel Data
3.1. Unit Root Test and Co-Integration Test
3.2. Regression Results
3.3. Two Stage Regression Results
4. Discussion
4.1. Regression Results
4.2. Two-Stage Regression Results
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Economic Growth Report of 11 Provinces and Municipalities in the Yangtze River Economic Belt in 2018. Available online: https://cyrdebr.sass.org.cn/2020/1120/c5532a99273/page.htm (accessed on 14 December 2020).
- National Bureau of Statistics of China Annual Data Home Page. Available online: http://www.stats.gov.cn/english/Statisticaldata/AnnualData/ (accessed on 14 December 2020).
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553:1–101553:6. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Parveen, S.; Khan, S.; Kamal, M.A. Urbanization and energy consumption effects on carbon dioxide emissions: Evidence from Asian 8 countries using panel data analysis. Environ. Sci. Pollut. Res. 2020, 27, 18029–18043. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.M.; Zhao, W.W.; Jia, L.Z.; Liu, Y.X. Balancing carbon emission reductions and social economic development for sustainable development: Experience from 24 countries. Chin. Geogr. Sci. 2020, 30, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Su, M. The effects of urbanization and industrialization on decoupling economic growth from carbon emission—A case study of China. Sustain. Cities Soc. 2019, 51, 101758:1–101758:8. [Google Scholar] [CrossRef]
- Li, B.; Liu, X.J.; Li, Z.H. Using the STIRPAT model to explore the factors driving regional CO2 emissions: A case of Tianjin, China. Nat. Hazards 2015, 76, 1667–1685. [Google Scholar] [CrossRef]
- Nosheen, M.; Abbasi, M.A.; Iqbal, J. Analyzing extended STIRPAT model of urbanization and CO2 emissions in Asian countries. Environ. Sci. Pollut. Res. 2020, 10276:1–10276:14. [Google Scholar] [CrossRef]
- Lin, B.Q.; Omoju, O.E.; Nwakeze, N.M.; Okonkwo, J.U.; Megbowon, E.T. Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa? J. Clean. Prod. 2016, 133, 712–724. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.Y.; Zheng, H.R.; Li, M.; Tan, T. How urban aglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061:1–110061:8. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Y.H.; Liu, J.; Wu, C.X. A study on the influencing factors of carbon dioxide emissions from the perspective of multi-dimensional urbanization. China Popul. Resour. Environ. 2017, 27, 151–161. [Google Scholar]
- Fan, J.S.; Zhou, L. Impact of urbanization and real estate investment on carbon dioxide emissions: Evidence from China’s provincial regions. J. Clean. Prod. 2019, 209, 309–323. [Google Scholar] [CrossRef]
- Hu, J.H.; Jiang, X. A study on the impact of urbanization on carbon dioxide emissions from the perspective of Urban Agglomeration. J. Chin. Univ. Geosci. (Soc. Sci. Ed.) 2015, 15, 11–21. [Google Scholar] [CrossRef]
- Yang, L.S.; Zhu, J.P.; Jia, Z.J. Influencing factors and current challenges of CO2 emission reduction in China: A perspective based on technological progress. Econ. Res. J. 2019, 54, 118–132. [Google Scholar]
- Hu, Z.Y. Technical progress, technical efficiency and agricultural carbon dioxide emissions in China. East Chin. Econ. Manag. 2018, 32, 100–105. [Google Scholar]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Wang, C.J.; Wang, F.; Zhang, X.L.; Yang, Y.; Su, Y.X.; Ye, Y.Y.; Zhang, H.O. Examining the driving factors of energy related carbon dioxide emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 2017, 67, 51–61. [Google Scholar] [CrossRef]
- Shuai, C.Y.; Shen, L.Y.; Jiao, L.D.; Wu, Y.; Tan, Y.T. Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl. Energy 2017, 187, 310–325. [Google Scholar] [CrossRef]
- Charfeddine, L.; Kahia, M. Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renew. Energy 2019, 139, 198–213. [Google Scholar] [CrossRef]
- Zhang, F.; Deng, X.Z.; Phillips, F.; Fang, C.L.; Wang, C. Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China. Technol. Forecast. Soc. 2020, 154, 119949:1–119949:10. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Li, L.S.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Jin, X.T.; Li, Y.; Sun, D.Q.; Zhang, J.Z.; Zheng, J. Factors controlling urban and rural indirect carbon dioxide emissions in household consumption: A case study in Beijing. Sustainability 2019, 11, 6563. [Google Scholar] [CrossRef] [Green Version]
- Arshed, N.; Munir, M.; Iqbal, M. Sustainability assessment using STIRPAT approach to environmental quality: An extended panel data analysis. Environ. Sci. Pollut. Res. 2021, 28, 18163–18175. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Du, L.S.; Lu, J.Y.; Wang, J.; Li, H.-Z.; Hashmi, M.Z. Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Ameyaw, B.; Li, Y.; Annan, A.; Agyeman, J.K. West Africa’s CO2 emissions: Investigating the economic indicators, forecasting, and proposing pathways to reduce carbon emission levels. Environmental Science and Pollution Research. Environ. Sci. Pollut. Res. 2020, 07849:1–07849:25. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions. Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Liu, L.C.; Wu, G.; Wei, Y.M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Saidi, K.; Hammami, S. The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Rep. 2015, 1, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, F. Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. J. Clean. Prod. 2019, 252, 119853:1–119853:16. [Google Scholar] [CrossRef]
- Qian, J.; Li, J.Y. Does technological progress effectively promote the energy saving and CO2 emission reduction. Stud. Sci. Sci. 2018, 36, 49–59. [Google Scholar]
- Ahmad, M.; Zhao, Z.Y.; Li, H. Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Sci. Total. Environ. 2019, 657, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, M.X.; Tang, Z.P.; Mei, Z.A. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Huang, J.B.; Wu, J.; Tang, Y.; Hao, Y. The influences of openness on China’s industrial CO2 intensity. Environ. Sci. Pollut. Res. 2020, 27, 15743–15757. [Google Scholar] [CrossRef]
- Luan, B.J.; Huang, J.B.; Zou, H. Domestic R&D, technology acquisition, technology assimilation and China’s industrial carbon intensity: Evidence from a dynamic panel threshold model. Sci. Total Environ. 2019, 693, 133436:1–133436:11. [Google Scholar] [CrossRef]
- Polloni-Silva, E.; Ferraz, D.; Camioto, F.d.C.; Rebelatto, D. Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities. Sustainability 2021, 13, 4114. [Google Scholar] [CrossRef]
- Chen, H.M. Evaluation on the Development of International Carbon Accounting Systems. China Popul. Res. Environ. 2011, 21, 111–116. [Google Scholar]
- The Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2006. [Google Scholar]
- National Bureau of Statistics. China Energy Statistical Yearbook; Chinese Statistics Press: Beijing, China, 2001–2018. [Google Scholar]
- Ehrlich, P.R.; Holdren, J.P. The people problem. Sat. Rev. 1970, 4, 42–43. [Google Scholar]
- Richard, Y.; Eugene, A.R.; Thomas, D. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Li, X.G.; Sun, Y. The Dynamic Effect of Population, Land, Economic Urbanization. Econ. Prob. 2018, 3, 106–111. [Google Scholar]
- Xu, S.C.; He, Z.X.; Long, R.Y.; Shen, W.X.; Ji, S.B.; Chen, Q.B. Impacts of economic growth and urbanization on CO2 emissions: Regional differences in China based on panel estimation. Reg. Environ. Chang. 2016, 16, 777–787. [Google Scholar] [CrossRef]
- He, Z.X.; Xu, S.C.; Shen, W.X.; Long, R.Y.; Chen, H. Impact of urbanization on energy related CO2 emission at different development levels: Regional difference in China based on panel estimation. J. Clean. Prod. 2017, 140, 1719–1730. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2018. [Google Scholar]
- Xue, Y.J. “Twelfth five year plan” analysis and thirteenth five year plan of the Yangtze River economic zone. Sci. Dev. 2016, 86, 78–86. [Google Scholar]
- Liu, X.H. An empirical study on the dynamic relationship among energy consumption, economic growth and carbon dioxide emissions in the process of urbanization. J. Njxz Univ. 2019, 35, 97–103. [Google Scholar]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Chang, C.T.; Yang, C.H.; Lin, T.P. Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. J. Clean. Prod. 2019, 230, 1241–1255. [Google Scholar] [CrossRef]
- Feng, D.; Li, J. Impacts of Urbanization on Carbon Dioxide Emissions in the Three Urban Agglomerations of China. Resour. Environ. Yangtze Basin 2018, 27, 2194–2200. [Google Scholar]
- Li, X.Z. In the Past 20 Years, There Have Been Four GDP Growth Champions, Is It Time for Yunnan to Take the Lead. Available online: https://www.yicai.com/news/100286390.html (accessed on 24 April 2021).
- Luo, F.M. The influence of urbanization development on farmers’ income from household business: An empirical analysis based on the spatial econometric model. J. Xi’an Univ. Finan. Econ. 2019, 32, 34–40. [Google Scholar]
- Statistical Bulletin of National Economic and Social Development of Guizhou Province in 2017. Available online: http://202.98.195.171:81/channels/c7/c7_1.html (accessed on 24 April 2021).
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793:1–eaas9793:9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Wang, W.D.; Wang, L.; Jiang, H.L. How does low carbon technology progress restrain carbon emission? An empirical evidence from China. Modern. Manag. 2020, 5, 90–94. [Google Scholar]
- Wang, S.J.; Fang, C.L.; Wang, Y. Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data. Renew. Sustain. Energ. Rev. 2016, 55, 505–515. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, T.Y.; Li, S.Q.; Li, X.L.; Gao, D.C. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input-output perspective. J. Clean. Prod. 2020, 276, 124169:1–124169:14. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Yu, H.C.; Zhang, K.K.; Zhao, L.; Fan, F. Can Innovation Agglomeration Reduce Carbon Emissions? Evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 382. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors. Appl. Energy 2017, 190, 772–787. [Google Scholar] [CrossRef]
- Shimada, K.; Tanaka, Y.; Gomi, K.; Matsuoka, Y. Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan. Energy Policy 2007, 35, 4688–4703. [Google Scholar] [CrossRef]
- Brand, C.; Anable, J.; Morton, C. Lifestyle, efficiency and limits: Modelling transport energy and emissions using a sociotechnical approach. Energy Effic. 2019, 12, 187–207. [Google Scholar] [CrossRef] [Green Version]
Energy Type | CO2 Emission Factor (kgCO2/kg) | Energy Type | CO2 Emission Factor (kgCO2/kg) |
---|---|---|---|
Coal | 1.900 3 | Coke | 2.860 4 |
Crude oil | 3.020 2 | Gasoline | 2.925 1 |
Kerosene | 3.017 9 | Diesel | 3.095 9 |
Fuel oil | Natural gas | 2.162 2(kgCO2/m3) |
Variable | Definition | Unit |
---|---|---|
C | Total energy-related CO2 emissions | 104 tons |
P | Total population at the end of the year | 104 people |
PU | Proportion of urban household registered population in total population | % |
AGDP | Per capita gross regional product | yuan |
EU | The proportion of the output of secondary and tertiary industries in gross regional product | % |
RE | The number of domestic patent licenses | number |
EI | Gross regional product divided by gross energy consumption | ton standard coal /104 yuan |
LLC | p-Value | IPS | p-Value | |
---|---|---|---|---|
lnC | −2.187 7 | 0.014 3 | −1.229 5 | 0.109 4 |
lnP | −7.618 2 | 0.000 0 | −2.683 3 | 0.003 6 |
lnPU | 1.213 9 | 0.887 6 | 1.270 1 | 0.898 0 |
lnAGDP | −3.177 1 | 0.000 7 | −1.226 6 | 0.110 0 |
lnEU | −2.359 6 | 0.009 1 | 0.233 3 | 0.592 3 |
lnEU^2 | −3.504 6 | 0.000 2 | −1.176 0 | 0.119 8 |
lnRE | −4.134 4 | 0.000 0 | −1.642 7 | 0.050 2 |
lnEI | 0.412 2 | 0.659 9 | −0.093 8 | 0.462 7 |
lnEI^2 | −5.618 6 | 0.000 0 | −1.743 0 | 0.040 7 |
D.lnI | −5.827 0 | 0.000 0 | −5.421 4 | 0.000 0 |
D.lnP | −3.555 5 | 0.000 2 | −5.469 1 | 0.000 0 |
D.lnPU | −3.517 5 | 0.000 2 | −5.105 7 | 0.000 0 |
D.lnAGDP | −3.314 1 | 0.000 5 | −2.707 7 | 0.003 4 |
D.lnEU | −5.620 2 | 0.000 0 | −3.969 1 | 0.000 0 |
D.lnEU^2 | −4.455 2 | 0.000 0 | −4.133 4 | 0.000 0 |
D.lnRE | −4.378 6 | 0.000 0 | −3.510 3 | 0.000 2 |
D.lnEI | −8.270 5 | 0.000 0 | −6.869 8 | 0.000 0 |
D.lnEI^2 | −4.933 8 | 0.000 0 | −3.670 9 | 0.000 1 |
Ho: No cointegration | Number of panels | = | 11 | ||
Ha: All panels are cointegrated | Number of riods | = | 16 | ||
Cointegrating vector: Same | |||||
Panel means: | Included | Kernel: | Bartlett | ||
Time trend: | Not included | Lags: | 1.55 (Newey-West) | ||
AR parameter: | Same | Augmented lags: | 1 | ||
Statistic p-value | |||||
Modified Dickey-Fuller t | −3.552 8 | 0.000 2 | |||
Dickey-Fuller t | −3.080 5 | 0.001 0 | |||
Augmented Dickey-Fuller t | −4.140 2 | 0.000 0 | |||
Unadjusted modified Dickey-Fuller t | −3.848 7 | 0.000 1 | |||
Unadjusted Dickey-Fuller t | −3.180 3 | 0.000 7 |
Variables | YREB | The Upper Reaches | The Middle Reaches | The Lower Reaches |
---|---|---|---|---|
lnP | 0.838 *** | 0.694 *** | 0.173 | 1.420 *** |
lnPU | −0.350 ** | −0.543 ** | 0.632 ** | 0.918 *** |
lnAGDP | 0.968 *** | 1.284 *** | 0.717 *** | 0.765 *** |
lnEU | −1.841 * | −6.172 *** | 3.314 | 3.355 |
lnEU^2 | −7.334 *** | −16.207 *** | 7.112 | 16.098 |
lnRE | 0.038 * | -0.031 | 0.015 | −0.015 |
lnEI | 1.042 *** | 1.333 *** | 0.856 *** | 1.060 *** |
lnEI^2 | 0.011 | 0.004 | −0.214 *** | 0.084 |
_cons | −7.318 *** | −9.382 *** | 2.386 | −8.645 *** |
R2 | 0.961 | 0.960 | 0.987 | 0.981 |
F | 63.17 *** | 3.05 ** | 165.18 *** | 3.42 ** |
Hausman | 1.31 | 9.57 | 42.75 *** | 6.87 |
Variables | YREB | The Upper Reaches | The Middle Reaches | The Lower Reaches | ||||
---|---|---|---|---|---|---|---|---|
I | II | I | II | I | II | I | II | |
lnP | 0.9039 *** | −0.8410 | 0.8597 *** | 0.7533 *** | 0.2110 | −0.2271 | 1.3464 *** | 0.1786 |
lnPU | 0.1773 | −0.0880 | −0.4695 *** | −0.5716 *** | 0.6287 ** | 0.6604 ** | 0.5626 | 0.5344 |
lnAGDP | 0.9178 *** | 0.9318 *** | 1.2634 *** | 1.2663 *** | 0.7219 *** | 0.6412 *** | 0.7094 *** | 0.1127 |
lnEU | −2.3489 * | 4.9550 | −3.9591 ** | −5.5715 *** | 3.2768 | 2.8279 | 6.4199 * | −16.9359 *** |
lnEU^2 | −5.6939 ** | 17.5749 | −13.3168 *** | −16.3703 *** | 7.0768 | 4.0561 | 23.8644 * | −175.6827 *** |
lnRE | −0.0017 | −0.0519 | −0.0944 * | −0.0558 | 0.0135 | 0.0183 | 0.0003 | -0.0304 |
lnEI | 0.8665 *** | 0.8668 *** | 1.2948 *** | 1.2657 *** | 0.8593 *** | 0.7620 *** | 1.0024 *** | −0.9310 *** |
lnEI^2 | −0.0271 | −0.0555 | 0.0500 | −0.0526 | −0.2163 ** | −0.2455 ** | 0.0491 | −0.6599 *** |
_cons | −6.6871 *** | 8.7655 | −9.6828 *** | −9.3965 *** | 1.9931 | 6.5274 | −7.6437 *** | 7.7671 ** |
R2 | 0.9611 | 0.3948 | 0.9724 | 0.9500 | 0.9852 | 0.9855 | 0.9823 | 0.9847 |
F | 26.88 *** | 70.98 *** | 1.09 | 3.69 ** | 119.69 *** | 27.19 *** | 2.98 | 20.87 *** |
Hausman | 5.58 | 63.59 *** | - | 12.30 | 12.92 | 158.11 *** | - | 45.84 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Han, Y. Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model. Sustainability 2021, 13, 7022. https://doi.org/10.3390/su13137022
Liu Y, Han Y. Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model. Sustainability. 2021; 13(13):7022. https://doi.org/10.3390/su13137022
Chicago/Turabian StyleLiu, Yiping, and Yuling Han. 2021. "Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model" Sustainability 13, no. 13: 7022. https://doi.org/10.3390/su13137022
APA StyleLiu, Y., & Han, Y. (2021). Impacts of Urbanization and Technology on Carbon Dioxide Emissions of Yangtze River Economic Belt at Two Stages: Based on an Extended STIRPAT Model. Sustainability, 13(13), 7022. https://doi.org/10.3390/su13137022