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Abstract: The increasing use of bicycles rises the interest in investigating the safety aspects of daily
commuting. In this investigation, more than 14,000 cyclists’ injuries were analyzed to determine the
relationship between severity, road infrastructure characteristics, and surface conditions using binary
regression. Minor and major severity categories were distinguished. A binary equation consists of
28 factors is extracted. It has been found that each factor related to roadway characteristics has its
negative and positive impacts on cyclist severity such as traffic control, location type, topography,
and roadway divisions. Regarding the road surface components, good, paved, and marked roads
are associated with a higher probability of major injuries due to the expected greater frequencies of
cyclists on roads with good conditions. In conclusion, probabilities of major injuries are higher in
urban areas, higher speed limits, signalized intersections, inclined topographies, one-way roads, and
during the daytime which require more attention and better considerations.

Keywords: risk analysis; cycling; road crashes; injury severity; regression model

1. Introduction

Cycling is one of the keys to sustainable mobility because of its benefits such as zero-
emission, low land use, and positive effect on overall health. Accordingly, several European
governments support cycling through infrastructure development and legislation [1].
Consequently, the volume of cycling traffic is higher than ever in Europe. In Hungary, 70%
of commuters use at least bikes once a week and almost one-quarter of them considers the
bike as the main daily travel mode [2]. According to the results of a questionnaire that
asked people about their choice on typical days, 22% of mobility users prefer bikes over
any other mode [3]. The increasing rate of bike use results in safety issues as the number of
bicycle deaths increased from 6% to 8% in Europe during the last decade [4].

Specifically, Hungary is among the top three countries with respect to cyclist mortality
rates with 8 deaths per million inhabitants [5]. European Road Safety Observatory reported
that European cyclist fatalities were 9%, while cyclist fatalities in Hungary reached 13%
through all mobility modes [6]. These indicators raise the need for the evaluation of cyclist
crashes.

This research focuses on the analysis of more than 14,000 cyclist injuries between 2011
and 2014 in Hungary, as major cycling injuries rates per million with respect to population
was significant throughout European countries [7]. The main contribution in the research
is to estimate the probability among severity levels of a cyclist injury based on roadway
characteristics and road surface conditions using a binary logistic model. Moreover, this
study is based on data covering the Hungarian road network which contributes to the
literature as one of the largest datasets used in this regard.

The structure of the paper is as follows: After a brief literature review in Section 2,
detailed steps of the methodology can be found in Section 3. The description of data
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attributes is shown in Section 4. Results of the model, factors, and verification are pre-
sented in Section 5 as well as explanations and comparisons that were conducted. Finally,
conclusions are drawn and future research trends are identified.

2. Literature Review

Previous studies investigated the effect of the environment, traveler behavior, geome-
try, land, and the reaction of cyclists involved in bike crashes. In general, historical data,
questionnaires, and surveys were used and experimental tests were conducted. Studies are
either limited to a specific location, such as public transportation stops and intersections,
socio-demographic attributes, or road characteristics. On the other hand, measurements
were investigated to find the safety precautions for using helmets and the precautions
related to the speed of bicycles.

In papers that focused on a specific location, comparisons among critical events and
normal situations were made. Intersections, road surface, and the existence of pedestrians
were found to be the main factors that affect crash severity. Volume and occurrence were
studied by using simultaneous Bayesian framework [8] but were limited to signalized
intersections. Legged intersections, land use, employment, presence of bus stops, and
length of crosswalks were investigated together to estimate the risk. The same approach
was studied in Beijing, China. It was found that higher speed and flow possess greater
risk [9]. Since statistics are not available continuously, a study in 2008 focused on the
perceived risk in explicit circumstances [10]. Limited to roundabouts, the interaction
between cyclists and traffic regulations was studied in Denmark. Continuing with surveys
and limited to risk at signalized intersections, a recent publication used a binary logistic
regression model to identify the relationship between crossing behavior and violations in
Nantong, China [11]. Selected variables were examined such as red light running, length
of pedestrian crossing, and site type. Limited to bus stops, Xingchen and colleagues found
that the control of cyclists’ crossing time should be implemented to improve the level of
cycle path safety [12]. With respect to parking considerations, it was found that the number
of cyclist open vehicle door crashes was increasing [13] using statistical frequencies.

Several studies investigated the effect of road characteristics on cyclist safety. For
instance, a study investigated how cycling safety can benefit from a naturalistic approach
based on 16 users to estimate the risk [14]. This was a response to the cycling concerns
through a study conducted in Europe [15]. Regression analysis was used to find the
positive and negative effects on cyclist activities. Research in Switzerland compared e-
bikers and regular users and found no difference in the severity of crashes [16]. Similarly,
the severity of cyclist injuries and behavior were considered to test the use of safety
equipment, traffic light violation, and roadway characteristics [17]. Multiple regression was
applied and independent variables in univariate and multivariate models were analyzed.
A multinomial logit model was conducted to explore the features that have an impact on
the injury severity of cyclists in [18]. Four outcomes of severity were predicted through
the model. Weather, visibility, time, speed, vehicles involving, and age were the inputs.
Another research examined the relationships between built environment factors at the
traffic analysis zone level using hierarchal Bayesian estimation [19].

Socio-demographic attributes and road designs were linked with cyclists’ crashes [20,21].
Similarly, a study in Australia found that age, gender, socioeconomic status, alcohol
percentages, helmet usage, road type, speed limit, infrastructure, and temporal conditions
have the highest impact on cyclist injury severity [22]. Findings directed the need for
the enforcement of safety precautions equipment, separation of bicycle paths, and better
lighting in curved sections. In Spain, one of the largest studies used 13,540 records of
injuries [23]. After analysis with quasi-induced exposure approach, results showed that
alcohol and drugs results in more risk and collisions between bikes and mopeds and these
collisions are more severe compared to bikes with passenger cars. Seven European cities
were included in the prospective cohort study [24]. The large variation in injury severity
indicated that cyclists’ safety can still be improved. Variables of intoxication, helmet use,
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infrastructure, and conflicts relating to both bicycles and vehicles movement were studied
using the generalized ordered logit model in [25]. Fragility (children under 10 years old
and elderly cyclists over 60 years of age), alcohol percentage, car speed above 80 kilometers
per hour, and wet road surfaces were the main key factors of cyclist risk. Recently, a
generalized event count model was established to estimate the bicycle–vehicle conflict.
Cyclists’ perceived risk was assessed by utilizing questionnaire analysis [26]. Results
showed that bikers tend to misestimate risk at certain locations, such as at bus stops and
subway stations.

In Hungary, frequency analysis was conducted to compare car–pedestrian crashes
with car–cyclist ones [27]. The results may be used to improve the software and hardware
of the on-board-system of cars. Recently, researchers revealed bikers could use personalized
information on safety for better routing [28]. Otherwise, a clear gap in the region is noted
for the understanding of cycling and its relevant risk factors. It was noted that studies are
based on testing samples and surveys rather than historical data.

The current literature lacks comprehensive investigation of factors affecting cyclist
crashes based on a large volume of historical data, which is identified as a research gap.
In this research, more than 14,000 injury records are studied to investigate the impact of
road characteristics and surface conditions on cyclists’ crashes severity, which is the main
novelty.

3. Methodology

A cyclist injury severity model was elaborated by applying a binary regression model.
The model supports determining the effect of factors on injury severity.

Two severity categories were distinguished:

• Minor: slight injuries; hospitalization is not needed;
• Major: severe and fatal injuries; hospitalization is needed.

Binary logistic regression model was applied to estimate the risk probability, see
Equation (1):

P =
exp(b0 + ∑n

i=1 bixi)

1 + exp(b0 + ∑n
i=1 bixi)

(1)

where:

P probability of a major injury;
i risk factor;
b0 constant (intercept of the regression line);
bi coefficient of risk factor i;
xi binary variable of risk factor i, xi{0, 1};
n the number of risk factors.

The method is elaborated to determine bi values based on historical data. Thus, each
risk factor (i) has a coefficient (bi). If the risk factor exists, its binary representation (xi)
equals 1. If it is does not exist, its binary representation equals 0. The steps of the model
are shown in Figure 1 and are as follows:
Step 1: Cycling crash attributes are extracted from the database. Each attribute has a set of
values. The separated values are the risk factors, e.g., road surface condition is an attribute
and wet and dry surface are the risk factors.
Step 2: Data cleaning based on requirements to improve the reliability of the model. The
requirements are the following:

1. Risk factors are independent and either nominal or continuous;
2. No multi-collinearity;
3. Number of cases per risk factor should be at least 15 as the literature indicates [29];
4. Data are free from outliers to minimize the impact of variance on regression.

Step 3: Significance test of each risk factor for the decision on whether they are included in
the equation or not.
Step 4: Determining b coefficients values by generating binary logistic regression model.
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This is implemented by using the SPSS model. The coefficients (b) in Table 2 indicate how
each factor has an impact on the risk.
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4. Data Attributes

As the methodology establishes several steps to be conducted, this section is related
to data cleaning and verifying the final attributes and factors that are to be included in the
model.

4.1. Data

Data of road traffic accidents between 2011 and 2014 were provided by the Hungar-
ian Central Statistical Office (KSH). During this period, bicycle users were involved in
14,491 injuries with 39.4% classified as major injuries.

Table 1 shows these attributes and risk factors with their frequencies and percentages
for both minor and major injuries.
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Table 1. Risk factors and the number of cases per severity category.

Attributes Risk Factor (i)
Minor Major

Count % Count %

Roadway

One-way 1110 67% 554 33%

Divided Two-Way 534 68% 249 32%

Undivided Two-Way 7137 59% 4907 41%

Traffic Control

No Traffic Control 6516 59% 4489 41%

Traffic Sign (Stop/ Yield) 1814 65% 991 35%

Traffic Signal 401 65% 215 35%

Manual (Police man) 50 77% 15 23%

Surface Condition

Dry 6549 60% 4359 40%

Wet 1528 64% 846 36%

Oily (Slippery) 573 58% 411 42%

Snowy 131 58% 94 42%

Lighting

Day Time 6636 61% 4241 39%

Functioning Streetlight 1464 63% 875 37%

Inactive Streetlight 681 53% 594 47%

Marking

Clear 4739 61% 3082 39%

Abraded 1027 64% 587 36%

No Marking 3015 60% 2041 40%

Topography

Flat 7727 61% 4945 39%

Downhill 743 56% 591 44%

Uphill 311 64% 174 36%

Pavement

Perfect 5756 61% 3659 39%

Bad Conditions 2834 60% 1882 40%

Unpaved 191 53% 169 47%

Location Type

Not Intersection 5087 58% 3622 42%

Legged Intersection (T, Y, 4
or more legs) 3474 63% 1999 37%

Roundabout 220 71% 89 29%

Weather

Clear 8036 60% 5293 40%

Rainy and Snowy 634 66% 326 34%

Windy 15 45% 18 55%

Foggy 96 57% 73 43%

Area
Urban 7987 64% 4524 36%

Rural 1019 51% 961 49%

Roads Hierarchy

Local 4344 61% 2740 39%

Main 2428 61% 1536 39%

Highway 2237 65% 1206 53%

4.2. Checking Requirements

The requirements have been checked in accordance with the following:

• All factors are nominal and were tested using the Variance Inflation Factor (VIF)
test [30] and the correlation matrix. The results indicate medium correlation between
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surface conditions and weather. Thus, the weather condition is not included in the
model.

• The lowest number of injuries per factor (75, manual control) is greater than 15.
• Since there are no continuous attributes, the linearity test is not applicable.
• The study uses a case-wise diagnostics test that highlights cases with standardized

residuals greater than ±2.0 standard deviation. All of the cases have standardized
residuals less than ±2.0.

As a result, eleven attributes are included in the model, which include location type,
roadway characteristics, traffic control, lighting, topography, pavement conditions, marking
conditions, area type, road hierarchy, and surface conditions.

5. Results and Discussion

There are two main types of outputs of this model: (a) Determine which of the factors
(if any) have a statistically significant effect on the cyclist injury severity and (b) determine
how well the binary logistic regression model predicts the cyclists’ injury severity. The
results were generated using SPSS.

5.1. Risk Factors

Table 2 shows the coefficients (b) and the statistical significance (p) of risk factors.
Positive b indicates higher risk and negative b indicates lower risk compared to the base
condition (b = 0). The first line of each attribute is the base risk factor. Exp(b) gives the
ratio of odds of a major injury compared to base risk factors. Accordingly, the odds ratio is
equal to 1 in the case of the base risk factor.

Table 2. Statistical significance and coefficients of risk factors.

Attribute Risk Factor (i) b S.E. 1 Wald 2 df 3 p Sig * Exp(b)

Roadway

One-way 0 31.717 2 0.000 95% 1

Divided Two-Way −0.310 0.060 26.248 1 0.000 95% 0.734

Undivided Two-Way −0.221 0.082 7.153 1 0.007 95% 0.802

Traffic Control

No Traffic Control 0 6.088 3 0.007 95% 1

Traffic Sign (Stop/ Yield) −0.597 0.298 4.021 1 .045 95% 0.550

Traffic Signal 0.058 0.052 1.226 1 0.068 90% 1.060

Manual (Police man) 0.073 0.096 0.604 1 0.437 Not 1.076

Surface Condition

Dry 0 8.694 3 0.034 95% 1

Wet 0.378 0.169 4.975 1 0.026 95% 1.460

Oily (Slippery) 0.100 0.061 2.690 1 0.091 90% 1.105

Snowy 0.212 0.095 5.009 1 0.025 95% 1.236

Lighting

Day Time 0 9.179 2 0.010 95% 1

Functioning Streetlight −0.234 0.081 8.347 1 0.004 95% 0.792

Inactive Streetlight −0.184 0.088 4.345 1 0.037 95% 0.832

Marking

Clear 0 8.422 2 0.015 95% 1

Abraded 0.002 0.040 0.003 1 0.959 Not 1.002

No Marking −0.158 0.059 7.081 1 0.008 95% 0.854

Topography

Flat 0 15.494 2 0.000 95% 1

Downhill 0.148 0.095 2.450 1 0.098 90% 1.159

Uphill 0.351 0.108 10.631 1 0.001 95% 1.421
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Table 2. Cont.

Attribute Risk Factor (i) b S.E. 1 Wald 2 df 3 p Sig * Exp(b)

Pavement

Perfect 0 7.085 2 0.029 95% 1

Bad Conditions −0.302 0.114 7.078 1 0.008 95% 0.739

Unpaved −0.295 0.116 6.535 1 0.011 95% 0.745

Location Type

Not an Intersection 0 9.488 2 0.009 95% 1

Legged Intersection (T, Y, 4 or
more legs) 0.280 0.127 4.821 1 0.028 95% 1.323

Roundabout 0.166 0.126 1.746 1 0.186 Not 1.181

Area Type Urban 0 2 0.000 95% 1

Rural −0.374 0.051 56.367 2 0.000 95% 0.689

Roads Hierarchy

Local 0 5.792 2 0.055 90% 1

Main 0.092 0.051 3.206 1 0.073 90% 1.096

Highway 0.109 0.045 5.730 1 0.017 95% 1.115

Constant −0.383 0.493 0.602 1 0.038 90% 0.682

* Sig: Statistically significant at 90%, 95% Confidence Level, or Not Significant. 1 Standard error around the coefficient for the constant.
2 Wald chi-squared test that tests the null hypothesis of the constant equals 0. 3 Degrees of freedom for the Wald chi-squared test.

It was found that most of the factors are significant at a 0.95 confidence level. The b
coefficients are used in the equation to predict the probability of a major risk. The odds
ratios are shown in Figure 2.
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Considering base conditions (one-way, with no traffic control, daytime, with clear
marking, perfect pavement, flat sections, no intersection, urban area, local road, and dry
surfaces), P is equal to 40.5%. The share of major injuries is 32% in the data set. This is a
positive indicator of the reliability of the model. However, the probability of risk reaches
68.8% in extreme conditions (one-way, traffic signal, daytime, uphill, perfect pavement,
legged intersection, urban area, highway road, and wet road surface).

Rural areas were found to be nearly 20% safer than urban areas. This is expected due
to the higher conflict in the daily mobility between cyclists and vehicles in urban areas. It
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was also found that local roads are safer than main roads and highways. This indicates that
a lower speed limit is safer for cyclists. The results by focusing on road hierarchy and road
type are as follows: it was found that the probability of a major injury is approximately 10%
higher on main roads and highways than on local urban roads. On the other hand, rural
roads are generally 25% to 30% safer than urban roads in terms of major injury probability
despite the higher speed limits. The separate bikeways may explain this in rural areas that
have been developed through international projects in Hungary [31]. Furthermore, the
potential over-speeding is more probable in increasing injury severity in urban areas [32].

Although speed limits are higher in two-way roads, the probability of major injuries
is 20–26% lower on two-way roads than one-way roads. The narrow characteristics of
one-way roads may explain this phenomenon in Hungary. Namely, there is no run-off
area for cyclists in case of a crash. Furthermore, one-way roads with two-way traffic for
cyclists were introduced around 2012 in Budapest. The novel road type could also cause
an increase in the share of major injuries because car drivers do not expect cyclists from
the opposite direction. Accordingly, one-way roads require more investigation in the
future. However, the lower speed limit is safer for cyclists because the speed differential
between motorized vehicles and cyclists is low; our finding indicates that further measures
and policies are necessary to reduce the probability of major injuries. Compared to flat
sections, the probability of major injury increases by 15.9% and 42.1% along downhill and
uphill sections, respectively. In line with this, a study stated that downhill and uphill
topographies increase the risk of more severe injuries; however, the probability was not
calculated [33]. It was found that legged intersections are more dangerous by 32.3% than
road segments. This outcome is congruent with the results in the literature. However, the
difference is significantly greater than in Denmark with 11% [25]. The difference could
be due to the variation between the road networks. Conversely, roundabouts have no
significant difference over road segments. Similarly, a recent study found that risk factors
of cyclists in the roundabouts were not significant [34]. Comparing traffic signal and no
traffic control, the probability of a major injury is greater by 6.0% if the traffic is controlled
by traffic signals. This may be due to the significantly greater traffic volume at signalized
intersections. Traffic signs, such as stop or yield signs, make up approximately half of
the probability of a major injury compared to no traffic control. Chen and colleagues
emphasized that the probability of minor injuries is lower in signalized intersections than
intersections without control [35]. However, the effect of the traffic sign is not aligned
with a study conducted in Australia [36], which found that traffic signs have a negative
impact as well. On the contrary, this variation is explained by how traffic control is
unstable in the relationship with respect to cyclist injury severity [19]. On the other hand,
manual traffic control is not significantly different. Night street lighting is unexpectedly
safer than daytime. If the night streetlight is functioning or inactive, the injury severity
decreases by 21% or 17%, respectively. This is justified as cyclists and other travelers
are less careful during the daytime and limited visibility at night is a motivator to drive
more cautiously. Front and rear lights and reflective safety vests significantly improve the
visibility during night time; therefore, drivers and cyclists are more aware of each others’
presence. Additionally cyclists would rather use bike lanes due to safety concerns, which
decreases the probability of a major injury. In the literature, there is a clear debate over this
issue; an article stated that darkness increases the probability of fatal injuries compared to
daytime or functioning street lighting at night [18]. However, it was indicated lately that
daytime does not change risk odds ratios since street lighting and bicycle lights take care
of visibility issues [14]. Additionally, [25] found that darkness is associated with a lower
probability of severe and fatal cyclist injuries by 10% to 13%, which is more similar to this
investigation.

Regarding road surface conditions, there is no significant difference between abraded
marking and clear making. The probability of a major injury is lower by 14.6% along
not-marked roads. This finding is alike to what is found in [37], which reported that on
the condition of higher traffic volumes and undivided multilane roads, cyclist crashes are
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higher in frequency for marked sections. Furthermore, bikers pay extra attention along
non-marked roads. As per pavement conditions, the risk is lower by approximately 26% if
the road is in bad condition or unpaved. It may be because the traveling speed is lower
along these road types. Finally, non-dry surfaces increase the probability of major injuries
by a range from 10.5% to 46.0% for oily, wet, and/or snowy surfaces. The results are in
compliance with [14,25], which indicated a probability of 23% increased risk on a slippery
surface.

Accordingly, some measures and policies could be implemented to reduce major in-
juries. For instance, road safety measures should focus on one-way roads and intersections.
It is also necessary to apply safety measures at signalized intersections and optimize traffic
light control. Additionally, applying safety measures at downhill and uphill roads and
reducing speed of cyclists through tactile road markings are recommended actions. Finally,
informing cyclists about surface conditions using smart phone applications and on-site
variable sign messages to alert cyclists is recommended.

5.2. Verification

Omnibus tests of Model Coefficients and the Homer–Lemeshow Test were used to
assess the adequacy of the model (Table 3). It is found that the model is statistically
significant (p < 0.005 and p > 0.005, respectively). Both are based on the chi-square test to
check whether categorical variables are statistically associated.

Table 3. Significance of Model.

p

Omnibus Tests of Model Coefficients 0.000

Hosmer and Lemeshow Test 0.261

Nagelkerke R-Square was used to calculate variation. This value is sometimes referred
to as pseudo R2 value. In the model, the variation of the risk probability is 10.0%. Com-
paring to the wider literature that utilized pseudo R2, the research model has an accepted
value. For example, models were explained with a range from 7.3% to 21% in a relevant
study [38], while another described the variation with less than 3% [39] and traffic accident
research estimated the model of bikes’ severity with a range between 2% and 9% [40].

The number of correct predictions was calculated (Table 4). The optimal cut value was
0.39. Namely, the injury was predicted to be major if p is greater than 0.39. The rates of
correct predictions were 70.5% and 40.2% of minor and major injuries, respectively. The
overall correctness was 59.0%. The shares of minor and major injuries were 60.6% and
39.4%, respectively, according to the raw data. Thus, the model predicts each group with
acceptable percentages. Although the total prediction percentage is not that high, most
of the variables are significant. The significance of variables does not guarantee higher
predictions [41], especially with large data sets used in this study.

Table 4. Effectiveness of category prediction.

Correct Prediction

Minor Injuries 70.5%

Major Injuries 40.2%

Overall 59.0%

6. Conclusions

The factors affecting the severity of cyclist crashes were analyzed based on historical
data. Probabilities of major injuries are higher in signalized intersections, inclined topogra-
phies, one-way roads, urban areas, higher speed limits, and during the daytime, which
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require more attention and better considerations. Regarding the road surface components
themselves, it is found that good conditions are not perfect for the cyclists’ safety. This is
because good conditions may be more attractive for less experienced bikers, support higher
travel speed, and bikers must pay attention to more components of the traffic along busy
sections. Accordingly, bad road conditions and difficulties in visibility may decrease the
severity of injuries because they are less attractive for inexperienced bikers and travelers
pay extra attention in these situations. In general, the results are in line with those found
in the literature; however, the extent of the effect of several factors’ was not measured
previously, which is the main novelty of this research. Furthermore, significant differences
were found in the extent of effect compared to previous studies with respect to economic
and demographic aspects. These differences require further research and support decision
makers to identify the best practices and policies.

However, some limitations should be noted because of the lack of data about speed
limits and bicycle lanes. For future research, we aim to increase the model predictions by
studying the effect of other attributes, specifically continuous variables such as vehicle
speed. One of the most important points is also to study the impact of lighting and visibility
on cyclists’ behavior and risk. Moreover, future investigations could target the study of
the relationship between speed limit, area type, the presence of bicycle lanes, and injury
severity through road hierarchy classification. This research is an initiating point to find
the safety aspects related to behavior and attitude of passengers in their decisions of using
private cars, public transportation, and soft mobility modes, such as cycling.
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