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Abstract: With stringent environmental regulations and a new drive for sustainable manufacturing,
there is an unprecedented opportunity to incorporate novel manufacturing techniques. Recent
political and pandemic events have shown the vulnerability to supply chains, highlighting the need
for localised manufacturing capabilities to better respond flexibly to national demand. In this paper,
we have used the spinning mesh disc reactor (SMDR) as a case study to demonstrate the path forward
for manufacturing in the post-Covid world. The SMDR uses centrifugal force to allow the spread of
thin film across the spinning disc which has a cloth with immobilised catalyst. The modularity of the
design combined with the flexibility to perform a range of chemical reactions in a single equipment
is an opportunity towards sustainable manufacturing. A global approach to market research allowed
us to identify sectors within the chemical industry interested in novel reactor designs. The drivers for
implementing change were identified as low capital cost, flexible operation and consistent product
quality. Barriers include cost of change (regulatory and capital costs), limited technical awareness,
safety concerns and lack of motivation towards change. Finally, applying the key features of a
Sustainable Business Model (SBM) to SMDR, we show the strengths and opportunities for SMDR
to align with an SBM allowing for a low-cost, sustainable and regenerative system of chemical
manufacturing.

Keywords: spinning mesh disc reactor; reaction intensification; flexible manufacturing; resilient
supply chain; sustainable business models

1. Introduction

Applying the key features of a Sustainable Business Model (SBM) [1] to a chemical
manufacturing innovation called Spinning Mesh Disc Reactor (SMDR), this paper shows
the strengths and opportunities for SMDR to align with an SBM by creating a low-cost,
sustainable and regenerative system of chemical manufacturing. The chemical and process
industries are responsible for the creation of materials, which are processed into products
for multiple consumer markets using clean, safe and economical manufacturing technolo-
gies [2]. The global chemical industry (including pharmaceuticals) accounts for a significant
share in world trade and economics, as it is a key driving force for innovation and smart
growth in sectors such as construction, transport, energy and health [3]. Achieving eco-
nomic sustainability has always been one of the top priorities for the chemical sector, but
there is a shift to also include environmental sustainability which requires the intervention
of new technologies and business models [2–4]. The design of existing manufacturing
technologies limits their application for novel processes like bio-transformation, multi-
catalytic reactions, synergistic processing (combination of two or more energy forms) and
continuous processing in fine chemicals manufacturing [5,6]. Additional challenges such
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as poor energy efficiency and production of waste by-products have further highlighted
the need for innovative technologies which can drive sustainability in the chemical sector.

Academic research to date have reported several novel chemical reactor designs such
as microchannel, oscillatory-baffled reactor, rotating packed bed reactor and spinning disc
reactors which have shown to improve resource efficiency (both monetary and environmen-
tal) on a laboratory scale, with significant implications for the fine chemical industry [7–10].
The Spinning Mesh Disc Reactor (SMDR) is one such reactor developed by the Emanuels-
son research group, which has shown potential for efficient and scalable production of fine
chemicals [11–14]. The research has now been incorporated as SMDR Limited, to explore
the commercial opportunities for the reactor in the pharmaceutical sector. With over 10
years of research into the SMDR and an intensive market assessment, we have identified
the key attributes required in a commercial catalytic reactor as:

• Fast reaction rates and high selectivity to minimise by-products
• Suitable for shear sensitive catalysts (enzymes and microbes)
• Small and flexible design, easy scale-up and low capital investment cost
• Allow recovery and re-use of expensive catalysts

The aim of this article is to present our findings from extensive global market research
for novel reactor designs and to show how SMDR can feed into an SBM. We have chosen
the SMDR technology as a case study of a newly developed reactor design, which allows
for flexible manufacturing and easy scale-up. The results from the market research will
be analysed based on the characteristics of the SMDR to identify the opportunities and
barriers for commercialising the SMDR. Finally, we will demonstrate the strengths and
opportunities of the SMDR for regenerative manufacturing by exploring the extent to
which its innovative criterion matches the features of SBM to enable local, flexible and
resilient manufacturing.

2. Current State of Catalytic Reactors
2.1. Manufacturing Processes

Batch catalytic reactors consist of a cylindrical vessel with one or more stirrers mounted
on a central shaft to enable mixing of reactants required for product formation [10]. They
are widely employed in chemical industries as they are easy to operate and economical
for bulk chemical production. Batch catalytic reactors have been used in fine chemical
industries globally for close to 500 years with little or no change to the reactor design.
Meanwhile, in 2019, the total revenue of the chemical industry worldwide stood at some
3.94 trillion U.S. dollars [15].

While batch reactors are easy to operate and a cost-effective solution for operation on a
small scale, they are met with significant challenges when it comes to multiphase reactions
and reactor scale-up. Unlike bulk chemicals, pharmaceutical products are produced at a
scale of 1000 to 10,000 tonnes per annum [16]. Scaling-up production from the scale of the
laboratory to mass production is associated with two main challenges:

1. Processing time for production at scale is longer compared to laboratory scale pro-
cesses. This leads to catalyst degradation and deterioration of product quality over
time resulting in reduced productivity of the process.

2. Laboratory scale productivity is optimised in equipment with lower volume capacity.
However, production at scale is carried out in large tanks or vessels which affects the
homogeneity of the finished product and increases the energy cost required to mix
the entirety of the reaction solution.

Modifications to the traditional batch reactor design have improved productivity, but
it remains unsuitable for shear sensitive catalysts, such as enzymes, resulting in catalyst
de-activation. Other reactor configurations like the packed bed reactor and bubble column
reactors have shown better performance for multiphase reactions with improved catalyst
recovery, but are however still limited in terms of high heat and mass transfer resistance
upon scale-up [17,18]. Hence, there is a need for multi-functional reactors and alternate
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processing methods which can alleviate intermediate, inefficient processing steps and
reduce the need for energy intensive downstream product purification.

Catalysts are an essential component for producing chemicals on an industrial scale
as they increase the rate of a reaction without being consumed. They are either suspended
in the solution (dissolved or as particles) or immobilised on a surface. Catalytic processes
accelerate product formation resulting in higher product yield and reduction in energy
costs. While 80% of basic chemicals are produced catalytically, only 20% of fine chemicals
like pharmaceutical intermediates employ catalysts in their production process [19]. This
implies that most of the fine chemical production is based on a direct scale-up of laboratory
scale synthesis procedure, which results in by-product formation often exceeding the
production of the target chemical. The lack of catalyst utilisation is not due to the lack
of catalytic process but mainly due to the novelty and the related uncertainty of using
catalysts in chemical reactions. Hence, they are regarded as an important tool to achieve
both sustainability and profitability in the fast-growing fine chemical industry with a need
to improve process efficiency.

2.2. Socio-Ecological Challenges

With an increasing awareness about resource use and government regulations, chemi-
cal industries are fast realising the need to change their manufacturing processes to align
with sustainable strategies.

Current manufacturing in fine chemical industries largely employs catalytic materials
that are expensive, toxic or harmful to both environmental and human health [20]. Bio-
chemical catalysts such as enzymes are a greener alternative as they are highly specific in
nature, require milder operating conditions, resulting in lower waste formation and energy
requirements. The key challenge however is that enzymes are expensive catalysts in its
recovery and re-use which limits their application in the fine chemical industry. Enzyme
immobilisation has shown to enhance the cost-efficiency of the bio-catalytic process since
the catalytic activity is maintained for a longer duration which allows for recovery and
re-use of enzymes [21]. However, utilisation of immobilised catalysts requires increased
mixing, hence increasing energy costs and catalyst disintegration, which until now limits
the application of the current batch reactor design.

Additionally, batch reactors are not flexible on the production and consumption
sides of the supply-chain as they are not designed for: (i) de-centralised processes where
resources can be processed close to the place of extraction, and (ii) being responsive to
demand-led changes driven by social and political shocks on the supply-chain, such as
the COVID-19 crisis. In effect, post-WWII production and consumption patterns were
mainly determined by the availability of raw materials (mainly petroleum based) resulting
in manufacturing being restricted to certain geographical areas rich in raw materials [22].
To enable the transition towards bio-economy and renewable resources, it is crucial to
develop flexible manufacturing technologies which are able to operate at different scales
and in different geographical settings.

However, technical innovations alone cannot accelerate the transition towards sustain-
able technologies. One of the key barriers to change is the process of regulation in the fine
chemical industry. These are often well established for existing manufacturing technologies
and any process change is accompanied by expensive and time-consuming regulatory
approval. Policies for increased incentives for companies adopting and investing in sus-
tainable technologies, cost-effective regulation, de-risking/increased public funding for
new research, recognition from the society creating a demand for sustainable technologies
can overcome the barrier to change [3]. Additionally, there is a knowledge gap about using
these innovative manufacturing technologies due to the lack of skills required to operate
and monitor these new systems, hence decelerating technology transfer from research labs
to industry.
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Hence, there is a need for a cost-efficient reactor that has the potential to support a
range of catalytic reactions at varying production capacities without additional modifica-
tions to the reactor design.

3. SMDR as a Case Study for Sustainable Reactors

Process intensification (PI) is a recent development in chemical processing with the
potential to facilitate a quantifiable change in the conventional manufacturing practices of
chemical industries. This is usually accompanied by a reduction in the size of the apparatus,
energy consumption and/or waste generation, resulting in the sustainable development
of process industries [12]. On a macroscale, PI has led to a new generation of reactors
and processing methods, allowing for better control of the reaction pathways at meso
and molecular level leading to: (i) enhanced reaction rate, (ii) increased selectivity of the
product and (iii) scale-up of novel chemistry on a commercial scale [13].

Among the new generation of PI reactors, the Spinning Mesh Disc Reactor (SMDR)
has shown potential to incorporate the fundamental domains of PI and facilitate reaction
intensification. The reactor builds on the nearest state-of-the-art such as the spinning mesh
disc reactor (SDR) and Chromatotron (thin-layer centrifugal chromatography). The SMDR
is a flexible, modular and scalable reactor for catalytic reactions. The reactor consists of a
rotating disc that has a cloth with immobilised catalyst resting on top (Figure 1). The liquid
feed is distributed at the center of the disc, and the spinning motion of the disc allows
the formation of a thin liquid film, over and within the cloth. This increases the contact
time between the liquid feed and the catalyst, achieving high mass transfer and thus fast
reaction rates. The cloth protects the catalyst from shear forces and can be easily removed
from the disc at the end of the reaction to be then reused multiple times. Reaction scale-up
can be achieved with minimum capital investment and a small footprint, by simply adding
more catalyst cloths onto the disc, thus eliminating the need for a reactor re-design for
higher feed throughput.
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3.1. The ICURe Journey: Global Market Research for the SMDR

The SMDR is able to achieve fast reaction rates, improve catalyst recovery, can be
easily scaled-up and is applicable to a range of reactions on the lab scale. Such performance
encouraged the Emanuelsson Research group to investigate the commercial prospects
for the reactor. We conducted extensive market research and customer discovery for
the SMDR through the ICURe (Innovation to Commercialisation of University Research)
program funded by Innovate UK. We engaged with more than 100 companies around
the globe in key chemical sectors such as cosmetics, pharmaceuticals, specialty chemicals
and chemical reactor manufacturers. The main objective was to identify the current
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challenges in chemical manufacturing (customer welfare loss) and to understand whether
the SMDR had the potential to alleviate these challenges to improve processing efficiency
in chemical industries (customer gains). The general observation across all sectors was that
there is a drive towards implementing sustainable solutions to processing and product
development, either through utilising raw materials derived from renewable resources
or by adopting alternate processing technologies. Replacing existing chemical catalysed
processes with enzyme catalysts was another common interest observed across the fine
chemical industry. The key drivers among the companies who were actively taking steps
towards implementing change were found to be at the organisational level (company
strategy and vision towards reducing carbon emissions), at the policy level (government
regulations and incentives), and at the market level (perception of clients and competitive
advantage over competitors).

However, it was observed that there is still a gap between the rate at which innovative
process technologies are reaching the market and their implementation on a commercial
scale. Some of the common reasons were found to be:

1. Cost of change: Chemical sectors such as pharmaceutical and cosmetic industries have
to comply with stringent regulations and any change in the existing process requires
lengthy and expensive regulatory approvals. The cost of production downtime often
outweighs the benefit of higher process efficiency and product yield.

2. Initial capital expenditure (CAPex): The current batch reactor technology for manufac-
turing in fine chemical industries has been in use for decades and is well established.
Adopting new reactor technology would require capital investment for procuring and
installation of these reactors to replace the existing reactors. The reactors themselves
are depreciating assets and they have no resale value. Medium scale fine chemical
companies in the US and India stated that it was not beneficial for the company to
invest in a low TRL technology with high uncertainty when they were able to generate
profits with their existing reactor capabilities. These companies are improving the
efficiency of the batch reactors by investing in improved impeller designs as they can
be retrofitted to the batch reactor with minimum disruption to the process. How-
ever, most companies in Europe and large-scale companies in the US and India were
investing in new reactor technologies despite a significant capital investment. The
reactors were being employed for either newly commissioned processes (with no
existing production facility) and/or for niche chemicals of high value with lower
production demands. Most companies acknowledged the potential of these reactors
for the production of high value chemicals as they improve product yield, while also
reducing the operating costs for the process.

3. Knowledge gap: PI reactors have shown great potential to be implemented on a com-
mercial scale owing to their success in laboratory scale operations. Some PI reactors
like the micro-channel reactor are increasingly being used for commercial operations
but are not often publicised due to competition and confidentiality. PI reactors are
known to be inherently safer than batch reactors due to lower reaction volumes.
However, conversations with companies showed that there have been safety related
incidents with PI reactors due to the lack of specialist knowledge required to optimise
and operate these reactors. These factors have affected the commercial success of PI
reactors.

4. Motivation for change: This was one of the major challenges identified by chemical
companies for replacing batch reactors. Companies involved in manufacturing new
reactor technologies mentioned that it was hard to spark enthusiasm among the top
management in chemical companies as they are the decision makers. The interactions
also showed that the US was a tough market for new reactors as there is no incentive
or drive for a process change. On the other hand, the Asian–Pacific region is a
fast-growing market for emerging reactor technologies due to large manufacturing
facilities and most reactor manufacturers have found traction through clients from
this region. The European market was found to be equally responsive to change as it is
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an active research hub for emerging reactor technologies incentivised by government
and company policies for sustainable manufacturing.

3.2. Sustainable manufacturing: Opportunities for the SMDR
3.2.1. Affordability and Market Outreach: Low Capital Investment

The Active Pharmaceutical Ingredients (API) division within the pharmaceuticals
sector is identified as the immediate target market for the SMDR. APIs are high value
products that determine the therapeutic nature of the medicine (end product). The global
API market is valued at USD 165 billion and is growing at 6.4%. Asia–Pacific has the largest
market share while Europe constitutes 22% [23]. Similarly, the global market for emerging
reactor technologies is valued at USD 1.2 billion with Asia–Pacific, Europe and the UK
constituting a significant proportion of the market share [24].

The common manufacturing challenges companies have in this sector are: catalyst
recovery, product scale-up and slow reaction rates. Market research showed that pharma-
ceutical companies involved in API production are investing in PI reactors, due to benefits
such as low capital investment, high productivity and inherent safety. India (12.3%) and
China (53.2%) are fast growing markets for low cost APIs and are the likely early adopters
of the SMDR due to an increased purchasing power of pharmaceutical companies and a
growing interest in emerging reactor technologies [25,26].

The current business model of equipment procurement is associated with the initial
investment for procuring new reactors. This is a key risk for chemical companies due to
the uncertainty associated with the new PI reactors. At SMDR Limited, we have envisaged
a subscription model, similar to the Nespresso business model, to reduce this barrier to
market entry. For a monthly subscription fee, pharmaceutical companies will be able to
lease the reactor prototype accompanied by an optimised protocol for the production of
API. The clients will also receive support in the form of remote reaction monitoring and
catalyst cloth replacement for an additional service fee, which is a recurring revenue for
SMDR Limited. During market research, we found that adopting this model for the SMDR
would minimise the product lead time and the cost to our clients and hence reducing the
barrier for market entry. This business model has the potential to disrupt the existing sales
model of the reactor manufacturing industry as the clients no longer have to pay upfront
capital and reducing the risk of adoption of a new technology. Additionally, it has been
shown that the construction period for PI reactors is reduced from three years to one year,
resulting in 35% higher net present value for these modular reactors [27]. These economic
benefits make the SMDR a competitive reactor technology.

3.2.2. High Productivity and Scaling Up

One of the major drawbacks of the batch reactor is that the scale-up in production
requires an increase in the reactor size, which leads to higher mixing costs and heterogeneity
of the product due to large reaction volume. Unlike the batch reactor, the SMDR can be
scaled-up through ‘numbering-up’, i.e., by adding multiple catalyst cloths on top of the disc
or adding multiple discs to the central shaft, eliminating the need for a complete reactor
re-design. The reaction in the SMDR takes place within the thin liquid film on the disc
and hence allows for operation with a wide range of feed throughput. This also reduces
the inconsistency in the product quality as there is uniform contact between the reaction
mixture and the catalyst cloth. For example, a 35% increase in productivity was observed
in the SMDR for an enzyme catalysed kinetic resolution of racemic alcohol compared to the
batch reactor [12]. This shows that the productivity in the SMDR is not affected by process
scale-up, unlike the batch reactor. The Emanuelsson research group has shown that for
lipase catalysed tributyrin hydrolysis, the reaction rate nearly doubled as the number of
catalyst cloths increased from one to four cloths for a given initial reactant concentration
(Figure 2a).
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In another study, a comparison between ‘scale-out’ and ‘numbering-up’ of the SMDR
was investigated using varying disc/cloth size and cloth numbers (Figure 2b). It was
observed that a simultaneous increase in the catalytic cloth size and cloth number led to
increased productivity for high input feed concentration. For lower initial feed concentra-
tions, it was observed that the productivity achieved using a single 50 cm catalyst cloth was
similar to that using obtained using a stack of three 20 cm cloths [11]. This demonstrates
that the SMDR can either be scaled-up or scaled-down to allow for varying production
capacities depending on the process requirements.

3.2.3. Inherent Safety

In addition to improving process efficiency, the SMDR is benign by design due to
miniaturisation of the chemical process. Working with chemists at the reaction development
stage allows us to take an inherently safer and ethical approach both when developing
new chemistry and for reactor scale-up. We are guided by the 12 principles of green
chemistry and engineering and have implemented most principles (either through selection
in the initial chemistry development, or optimisation in the reactor). For example, the
following principles were applied: using safer solvents; better atom economy; prevent
waste; maximise energy, time, mass and space efficiency; catalysis; inherent safer design
and design for separation.

The reactor is characterised by small functional volumes exposed to reaction conditions
such as high temperature and pressure, minimising the consequences in case of a mishap.
This is also safer for reactions which utilise hazardous chemicals, minimising the quantities
exposed to harsh reaction conditions. The SMDR also promotes distributed manufacturing,
where production in small volumes takes place in multiple locations instead of a central
large production facility. This further reduces the risk of transporting toxic chemicals and
safety issues related to their storage. The long term goal would be to enable on-demand
production for immediate consumption, reducing the need to store inventory and the
product.

3.3. A Regenerative Approach for Resilient Manufacturing

In the management literature around clean production, Sustainable Business Models
(SBM) have emerged over the past few years as viable models able to embrace the envi-
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ronmental and social challenges for sustainable innovations [1,28]. The advantages of the
SMDR business model are numerous in that respect, whether it is in terms of affordabil-
ity, economic efficiency, safety, inclusivity, or environmental sustainability. Yet, from the
global market research described above of potential companies willing to adopt sustainable
technologies, a few entry barriers persist including the initial investment required, the
knowledge transfer required to implement innovative technologies successfully, and the
lack of corporate motivation that impedes a successful uptake of such technologies to
replace traditional methods of chemical production. As will be discussed now, we will
assess the extent to which SMDR is a successful SBM able to overcome such entry barriers.

According to the literature review of [1], the feature of SBMs for manufacturing innova-
tions are namely (1) sustainability, (2) circular economy, (3) value chains, (4) value creation,
(5) information technology, (6) core values, (7) organisational values, (8) performance
management and (9) stakeholder engagement (partnership, participation, communication
and consultation).

(1) Sustainability: The resilience of a successful SBM comes from its ability to make
strategic business decisions in reaction to social, economic and environmental shock
to sustain the innovation in the long-run [1]. Here, SMDR provides a modular and
regenerative approach to fine chemical production. SMDR is able to fulfil its long-
term goal of producing on-demand, at the point of resource extraction, for immediate
consumption. Such context-based technology means that, in the event of external
shocks on the supply chain as for example experienced with the Covid crisis, such
shocks will be absorbed by the regenerative supply chain, able to answer quickly to
supply changes by scale-up or down with limited costs.

(2) Circular economy: Reducing waste and managing resources as efficiently as possible
to narrow the energy and material loops is key to a successful SMDR [1]. Raworth [29]
has explained the ways in which a circular economy enhances industrial manufac-
turing with a regenerative system that minimises the loss of biological and technical
nutrients. The SMDR includes the use of biological components and processes that
are inherently safe, as guaranteed by the application of the 12 principles of green
chemistry (see point c above). The resulting effect on the circular system is that hu-
man interactions with the production process are safe, thus minimising the negative
impact of chemical production on human health and biodiversity. The technical
nutrients within the SMDR process include the catalyst, tailor-made to production
requirements, and the cloth on top of the reactor that can be re-used in subsequent
production cycles. The resulting effect on the circular system is the reuse of the cloth,
which can also be adjusted to the scale of production.

(3) Value chains: A successful SBM nurtures the value chain starting with resources,
suppliers, customers, support activities, and input activities [1]. A main ecological
challenge with traditional batch reactors is that by-product formation often exceeds
the production of the target chemical. However, with the SMDR process, production
can be made on site and on-demand, shortening the supply chain to its direct out-
put requirements, thus cutting down on transportation costs and on the storage of
chemicals with its potential environmental damages.

(4) Value creation: The concept of “value” in SBM here relies on the link between corpo-
rate strategy and intangible assets that create value in the long-run [1]. Such intangible
assets include finance, manufacturing, intellectual property, human capabilities, social
and natural relationships. Impact research would be needed here to assess the impact
of SMDR on value creation at the implementation stage, but feature (1) to (3) provides
a sound theoretical grounding for value creation in the long-run.

(5) Information technology: Innovation in IT to support the manufacturing innovation
in modelling, managing, and controlling its impact on ecosystem processes [1]. The
SMDR aligns with “Industry 4.0” to support smart manufacturing through reactor
automation, providing improved control on product quality.
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(6) Core values: Interdependence, reliability, loyalty, commitment, consistency, efficiency,
creativity, inclusivity, respect and positivity are core values of a successful SBM [1].
Inclusivity of all potential producers is possible with a subscription system allowing
the SMDR to overcome the main entry barriers of the initial investment and the
knowledge transfer necessary to make the SMDR operational on a small and large
scale. Local producers in the Global South, often overpowered by the interests of
transnational corporations and governmental pressures could therefore have easy
access to such technology. For example, in the Democratic Republic of the Congo,
a coalition between transnational capital and the Congolese state has held back
locally led processes of mining mechanisation [30]. Access to simple, modular, and
regenerative technology such as SMDR could empower local producers to process
and scale-up mining output locally.

(7) Organisational values: Employee, social and environmental safety, responsibility,
profitability and drive for results are key organisational values of an SBM [1]. Such
values will depend on the organisation in which SMDR is implemented, but the
inherent safety (c) and high-productivity (b) of SMDR is conducive to enhance an
SBM.

(8) Performance management: A successful SBM needs to incorporate performance
measurement into all aspects of industrial processes including service, business
management, quality, productivity and efficiency [1]. Performance management
will again depend on the organisation in which SMDR is implemented, but with a
lease-system allowing to monitor its implementation and efficiency, there is again
scope for SMDR to enhance an SBM.

(9) Stakeholder engagement: Partnership, participation, communication, and consulta-
tion are key elements for a successful SBM. As such, the key features of SMDR (a) to
(c) are well-aligned with the current Sustainable Development Goals [31], especially
Goal 9 Industry, Innovation and Infrastructure; Goal 11 Sustainable Cities and Com-
munities, and Goal 12, Responsible Consumption and Production. There is therefore
scope to engage governmental and international support to implement SMDR in both
the Global South, such as sub-Saharan Africa [32] and the Global North.

4. Conclusions

The chemical process industry has started to make progress towards adopting innova-
tive reactor and process technologies with the potential to improve the sustainability of
manufacturing. Process intensification reactors such as the SMDR have shown promising
results on the lab scale to improve the overall productivity and sustainability of processing
for the fine chemical sector. The SMDR can be scaled-up with minimum modifications
to the reactor design and allows for recovery of expensive catalyst, reducing the need
for energy intensive purification steps. Market assessment for the SMDR identified the
pharmaceutical sector to be the immediate target market due to benefits such as high
product quality and low turnaround time. Although there is a drive towards green tech-
nologies among chemical companies, key barriers to change such as cost, regulations and
lack of technical knowledge have resulted in the slower implementation of innovative
chemical reactor designs. The pandemic has highlighted the need for resilient and flexible
manufacturing technology to minimise the risk of lean supply chain of pharmaceuticals.
The modular and flexible characteristics of the SMDR provide a pathway for pharmaceuti-
cal companies to manufacture important intermediates locally, eliminating the need for
wide scale imports. A combination of government policies, regulatory and investment
support in line with the SDGs is necessary for commercial implementation of technologies
like the SMDR which have demonstrated sustainable advantage but are associated with
higher risk compared to existing conventional technologies. Finally, from the application of
SMDR to SBM, despite promises in terms of sustainability, circular economy, stakeholder
engagement, core values and value chains it remains that a successful implementation of
SMDR as an SBM relies on the organisational values in which SMDR will be implemented.
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Future research on impact assessment of SMDR implementation at the organisational level
is therefore needed.

Author Contributions: P.S.: Conceptualization, investigation, validation, writing, funding acqui-
sition. A.C.: Writing—contribution, review and editing. E.A.C.E.: Conceptualization, funding
acquisition, writing—review and editing. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded through the ICURe Program (Innovate UK). Grant number:
25-05/519437115.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the support and funding received through the ICURe
program for market research and customer discovery for the SMDR. The authors would also like
to thank the University of Bath for their continued research support which a part of this work has
received.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goni, F.A.; Chofreh, A.G.; Orakani, Z.E.; Klemeš, J.J.; Davoudi, M.; Mardani, A. Sustainable business model: A review and

framework development. Clean Technol. Environ. Policy 2020, 23, 1–9. [CrossRef]
2. Barthelemy, P.; Agyeman-Budu, E. European chemical industry’s contribution to sustainable development. Curr. Opin. Green

Sustain. Chem. 2016, 1, 28–32. [CrossRef]
3. Jenck, J.F.; Agterberg, F.; Droescher, M.J. Products and processes for a sustainable chemical industry: A review of achievements

and prospects. Green Chem. 2004, 6, 544–556. [CrossRef]
4. Bieringer, T.; Buchholz, S.; Kockmann, N. Future production concepts in the chemical industry: Modular–small-scale–continuous.

Chem. Eng. Technol. 2013, 36, 900–910. [CrossRef]
5. Gorak, A.; Stankiewicz, A. Intensified reaction and separation systems. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 431–451. [CrossRef]
6. Van Gerven, T.; Stankiewicz, A. Structure, energy, synergy, time—The fundamentals of process intensification. Ind. Eng. Chem.

Res. 2009, 48, 2465–2474. [CrossRef]
7. Miyazaki, M.; Maeda, H. Microchannel enzyme reactors and their applications for processing. Trends Biotechnol. 2006, 24, 463–470.

[CrossRef]
8. Chung, B.H.; Chang, H.; Han, M.H. Enzymatic conversion of rifamycin B in a rotating packed disk reactor. J. Ferment. Technol.

1986, 64, 343–345. [CrossRef]
9. Chen, Y.-H.; Huang, Y.-H.; Lin, R.-H.; Shang, N.-C. A continuous-flow biodiesel production process using a rotating packed bed.

Bioresour. Technol. 2010, 101, 668–673. [CrossRef]
10. Visscher, F.; Van der Schaaf, J.; Nijhuis, T.; Schouten, J. Rotating reactors—A review. Chem. Eng. Res. Des. 2013, 91, 1923–1940.

[CrossRef]
11. Shivaprasad, P.; Jones, M.D.; Frith, P.; Emanuelsson, E.A.C. Investigating the effect of increasing cloth size and cloth number in a

spinning mesh disc reactor (SMDR): A study on the reactor performance. Chem. Eng. Process. 2020, 147, 107780. [CrossRef]
12. Shivaprasad, P.; Jones, M.D.; Patterson, D.A.; Emanuelsson, E.A.C. Kinetic resolution of 1-phenylethanol in the spinning mesh

disc reactor: Investigating the reactor performance using immobilised lipase catalyst. Chem. Eng. Process. -Process Intensif. 2018,
132, 56–64. [CrossRef]

13. Shivaprasad, P.; Jones, M.D.; Patterson, D.A.; Emanuelsson, E.A.C. Process intensification of catalysed henry reaction using
copper-wool catalyst in a spinning mesh disc reactor. Chem. Eng. Process. Process Intensif. 2017, 122, 550–559. [CrossRef]

14. Feng, X.; Patterson, D.A.; Balaban, M.; Fauconnier, G.; Emanuelsson, E.A.C. The spinning cloth disc reactor for immobilized
enzymes: A new process intensification technology for enzymatic reactions. Chem. Eng. J. 2013, 221, 407–417. [CrossRef]

15. Garside, M. Total Revenue of the Global Chemical Industry from 2005 to 2019. Available online: https://www.statista.com/
statistics/302081/revenue-of-global-chemical-industry/ (accessed on 1 March 2021).

16. Pollard, D.J.; Woodley, J.M. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 2007, 25, 66–73.
[CrossRef]

17. Kumaresan, T.; Joshi, J.B. Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J. 2006, 115,
173–193. [CrossRef]

18. Stitt, E. Alternative multiphase reactors for fine chemicals: A world beyond stirred tanks? Chem. Eng. J. 2002, 90, 47–60. [CrossRef]
19. Eder, P.; Sotoudeh, M. Innovation and Cleaner Technologies as a Key to Sustainable Development: The CASE of the chemical Industry;

European Commission, Joint Research Centre, Institute for Prospective, European Commission: Brussles, Belgium, 2000.

http://doi.org/10.1007/s10098-020-01886-z
http://doi.org/10.1016/j.cogsc.2016.08.002
http://doi.org/10.1039/b406854h
http://doi.org/10.1002/ceat.201200631
http://doi.org/10.1146/annurev-chembioeng-061010-114159
http://doi.org/10.1021/ie801501y
http://doi.org/10.1016/j.tibtech.2006.08.002
http://doi.org/10.1016/0385-6380(86)90129-9
http://doi.org/10.1016/j.biortech.2009.08.081
http://doi.org/10.1016/j.cherd.2013.07.021
http://doi.org/10.1016/j.cep.2019.107780
http://doi.org/10.1016/j.cep.2018.08.012
http://doi.org/10.1016/j.cep.2017.04.003
http://doi.org/10.1016/j.cej.2013.02.020
https://www.statista.com/statistics/302081/revenue-of-global-chemical-industry/
https://www.statista.com/statistics/302081/revenue-of-global-chemical-industry/
http://doi.org/10.1016/j.tibtech.2006.12.005
http://doi.org/10.1016/j.cej.2005.10.002
http://doi.org/10.1016/S1385-8947(02)00067-0


Sustainability 2021, 13, 6944 11 of 11

20. Song, J.; Han, B. Green chemistry: A tool for the sustainable development of the chemical industry. Natl. Sci. Rev. 2015, 2, 255–256.
[CrossRef]

21. Shivaprasad, P.; Emanuelsson, E.A.C. Process Intensification of Immobilized Enzyme Reactors. In Intensification of Biobased
Processes; Górak, A., Stankiewicz, A., Eds.; Royal Society of Chemistry: London, UK, 2018; pp. 249–267.

22. Béfort, N.; de Fouchécour, F.d.S.; de Rouffignac, A.; Holt, C.A.; Leclère, M.; Loth, T.; Moscoviz, R.; Pion, F.; Ruault, J.-F.; Thierry, M.
Toward a European bioeconomic transition: Is a soft shift enough to challenge hard socio-ecological issues? In European Workshop
on Bioeconomy; HAL: Paris, France, 2017.

23. Global Generics; Marketline: London, UK, 2020.
24. Kiran Pulidindi, H.P. Flow Chemistry Market Size. Available online: https://www.gminsights.com/industry-analysis/flow-

chemistry-market (accessed on 26 March 2021).
25. Generics in China; Marketline: London, UK, 2018.
26. Generics in India; Marketline: London, UK, 2020.
27. Seifert, T.; Sievers, S.; Bramsiepe, C.; Schembecker, G. Small scale, modular and continuous: A new approach in plant design.

Chem. Eng. Process. 2012, 52, 140–150. [CrossRef]
28. Boons, F.; Lüdeke-Freund, F. Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. J.

Clean. Prod. 2013, 45, 9–19. [CrossRef]
29. Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist; Chelsea Green Publishing: London, UK, 2017.
30. Radley, B.; Geenen, S. Struggles over value: Corporate–state suppression of locally led mining mechanisation in the Democratic

Republic of the Congo. Rev. Afr. Polit. Econ. 2021, 1–17.
31. Nations, U. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations, Department of Economic and

Social Affairs: New York, NY, USA, 2015.
32. Hilson, G.; Maconachie, R. Artisanal and small-scale mining and the Sustainable Development Goals: Opportunities and new

directions for sub-Saharan Africa. Geoforum 2020, 111, 125–141. [CrossRef]

http://doi.org/10.1093/nsr/nwu076
https://www.gminsights.com/industry-analysis/flow-chemistry-market
https://www.gminsights.com/industry-analysis/flow-chemistry-market
http://doi.org/10.1016/j.cep.2011.10.007
http://doi.org/10.1016/j.jclepro.2012.07.007
http://doi.org/10.1016/j.geoforum.2019.09.006

	Introduction 
	Current State of Catalytic Reactors 
	Manufacturing Processes 
	Socio-Ecological Challenges 

	SMDR as a Case Study for Sustainable Reactors 
	The ICURe Journey: Global Market Research for the SMDR 
	Sustainable manufacturing: Opportunities for the SMDR 
	Affordability and Market Outreach: Low Capital Investment 
	High Productivity and Scaling Up 
	Inherent Safety 

	A Regenerative Approach for Resilient Manufacturing 

	Conclusions 
	References

