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Abstract: The maintenance of buildings is a highly complex decision process, which is generally
due to professional experts having to consider several arduous evaluations, especially regarding
uncertainty related to why, when and how to intervene. This study concerns the analysis of the
uncertainty associated with professional experts’ surveys during the decision-making process during
building maintenance. For this purpose, a case study of a timber-structure building was examined. An
expert panel of 66 professionals with expertise in construction engineering carried out a systematic
and automated evaluation. This kind of digital method is capable of managing the uncertainty
associated with the evaluation processes by different specialists. Experts can evaluate various nuances
and approximations in the model’s input parameters. The fuzzy model helps to harmonize the results
since minor variations in the evaluation of the input parameters do not generate a large dispersion
over the model’s output variable. The novelty of this study concerns the application of a digital
methodology based on a fuzzy logic model to assist a professional expert panel in different areas—
architecture, engineering and construction. This study is oriented through an artificial intelligence
based method applied by specialists to set intervention priorities, support maintenance management
of the examined building and minimise human error during data collection and uncertainty related
to making decisions. The lessons learned from the results obtained in this study promote the use of
this kind of digital tool to manage the uncertainty associated with in-situ visual inspections.

Keywords: fuzzy system; uncertainty; expert panel; decision-making; timber structure; building

1. Introduction

Complex socio-technical decisions, such as when to intervene on heritage structures,
or more so, a heritage building or set of buildings, is based on a considerable amount of
evidence, information an even records handled and collected by multidisciplinary profes-
sional panels [1]. The information needed for the decision-making process about the future
state of a building is often ambiguous, incomplete and presents a degree of uncertainty [2].
Moreover, the inadequate performance of buildings during their whole period of service
life normally involves an exceptionally high economic and social load [3]. Concerning
a worldwide scale, the built heritage is aged and with clear signs of deterioration. The
current state is due to the lack of standards for the continued management of buildings
during their period of service life, the lack of investment in built heritage rehabilitation
and also a lack of knowledge and tools focused on decision-making [4].

Buildings and components naturally deteriorate over time, with a continuing degra-
dation of their performance state until the point at which they are no longer capable of
satisfying the users’ needs and supplies [5]. Chen et al. stated that the safeguarding of
the buildings’ performance condition for a longer period through the mitigation of their
degradation depends on decisions involving several preventive maintenance tasks [6]. The
lack of decision-making tools for the optimisation of preventive maintenance activities in
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heritage buildings lead to excessive and even unnecessary costs due to the performance of
inefficient and inadequate maintenance operations [7].

In terms of minimising the excessive costs related to reactive maintenance events, stake-
holders are currently implementing predictive or condition-based maintenance plans [8].
The main aim of buildings’ maintenance activities is to ensure that their systems and
components always function adequately, with the intention of achieving optimum perfor-
mance during their life cycle [9]. Predictive maintenance is based on the assessment of
the assets’ condition, intending to reduce unexpected failures and consequently decrease
maintenance budgets [10]. Therefore, maintenance activities must be understood as an
investment opportunity that needs to be improved and optimised and not as a cost that
must be minimised. Moreover, subjective aspects that are crucial for the decision-making
process, such as the users’ perception, needs and expectations, and the funds available,
should also be considered in the definition of maintenance policies. Alba-Rodríguez et al.
declared that the key criteria for decision-making in regard to the buildings’ renovation are
the investment costs, the buildings’ performance situations, existing guidelines and the
minimisation of uncertainty linked to degradation buildings’ procedures [11].

In different engineering situations, the stakeholders are faced with a lack of data and
incomplete data and material for modelling certain real-world phenomena [7]. In this
regard, uncertainty is one of the knowledge aspects [12]. In this sense, decision-making
processes and performance evaluation in engineering [13], especially in processes with
a significant degree of uncertainty involved have been broadly analysed and examined
using fuzzy theory. Fuzzy logic systems are still considered as ground-breaking procedures
for modelling real-world phenomena [14], especially when there exists a certain degree
of vague and uncertainty, i.e.,: such as the case of modelling heritage buildings’ degrada-
tion [15]. Regarding this approach, the methodology used by professionals can forecast
the functionality of buildings associated to service life prediction overtime. This method is
grounded on the fuzzy set theory founded in 1965 by Zadeh [16].

In the scientific field, a panel of experts can analyse the strengths and weaknesses
of a model. This methodology is used in different disciplines of knowledge such as
medicine [17,18]; engineering [19,20]; business [21]; heritage [22,23]; COVID-19 [24]; etc.

The main novelty of this research work considers the application of a digital method-
ology based on a fuzzy logic model to assist a professional expert panel in different areas—
architecture, engineering and construction (AEC). This study has been oriented through
an artificial-intelligence-based method applied by specialists to set intervention priorities,
support maintenance management of the examined building and minimise both human
error during data collection and the uncertainty associated with making decisions [25].

Thus, the main objective considers the uncertainty analysis in decision-making of
vulnerability and risk variables associated with a digital management model based on
fuzzy logic. To keep training the model, a case study—Haverbeck House in Valdivia,
Chile—was specifically analysed in detail by a panel of experts.

2. Materials and Methods

In Figure 1, the research methodology is summarized into six principal steps.

2.1. Case Study Characterisation and Emplacement

The geographical location of Valdivia (South Chile) corresponds to latitude 39◦48′30” S
and longitude 71◦14′30” W. The elevation of the city is around 5 m (Figure 2). Regarding the
climatic location of the city of Valdivia and based on the Köppen–Geiger Cfb categorisation,
Valdivia presents a climate—Marine West Coast, with dry and warm summers seasons as
well as oceanic influence effects [26–30]. The maximum annual precipitation values exceed
1770 mm, and the highest average annual temperature (1975–2004) observed in Valdivia is
just over 11.0 ◦C.
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Figure 2. Emplacement of the case study in South America and in the city of Valdivia (South Chile).

The case study under analysis is emplaced in the Miraflores area in the south sector of
the city of Valdivia in Chile (Figure 2). Figure 3 shows the current state of the maintenance
of the Haverbeck House—the case study—with several pictures. Figure 4 shows the
distribution of areas of the first (203.65 m2) and the second floor (92.58 m2) of the building
under analysis. Figure 5 shows the four elevations corresponding to the cardinal points
of the orientation. The building has a timber structure and stands out for some of the
following construction characteristics [31–33] (Figure 3): The building has a corridor just in
front of the entrance hall that distributes the different access to rooms and chambers. The
plans of the building are rectangular. The building has two storeys above ground—first
and second floor—and a store on the ground floor, which is disabled. Foundations were
provided using wooden beams reinforced by concrete and timber logs. The building has
a structure based on timber beams and pillars, mainly used post-and-beam construction
system. The first floor has a greater height than the ground floor and second floor.
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As shown in Figure 4, the Haverbeck House is divided mainly into two floors. Next,
the use and surface of each area—17 areas on the first floor and 10 areas on the second
floor—of the house are indicated. Regarding the ground floor, it is does present any uses
and divisions.

First floor: (1) Waiting room (14.56 m2); (2) Bathroom 1 (2.66 m2); (3) Bathroom 2
(2.18 m2); (4) Hall (4.43 m2); (5) Kitchenette 1 (4.87 m2); (6) Office 1 (21.06 m2); (7) Kitchenette
2 (7.64 m2); (8) Kitchenette 3 (9.79 m2); (9) Office 2 (19.63 m2); (10) Corridor (20.96 m2);
(11) Meeting room (28.02 m2); (12) Kitchenette 4 (2.02 m2); (13) Office 3 (16.45 m2); (14) Office
4 (30.02 m2); (15) Office 5 (14.31 m2); (16) Kitchenette 5 (2.13 m2); and (17) Bathroom
3 (2.92 m2).

Second floor: (1) Hall (4.83 m2); (2) Corridor (12.42 m2); (3) Kitchenette (12.95 m2);
(4) Meeting room (11.47 m2); (5) Module office 1 (5.38 m2); (6) Service area (6.32 m2);
(7) Module office 2 (9.88 m2); (8) Module office 3 (9.92 m2); (9) Module office 4 (9.68 m2);
and (10) Module office 5 (9.73 m2).
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2.2. Definition of the Fuzzy Inference System

This fuzzy methodology is particularly relevant when the modelled problem is subject
to considerable uncertainty [34,35]. In this way, this type of system is able to model
real-world phenomena [16].

The model—fuzzy building service life extended version (FBSL2.0)—was initially
developed by the University of Seville (Spain) [36], which considered the analysis of the
functional degradation of heritage parish churches located in the context of Andalusia,
South Spain. The methodology was implemented in Xfuzzy 3.0 [37], an open access soft-
ware application. The last fuzzy model upgrades are concerned with a standardisation with
the international standard focused on risk management ISO 31000:2021 [38,39]. The fuzzy
logic system (FBSL2.0) was also validated and correlated to another predictive method,
which evaluates the physical degradation of the building components. The results demon-
strated that when the degradation of the building components increases, their functionality
index decreases. To perform this analysis, the degradation condition of 647 claddings
(203 natural stone claddings, 183 ceramic claddings, 177 painted surfaces and 84 rendered
façades), located in the Almada, Lisbon and Algarve regions of Portugal, were exam-
ined. A strong relationship between the two indexes considered was obtained (with a
determination coefficient of 0.756 for natural stone claddings, 0.764 for ceramic claddings,
0.833 for painted surfaces and 0.673 for rendered façades), revealing an inverse correlation
between both predictive methodologies [40]. Moreover, the model was applied to analyse
the buildings’ functionality over several decades by examining the historical refurbishment
and maintenance actions performed [41]. This led to the identification of the most common
anomalies over the years, the probable causes and the frequency and adequacy of the
maintenance and rehabilitation actions performed.

The fuzzy inference methodology (FBSL2.0) used in this study can be defined by:
(i) functional buildings parameters (vulnerabilities and external hazards) (Table 1); (ii) fuzzi-
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fication stage; (iii) knowledge base and inference rules; (iv) defuzzification stage; and
(v) output variable related to the level of the building’s performance.

Table 1. Fuzzy logic system input parameters [36].

Vulnerability and
External Risk Variables’ Nomination Range

Vulnerability input
parameters

Geological location (v1) (1, 4) 1

Roof design (v2) (1, 8) 2

Environmental conditions (v3) (1, 8) 2

Construction system (v4) (1, 8) 2

Preservation (v5) (1, 8) 2

Static-structural input
parameters

Load state-modification (r6) (1, 8) 2

Live loads (r7) (1, 8) 2

Ventilation (r8) (1, 8) 2

Facilities (r9) (1, 8) 2

Fire (r10) (1, 8) 2

Inner environment (r11) (1, 8) 2

Atmospheric input
parameters

Precipitations (r12) (1, 8) 2

Temperature (r13) (1, 8) 2

Anthropic input parameters

Population growth (r14) (1, 8) 2

Heritage value (r15) (1, 8) 2

Furniture value (r16) (1, 8) 2

Occupancy (r17) (1, 8) 2

1 Minimum (1.0—favourable) and maximum (4.0—unfavourable) valuations regarding the input parameter (v1).
2 Minimum (1.0—favourable) and maximum (8.0—unfavourable) valuations regarding the input parameters (v2–5
and r6–17).

Fuzzification stage. This the first step in the definition of the fuzzy expert system. The
inputs (Table 1) and output are defined and characterized. The set of 17 input parame-
ters are fuzzified regarding membership functions µA. The universe of discourse (U), in
which a fuzzy set can have any possible valuation in the range of (0, 1), which is defined
in Equation (1):

µA (u) : U → B [0, 1] (1)

A membership function µ assigns a degree of membership to each element in a fuzzy
set A, ranging from the value 0 to the value 1 [42]. Membership functions related to
Gaussian-type were stated in the total of input parameters, except in the membership func-
tion of the input variable v1 (geological location); this membership function is trapezoidal
(it establishes four types of terrain—optimum, medium, bad, very bad). In this sense,
each kind of terrain corresponds to a membership function. Gaussian- type membership
functions are generally used, as they are considered the most appropriate for modelling
the degradation conditions of buildings and also because a non-zero value can be reached
at all points [42].

The fuzzy inference system uses the fuzzy operator “and” as connector, which is
defined as an intersection. Thus, given two sets A and B, defined on their respective
universes of discourse U, the intersection of both sets is a fuzzy set A ˆ B, whose membership
function is defined in Equations (2) and (3):

µA ∧ B (x, y) = T[µA(x), µB(y)] (2)

T(x, y) = min(x, y) (3)

where T(x,y) = T-norm that complies with the commutative, associativity and monotony
properties, as seen in Equation (2). The FBSL2.0 method uses the minimum as connective [43].

Regarding the definition of the set of 17 input parameters of the model, a set of 15
professional experts in the area of heritage building management were consulted during
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the model’s design stage. In this sense, a Delphi method, using Opina software (owned
by the University of Seville, Spain), was used to obtain experts’ survey. The experts
consulted in this study presented the following profiles [36] with numerous publications
on this subject [44].

Base of knowledge and inference rules. The base of knowledge, fuzzy rules and
hierarchical structure were established considering a professional expert survey, which
has been previously described. The fuzzy model is based on the inference system of
Mamdani [43]. Grima and Babuška stated that these types of artificial intelligence systems
can be defined as semi-transparent models. In this sense, this fuzzy logic system is able to
describe the relationship between the set of input parameters and the output parameter
using if-then inference rules [45]. The professional expert survey established a total of
354 rules, and they also defined the combinations between input membership functions and
output membership functions. Logical reasoning techniques allow for drawing conclusions
from a set of logical rules and a set of observations. The most important method of fuzzy
logic inference is known as generalised modus ponens. Each fuzzy rule establishes� if
x is A then y is B � and the observation � x is A’ �, � y is B’ �—this conclusion is
obtained where the fuzzy set B’ is closer to B, when A’ is closer to set A [46]. Based on the
inference mechanism defined in Equations (4) and (5), FBSL2.0 can be determined by the
combination of the different rules for the variables included in the model.

R(1) : IF x1 is A1
1 AND x2 is A1

2 . . . xn is A1
n THEN y is B1 (4)

R(t) : IF x1 is At
1 AND x2 is At

2 . . . xn is At
n THEN y is Bt (5)

Defuzzification. The defuzzification method ‘centre of gravity’ was adopted in the
design step of the fuzzy method (FBSL2.0). This defuzzification approach is one of the
most considerably utilised in engineering. A Riemann sum [47] allows the functional index
(FBSL2.0) of the heritage buildings to be estimated under analysis (Equation (6)):

FBSL2.0 =
∑i yi µB(yi)

∑i µB(yi)
(6)

Concerning the output variable of the fuzzy system (FBSL2.0), three levels were per-
formed based on the international standard of risk management ISO 31000:2011 [39,48]:

Condition level A—(Range 51, 30): Building presents an adequate functional level.
No intervention is needed.

Condition level B—(Range 30, 20): Building displays a situation in which the costs
and benefits of preventive measures must be taken into account and balanced. Periodical
inspections are recommended.

Condition level C—(Range 20, 09): Building presents a high priority of intervention.
The output of the functional service-life model (FBSL2.0) is dimensionless since it

provides as output a ‘functionality index’, which is a ranking of the priorities of intervention
between the set of buildings considered. Therefore, it is not possible to arithmetically
quantify the accuracy of the model or the prediction errors, since the model addresses a
semi-qualitative index, based on the evaluation by experts of the risks and vulnerabilities
of each building analysed. In this sense, the uncertainty of this model is addressed as a type
B uncertainty [49], i.e., the model is based on the technical-scientific judgment of 15 experts
specializing in the maintenance and conservation of heritage buildings.

2.3. Characterisation of the Expert Panel

In the present study, 66 professionals participated in the expert panel. All the experts
had the following characteristics in common: (i) university education; (ii) having the
necessary training to carry out the inspection methodically; and (iii) experience in the area.
Among the experts, 36.3% had postgraduate degrees—24.2% Master’s and 12.1% PhD. All
the experts were engineers but with different specialties: Environmental Engineering (1.5%);
Chemical Engineering (1.5%); Mechanical Engineering (1.5%); Transportation Engineering
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(3.0%); Operations Research Engineering (4.5%); Hydraulic Engineering (6.1%); Structural
Engineering (22.8%); and Construction Engineering (59.1%).

3. Results and Discussion

The first subsection describes a visual inspection by the expert panel. The second
subsection concerns the analysis of the input variables’ valuation in the fuzzy inference
system. Finally, third subsection contains a detailed analysis in terms of the output variable.

3.1. Visual Inspection of the Haverbeck House Regarding an Expert Panel

During their visual inspection of the case study, the expert panel fulfilled their as-
sessment of the fuzzy logic model input parameters (vulnerability and external risks
affections) [50]. The principal aim of this approach was to improve data collection through
on-site inspection.

The evaluation presented in Table A1, related with the Haverbeck House corresponds
to the assessment made by the set of 66 professional experts, during the visual inspection
virtual and in-situ, which evaluates the set of 17 inputs variables using a more extensive
file with the detailed explanation of each variable and an inspection sheet (Figure 6) for the
registration of the observed condition of the building.

Five of the input variables (one vulnerability variable and four hazards) represented
fixed environmental conditions and are thus constant in this particular real simulation
(Table 1): v1—geological location corresponds to 4.0 (unfavourable); r11—inner environ-
ment is 5.0 (medium valuation); r12—precipitations is 6.0 (high valuation); r13—temperature
is 5.0 (medium valuation); and r14—population growth is 4.0 (low/medium valuation).
The remaining 12 parameters, four related to intrinsic vulnerability and eight external
hazards, were evaluated by visual inspection. In this work, the data incorporates different
kinds of documents and evidence from the current administrative owner institution, which
also includes organizational strategic plans, annual reports and preservation surveys [51].
These field examinations allow a better and deeper understanding of different aspects
i.e., built environment, historical features, conditions of property, constructive system and
structural current situation, among others [51].

3.2. Analysis of the Input Variables’ Valuation by Expert Panel

Table A1 shows the results of the in-situ visual inspection performed by the expert
panel. The following analysis regards the valuation difficulties registered by the expert
panel during their inspection and in terms of the vulnerability and hazard input variables
of the fuzzy model (FBSL2.0). Thus, the input parameters, which presented high dispersion
during the inspection stage, were especially examined. This kind of analysis can help
specialists in the area of AEC to identify input variables easily, including those that are
difficult to evaluate [53].

Standard deviation (SD) is one of the most common measures of dispersion, which in-
dicates how dispersed the data are from the mean value [54]. A higher SD will correspond
to a higher dispersion of a data set. Figure 5 shows a total of four box plots represent-
ing the vulnerability input parameters (v2, v3, v4 and v5). The maximum value for each
input variable was 5.0 for roof design (v2), 6.0 for environmental conditions (v3), 8.0 for
construction system (v4) and 8.0 for preservation (v5). The minimum valuations were 3.0
for (v2), 1.0 for (v3), v4 was 1.0 and v5 was 2.7. Environmental conditions and construction
system had the lowest valuations, while preservation is the vulnerability input variables
with the highest valuation (Figure 7). The average value of each input parameter was 3.50
for roof design (with a SD of 0.60 and concerning a 95 percent of confidence interval (CI) of
±0.14 points); 2.50 for environmental conditions (SD = 1.26 points; 95% CI = ±0.30 points);
3.7 for construction systems (SD = 1.41 points; 95% CI = ±0.34 points); and 5.2 for preser-
vation (SD = 1.24 points; 95% CI = ±0.30 points).
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Figure 8 shows a total of eight box plots according to the hazard input parameters
(r6–10, and r15–17). The maximum value for each hazard variable was 8.0 for load state-
modification (r6), 8.0 for live loads (r7), 8.0 for ventilation (r8), 6.0 for facilities (r9), 8.0 for
fire (r10), 8.0 for heritage value (r15), 8.0 for furniture value (r16) and 6.0 for occupancy
(r17). The minimum valuation of the eight input variables related to external hazard
effects was 1.0 point (Figure 6). The average value in each input parameter was 4.30
for load state-modification (with a SD of 2.12 points and a 95% confidence interval (CI)
of ±0.51 points); 4.90 for live loads (SD = 1.76 points; 95% CI = ±0.42 points); 4.10 for
ventilation (SD = 1.49 points; 95% CI = ±0.36 points), 3.10 for facilities (SD = 1.37 points;
95% CI = ±0.33 points), 5.60 for fire (SD = 1.33 points; 95% CI = ±0.32 points), 3.10
for heritage value (SD = 1.58 points; 95% CI = ±0.38 points), 4.60 for furniture value
(SD = 1.68 points; 95% CI = ±0.41 points) and 3.10 occupancy (SD = 1.52 points;
95% CI = ±0.37 points).
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Summarizing this practical study, the highest SD (±2.12) (CI = ±0.51) was identified
for the input variable r6 (load state-modification), followed by r7 (live loads) with a SD
of ±1.76 (CI = ±0.42), r16 (furniture value) (SD = ± 1.67; CI = ±0.41) and r15 (heritage
value) with a SD of ± 1.58 (CI = ±0.38). The input variable with the lowest SD (±0.57)
(CI = 0.14) was v2, roof design, which is the parameter with the greatest weight in the
fuzzy logic model (FBSL2.0) [53]. Low SDs were seen in the valuations of v5 (preservation),
v3 (environmental conditions) and r10 (fire) (±1.24 (CI = ±0.30), ±1.26 (CI = ±0.30), and
±1.33 (CI = ±0.32), respectively). This approach helps in examining the valuation of the
parameters in the digital system (FBSL2.0) and their consequences over the output variable
(functionality of buildings).

3.3. Analysis of the Output Parameter of the Fuzzy Logic Methodology

In the analysis of the functional degradation of Haverbeck House, some assumptions
must be considered. For the real-world application of the digital system (FBSL2.0) in the
South Chile, a sensitivity simulation evaluation for ranging the maximum possible values
and minimum possible values of the system had been previously stated by Prieto et al. [55].
The fuzzy system examination confirmed that the lowest possible value of the fuzzy system
output is nine points that was also achieved in a previous real-world analysis in southern
Europe (Portugal and Spain) and South America. The upper possible valuation regarding
the functional degradation output was founded as 51 points, for buildings emplaced in the
southern context of Chile [55].

From the output model (functional degradation) (Table A1), 22.73% of the expert panel
obtained the highest functionality level, i.e., condition A, in which the building presents an
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adequate functional level. No intervention is needed (Table A1). From the panel of experts,
72.73% rated the Haverbeck House as having condition B, in which the building displays a
situation in which costs and benefits of preventive measures must be taken into account
and balanced. Periodical inspections are recommended (Table A1). The remaining 4.54%
of the expert survey gave the lowest functionality degradation level, i.e., condition C, in
which the building presents a high priority of intervention (Table A1). Figure 9 shows the
dispersion analysis of the output digital fuzzy model parameter. The average functional
service life was 26.0 with a SD of 5.52 points and a 95% CI of ±1.33 points.
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After this application, the results show good usability of the fuzzy system and a short
learning curve, which means that professional experts with little or no experience using
the fuzzy logic system could apply and obtain results according to expectations [56].

3.4. Discussion of the Results

Concerning this study, some issues may be discussed: (i) this kind of fuzzy logic
system are able to manage the dispersion asset in a set of expert panel and this model
can produce coherent and normalised results in terms of the issue under analysis in
this case: the functional valuation of a heritage building located in South Chile; (ii) the
implementation of more experts in the process will help in understanding the behaviour of
this type of fuzzy systems when hundreds or thousands experts using the same system, at
the same time, in the same building; (iii) this application can be extrapolated to another
case studies, in different environmental, social and cultural contexts; and (iv) regarding
the limitations of the study, it was corroborated that the applicability of the system has to
be supported in a brief induction in terms of the explanation of the fuzzy system and the
input variables of the model.
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4. Conclusions

This study involved an expert panel of 66 professionals who visually inspected the
Haverbeck House, a heritage building emplaced in Valdivia, South Chile. This approach
is innovative in that it considers a set of experts in a detailed evaluation of the functional
performance of a specific heritage building in Chile.

Regarding the input parameters of the fuzzy logic model, three input variables were
identified to have the lowest valuation dispersion during the inspection stage by the
expert panel: (input parameter related to roof design—v2, environmental conditions—v3,
and preservation—v5). These variables represent significant weights in the fuzzy logic
model. However, r17 (occupancy) had a medium–high dispersion of the expert panel’s
valuations; therefore, this input variable must be examined in detail in future works due to
its important weight in the fuzzy inference system. Such expert-panel-based approaches
can help in the improvement of input variable valuation during in-situ inspection stage.
This approach contributes to the examination of the valuation of input parameters in the
fuzzy logic model (FBSL2.0) and their consequences over the output variable (functional
degradation). Considering a limitation identified during the in-situ visual inspection, it
was corroborated that the applicability of the system must be supported in a brief induction
in terms of the explanation of the fuzzy system and the valuation of the input variables of
the model.

From the output of the model, 72.73% specialists considered the Haverbeck House to
be in condition B, in which the building displays a situation in which costs and benefits of
preventive measures must be taken into account and balanced. Periodical inspections are
recommended. This kind of digital method, based on fuzzy logic, supports the management
and reduction of uncertainty in building degradation processes and aids in the reduction
of uncertainty during the in-situ inspection of buildings. Despite the fact that different
experts can evaluate a building in various ways, the fuzzy logic method is able to help in
the minimisation of uncertainties in the process and results. The information gained in
this study is crucial since the fuzzy set method (digital management system) can be used
by diverse stakeholders and different end-users in the AEC sector, thereby supporting an
efficient digital system for preserving historical buildings. In future research studies, the
fuzzy method could be applied to new case studies (heritage or non-heritage buildings) and
contexts with new expert panels and including adaptation to other potential circumstances,
components and environmental settings.

Author Contributions: Conceptualization, M.C. and A.J.P.; methodology, M.C. and A.J.P.; software,
M.C. and A.J.P.; validation, M.C. and A.J.P.; formal analysis, M.C. and A.J.P.; investigation, M.C. and
A.J.P.; resources, M.C. and A.J.P.; data curation, M.C. and A.J.P.; writing—original draft preparation,
M.C. and A.J.P.; writing—review and editing, M.C. and A.J.P.; visualization, M.C. and A.J.P.; supervi-
sion, M.C. and A.J.P.; project administration, M.C. and A.J.P.; funding acquisition, M.C. and A.J.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper was also funded by Agencia Nacional de Investigación y Desarrollo (ANID) of
Chile throughout the research projects ANID FONDECYT 11190554 and ANID FONDECYT 1201052.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
Pontificia Universidad Católica de Chile (210325004).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are provided upon request to the corresponding author.

Acknowledgments: The authors would like to thank the expert panel for their time and knowledge.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2021, 13, 6922 13 of 15

Appendix A

Table A1. Input parameters and output parameter of the digital fuzzy model (FBSL2.0) from the evaluations of 66 profes-
sional experts.

Inputs Output

Vulnerabilities Variables External Hazards Variables

Expert
ID v1 v2 v3 v4 v5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 FBSL2.0 Condition

24 4.0 3.2 3.5 3.2 3.8 1.0 1.0 3.5 1.0 5.5 5.0 6.0 5.0 4.0 3.0 5.0 5.0 43.5 A
11 4.0 3.2 1.0 3.2 2.7 3.5 3.5 4.5 3.2 4.8 5.0 6.0 5.0 4.0 2.5 8.0 1.0 40.3 A
26 4.0 3.2 3.5 5.5 4.3 1.0 3.5 3.5 3.5 3.5 5.0 6.0 5.0 4.0 3.0 2.5 3.0 36.4 A
9 4.0 3.2 1.0 3.2 4.3 1.0 5.5 5.5 3.5 1.0 5.0 6.0 5.0 4.0 1.0 8.0 1.0 35.4 A
46 4.0 4.0 2.0 4.5 3.0 6.0 5.0 3.0 3.0 6.0 5.0 6.0 5.0 4.0 3.0 8.0 3.0 34.5 A
22 4.0 3.2 2.8 2.2 3.8 3.5 3.5 4.5 4.5 6.0 5.0 6.0 5.0 4.0 5.0 5.0 3.0 33.8 A
7 4.0 3.2 3.5 5.5 3.7 1.0 3.5 3.5 3.5 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 32.8 A
3 4.0 3.2 1.0 3.2 4.5 1.0 3.5 5.5 3.5 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 31.1 A
10 4.0 3.2 1.0 3.2 4.7 1.0 5.5 3.5 3.5 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 31.1 A
6 4.0 3.2 3.5 1.0 4.8 1.0 8.0 1.0 3.5 8.0 5.0 6.0 5.0 4.0 3.0 5.0 1.0 30.7 A
21 4.0 3.2 3.5 4.0 4.0 3.5 3.5 3.5 1.0 5.5 5.0 6.0 5.0 4.0 5.0 3.0 3.0 30.7 A
28 4.0 3.2 1.0 1.0 4.2 3.5 5.5 3.5 1.0 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 30.4 A
20 4.0 3.2 3.5 3.2 4.3 8.0 5.5 3.5 3.5 5.5 5.0 6.0 5.0 4.0 1.0 3.0 1.0 30.1 A
23 4.0 3.2 3.5 3.2 3.6 3.5 1.0 3.5 1.0 5.5 5.0 6.0 5.0 4.0 3.0 1.0 5.0 30.1 A
4 4.0 3.2 3.5 3.2 4.6 5.5 5.5 5.5 3.5 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 30.0 A
15 4.0 3.2 2.5 4.0 4.4 3.5 3.5 3.5 3.5 5.5 5.0 6.0 5.0 4.0 1.0 8.0 3.0 29.9 B
18 4.0 3.2 3.5 2.2 4.0 8.0 3.5 2.5 2.5 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 29.7 B
27 4.0 4.0 3.5 3.2 4.8 1.0 5.5 6.5 2.5 5.2 5.0 6.0 5.0 4.0 5.0 5.0 1.0 29.7 B
37 4.0 3.0 1.0 4.0 4.5 4.5 4.5 4.5 2.0 4.5 5.0 6.0 5.0 4.0 3.0 5.0 4.5 29.7 B
65 4.0 3.0 3.0 4.0 4.0 3.0 4.0 3.0 6.0 4.0 5.0 6.0 5.0 4.0 5.0 4.0 3.0 29.5 B
25 4.0 3.2 3.5 3.2 4.3 3.5 2.5 2.5 3.5 5.5 5.0 6.0 5.0 4.0 2.5 2.5 3.0 29.5 B
16 4.0 3.2 1.0 3.2 4.3 5.5 5.5 5.2 5.2 5.2 5.0 6.0 5.0 4.0 5.0 5.0 4.5 29.4 B
60 4.0 4.0 2.0 6.0 5.0 4.5 4.0 3.0 2.0 3.0 5.0 6.0 5.0 4.0 4.0 3.0 5.0 28.9 B
13 4.0 3.2 3.5 5.5 4.7 1.0 3.5 4.5 4.2 6.0 5.0 6.0 5.0 4.0 3.0 5.0 1.0 28.6 B
19 4.0 3.2 3.5 4.0 3.7 5.5 5.5 3.5 4.5 7.0 5.0 6.0 5.0 4.0 1.0 3.0 1.0 28.2 B
2 4.0 3.2 1.0 3.2 4.5 4.5 5.5 5.5 4.5 5.5 5.0 6.0 5.0 4.0 3.0 5.0 3.0 28.2 B
64 4.0 4.5 3.0 4.5 5.0 3.0 4.0 3.0 4.5 4.5 5.0 6.0 5.0 4.0 5.0 5.0 3.0 27.8 B
32 4.0 3.2 1.0 5.5 3.9 1.0 5.5 8.0 1.0 8.0 5.0 6.0 5.0 4.0 1.0 5.0 2.5 27.8 B
45 4.0 3.0 2.0 4.5 6.0 6.0 4.0 3.0 3.0 3.0 5.0 6.0 5.0 4.0 6.0 6.0 4.0 27.3 B
38 4.0 4.5 4.0 4.0 6.0 6.0 4.5 4.0 3.0 4.0 5.0 6.0 5.0 4.0 3.0 4.5 4.0 26.9 B
1 4.0 3.2 1.0 3.2 4.3 3.5 5.5 5.5 5.5 5.5 5.0 6.0 5.0 4.0 5.0 5.0 5.0 26.8 B
35 4.0 3.0 6.0 4.5 5.0 2.0 2.0 6.0 4.5 5.0 5.0 6.0 5.0 4.0 1.0 4.5 4.5 26.5 B
29 4.0 3.2 3.5 3.2 4.3 5.5 5.5 8.0 5.5 8.0 5.0 6.0 5.0 4.0 8.0 8.0 5.0 26.2 B
41 4.0 3.0 2.0 1.0 7.0 4.5 6.0 2.0 1.0 4.5 5.0 6.0 5.0 4.0 1.0 3.0 2.0 25.8 B
42 4.0 4.0 1.0 8.0 7.0 1.0 1.0 4.5 4.5 4.5 5.0 6.0 5.0 4.0 4.0 4.5 4.5 25.4 B
44 4.0 4.0 1.0 5.0 6.0 2.0 6.0 3.0 2.0 4.5 5.0 6.0 5.0 4.0 3.0 7.0 3.0 24.8 B
55 4.0 4.5 1.0 5.0 5.0 5.0 4.0 4.0 2.0 5.0 5.0 6.0 5.0 4.0 4.0 3.0 4.5 24.6 B
5 4.0 3.2 2.5 2.2 4.8 8.0 8.0 5.5 5.5 5.5 5.0 6.0 5.0 4.0 1.0 5.0 1.0 23.5 B
63 4.0 4.5 1.0 3.0 5.0 4.5 1.0 4.5 4.0 5.0 5.0 6.0 5.0 4.0 2.0 1.0 6.0 23.4 B
54 4.0 5.0 1.0 2.0 6.0 4.5 5.0 2.0 2.0 4.0 5.0 6.0 5.0 4.0 4.0 6.0 4.5 22.9 B
17 4.0 3.2 2.5 1.0 4.0 5.5 8.0 4.5 4.5 6.0 5.0 6.0 5.0 4.0 1.0 1.0 3.0 22.8 B
43 4.0 4.0 1.0 4.5 7.0 8.0 6.0 2.0 2.0 5.0 5.0 6.0 5.0 4.0 4.5 5.0 4.0 22.7 B
52 4.0 4.0 2.0 4.0 6.0 3.0 5.0 4.5 3.0 5.0 5.0 6.0 5.0 4.0 4.0 5.0 5.0 22.0 B
62 4.0 3.0 2.0 4.5 7.0 4.5 4.5 4.5 3.0 4.5 5.0 6.0 5.0 4.0 2.0 4.5 2.0 22.0 B
14 4.0 3.2 3.5 5.5 5.8 8.0 8.0 3.5 5.5 8.0 5.0 6.0 5.0 4.0 3.0 3.0 1.0 21.8 B
50 4.0 4.0 4.0 4.0 7.0 4.5 6.0 3.0 2.0 4.0 5.0 6.0 5.0 4.0 3.0 5.0 4.5 21.5 B
8 4.0 3.2 3.5 5.5 5.0 5.5 8.0 5.5 3.5 5.5 5.0 6.0 5.0 4.0 3.0 5.0 1.0 21.4 B
57 4.0 3.0 1.0 3.0 6.0 8.0 7.0 4.5 3.0 7.0 5.0 6.0 5.0 4.0 2.0 4.5 4.5 21.1 B
36 4.0 4.5 2.0 4.0 6.0 5.0 7.0 2.0 1.0 6.5 5.0 6.0 5.0 4.0 3.0 4.0 2.0 21.1 B
30 4.0 3.2 3.5 2.0 4.8 3.5 3.5 3.5 4.5 8.0 5.0 6.0 5.0 4.0 3.0 5.0 1.0 21.1 B
12 4.0 3.2 3.5 5.5 7.0 8.0 8.0 3.5 3.5 8.0 5.0 6.0 5.0 4.0 5.0 3.0 1.0 20.9 B
48 4.0 4.7 2.0 4.5 7.5 6.0 4.5 4.0 5.0 5.0 5.0 6.0 5.0 4.0 4.0 6.0 5.0 20.9 B
66 4.0 4.0 1.0 4.5 5.0 4.5 4.0 3.0 2.5 6.0 5.0 6.0 5.0 4.0 4.5 5.0 4.5 20.5 B
58 4.0 4.0 2.0 1.0 6.0 7.0 7.0 6.0 2.0 6.0 5.0 6.0 5.0 4.0 3.0 8.0 4.5 20.5 B
31 4.0 3.2 3.5 5.5 4.5 1.0 5.5 7.5 1.0 8.0 5.0 6.0 5.0 4.0 1.0 5.0 3.0 20.4 B
56 4.0 4.0 3.0 4.5 6.0 5.0 6.0 4.5 4.0 6.0 5.0 6.0 5.0 4.0 2.0 5.0 4.0 20.2 B
47 4.0 4.0 1.0 3.0 6.0 6.0 6.0 3.0 1.0 6.0 5.0 6.0 5.0 4.0 4.5 2.0 3.0 20.2 B
53 4.0 3.0 2.0 4.5 6.0 4.5 4.5 7.0 2.0 5.0 5.0 6.0 5.0 4.0 4.0 4.0 4.5 20.1 B
39 4.0 3.0 4.0 1.0 8.0 6.0 6.0 3.0 3.0 6.0 5.0 6.0 5.0 4.0 4.5 7.0 3.0 20.1 B
34 4.0 3.0 4.5 2.0 6.0 4.5 3.0 4.0 4.5 6.0 5.0 6.0 5.0 4.0 4.0 6.0 4.0 20.0 B
40 4.0 4.0 2.0 4.0 7.0 7.0 6.0 3.0 2.0 6.0 5.0 6.0 5.0 4.0 3.0 2.0 3.0 20.0 B
59 4.0 4.0 6.0 3.0 7.0 4.5 4.5 1.0 1.0 6.0 5.0 6.0 5.0 4.0 4.0 4.0 4.5 20.0 B
33 4.0 4.5 4.0 4.5 6.0 5.0 5.0 5.0 3.0 6.0 5.0 6.0 5.0 4.0 3.0 2.0 4.0 20.0 B
51 4.0 4.0 2.0 4.5 7.0 5.0 8.0 6.0 2.0 7.0 5.0 6.0 5.0 4.0 4.5 4.5 4.5 19.7 C
61 4.0 3.0 2.0 3.0 6.0 4.5 4.5 4.5 4.5 8.0 5.0 6.0 5.0 4.0 6.0 4.5 4.5 18.5 C
49 4.0 5.0 2.0 2.0 8.0 5.0 6.0 4.0 3.0 6.0 5.0 6.0 5.0 4.0 3.0 4.5 4.0 17.5 C

Note: v1—Geological location; v2—Roof design; v3—Environmental conditions; v4—Construction system; v5—Preservation; r6—Load
state-modification; r7—Live loads; r8—Ventilation; r9—Facilities; r10—Fire; r11—Inner environment; r12—Precipitations; r13—Temperature;
r14—Population growth; r15—Heritage value; r16—Furniture value; r17—Occupancy.
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