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Abstract: Trajectory planning is of great value and yet challenging for multirotor unmanned aerial
vehicle (UAV) applications in a complex urban environment, mainly due to the complexities of
handling cluttered obstacles. The problem further complicates itself in the context of autonomous
multi-UAV trajectory planning considering conflict avoidance for future city applications. To tackle
this problem, this paper introduces the multi-UAV cooperative trajectory planning (MCTP) problem,
and proposes a bilevel model for the problem. The upper level is modeled as an extended multiple
traveling salesman problem, aiming at generating trajectories based on heuristic framework for
multi-UAV task allocation and scheduling and meanwhile considering UAV kinodynamic properties.
The lower level is modeled as a holding time assignment problem to avoid possible spatiotemporal
trajectory conflicts, where conflict time difference is analyzed based on the proposed state-time graph
method. Numerical studies are conducted in both a 1 km2 virtual city and 12 km2 real city with a
set of tasks and obstacles settings. The results show that the proposed model is capable of planning
trajectories for multi-UAV from the system-level perspective based on the proposed method.

Keywords: multi-UAV; cooperative trajectory planning; conflict avoidance; holding time

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been a crucial component
of future delivery, service patrol, and emergency response applications. Trajectory plan-
ning is of great importance in multi-UAV applications. As an urban aerial application,
an automated multi-UAV system is able to provide fast delivery services regardless of
the extensive workload. In many scenarios, the multi-UAV system needs to cooperate to
complete multiple tasks [1,2]. Tasks can occur anywhere in urban environments, such as
landing on a charging station on top of the building or hovering for traffic monitoring. UAV
charging needs to be considered in planning. By integrating charging stations, the service
radius for multi-UAV systems can be considerably expanded with proper optimization [3].
Setting automatic charging stations on building roofs has been discussed in many cutting-
edge studies; for this reason, the organization and management of multi-UAV systems are
more complicated system-level optimization problems that require efficient trajectory plan-
ning and optimization tactics for practical applications. This problem involves trajectory
planning and conflict avoidance.

Single-UAV trajectory planning is of great value for time-sensitive urban aerial ap-
plications [4–9] due to the unreliability of road traffic conditions. Given the origin and
destination in 3D space, trajectory planning aims to find a feasible path with the motion
plan while avoiding obstacles. Compared to 2D cases, trajectory planning in 3D urban
space is much more complicated. First, there are infinite feasible trajectories in a high-
dimensional continuous configuration space for UAV motion [10]. Second, the complex
urban environment with cluttered buildings further complicates the configuration space.
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Existing studies on UAV trajectory-planning problems can be classified into three cate-
gories. The sampling-based method, represented by RRT and PRM [11], obtains a feasible
trajectory by probing random points in the space. Heuristic-based methods, such as the
genetic algorithm (GA) and particle swarm optimization (PSO) algorithm [12], are capable
of incorporating UAV dynamics in the modeling, but the computational cost is expensive.
The two-stage-based method [13], under a complex 3D urban environment, has difficulties
guaranteeing efficiency due to its heuristic framework. Due to this reason, a control net-
work approach is proposed in our prior work [14] for efficient UAV trajectory planning in
a complex urban environment. The key idea of the control network is to reduce the com-
plexity of the trajectory-planning problem by decomposing to a discrete network routing
problem, a path smoothing problem, and a time-optimal trajectory optimization problem.
The numerical studies show that the proposed approach is able to identify high-quality
trajectories within negligible computational time.

For multitask applications, the classic traveling salesman problem (TSP) solves the
single-UAV task scheduling and trajectory-planning problem. Multi-UAV trajectory plan-
ning (MTP) extends single-UAV trajectory planning by optimizing task allocation in a
complex urban environment. Under the premise of limited time of endurance, MTP has
raised many research interests in recent years. Rasche et al. adopted the potential field
theory for MTP in a 3D environment to coordinate the UAV according to the target area and
obstacles [15]. Ergezer et al. [16] proposed a genetic algorithm to solve the mTSP problem
of multi-UAV systems to avoid flying over restricted areas. Moon et al. [17] implemented
a layered framework of task assignment and path planning for multi-UAV systems in a
dynamic environment. The framework is based on the shortest path principle and the
potential field method to achieve obstacle avoidance. Ergezer et al. [18] introduced a new
heuristic operator in a genetic algorithm to generate paths based on the UAV dynamic
model. However, there are few studies on avoiding flight route conflicts of multiple UAVs.

The trajectory is regarded as a polyline passing through a series of nodes and links in
the control network. Multi-UAV trajectory conflict can be regarded as node collision and
edge collision at the same time. In conflict avoidance studies, to maintain a minimum safe
distance between airplanes and UAVs, Persiani et al. [19] and Furini et al. [20] modeled
the routing and holding time of UAVs as a time-dependent traveling salesman planning
problem (TDTSPP) and proposed a heuristic algorithm to minimize the operation cost.
Multiple trajectories with obstacle avoidance can be found in discrete time and space by
using sparse roadmaps with annotations of possible collisions between robots [21]. Conflict-
based search (CBS) using the structure of graph search and conflict trees is an effective
trajectory-planning method [22,23]. It first finds the optimal paths ignoring conflicts. If the
paths conflict, then constraints on the conflicting robots are imposed through a splitting
operation to avoid these conflicts. Araki et al. [24] proposed a priority planning method
integrating safe interval path planning (SIPP) and integer linear programming (ILP) to solve
multimode collision-free path planning. The idea of robot priority planning is introduced
in multirobot trajectory planning to find a nonoptimal but fast centralized solution [25,26].
The graph-based method [27,28], TDTSPP [19,20], CBS [22,23], and SIPP [24] are all able
to avoid conflicts; however, when the graph size or the number of robots exceeds certain
limitations, the complexities grow exponentially, which makes it impossible to solve.
In addition, these studies are based on designated paths of polylines with an average
speed, without considering the motion plan of UAV flying states, which is crucial in UAV
spatiotemporal trajectory planning.

To fill this research gap, this paper investigated conflict-free multi-UAV cooperative
trajectory planning (MCTP) problems (shown in Figure 1). It provides the following
contributions:

1. This paper proposed a bilevel model for the MCTP problem. The upper level opti-
mizes the task allocation and sequencing. The lower level solves the holding time
assignment problem, thereby constructing a conflict-free multi-UAV system operation
strategy.
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2. By extending prior work on the efficient control network approach [14], practically
applicable time-optimal trajectories are generated based on an optimized task visiting
route plan in an upper-level model.

3. A state-time graph method for conflict detection is proposed in the lower level for
holding time assignment.

4. Numerical experiment are discussed in both a 1 km2 virtual city and 12 km2 real city.
An optimized system operational strategy is discussed for conflict-free automated
multi-UAV services in a complex urban environment.

Figure 1. Multi-UAV cooperative trajectory planning (MCTP).

The rest of the paper is organized as follows. The problem definition is described
in Section 2. Section 3 presents the proposed bilevel model in two parts: the upper level
optimizes multi-UAV trajectory planning based on a hybrid heuristic framework, and
the lower level solves conflict avoidance holding time assignment. Section 4 presents the
numerical experimental results for the MCTP. Finally, Section 5 gives a summary of this
paper and identifies directions for future research.

2. Problem Statement

The following problem description and definition are given for the NP-hard MCTP
problem based on an automated multi-UAV system:

The multi-UAV system is designed for the autonomous execution of multiple tasks.
Tasks can occur anywhere in urban environments, such as landing on a charging station
on top of a building or hovering for traffic monitoring. Each task is associated with
a predefined work time for task execution. A multi-UAV system needs m UAVs with
associated m charging stations. Suppose each UAV is able to recharge or replace the battery
at any charging station. That is, UAVs can take off stations or tasks, and there is no need to
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return to the first take-off station if there is a vacant charging station nearby. One charging
station is able to preserve one UAV at a time, but the UAV can choose to land on any
charging station. In other words, there is no one-to-one restriction between UAVs and
charging stations in the problem setting.

The flight of multiple UAVs among the geolocations of tasks and charging stations
can be defined by the UAV state (Section 2.1), and spatiotemporal trajectory conflicts may
occur in the flight state (Section 2.2).

2.1. UAV State Definition

Different tasks can be defined in the form of
(

i, x, y, z, ti,w
k

)
, where i indicates the task

index and (x, y, z) denotes the coordinates of the task waypoint that correspond to the
node in the control network. ti,w

k in Table 1 indicates the work time cost for UAV i at task k,
which corresponds to real-world task situations such as monitoring tasks, video recordings,
battery replacement at charging stations, cargo loading time, etc.

In other words, based on the establishment of a control network, the optimal flight
time between any tasks and the predefined work time can be considered known and
fixed. In addition to the flying state and working state, the holding state is defined as
the hovering state of waiting after task execution. A state-time graph is then established
for multi-UAV operations that are performed in accordance with the time constraints, as
shown in Figure 2. Each flight starts from a task waypoint. Each flight ends at a task
waypoint. The path generation in the form of polylines consists of multiple waypoints. To
ensure speed continuity, the holding time is only assigned to the task-associated waypoint.

Figure 2. UAV state-time graph.

Table 1. UAV state-time graph denotation.

Symbol Explanation

ti,a
k arrive time of UAV i at task k

ti,w
k work time of UAV i at task k

ti,h
k

after work state of UAV i at task k, holding time is assigned at
current task k, to avoid possible trajectory conflict of future flight

ti,d
k depart time of UAV i at task k

ti
kj flight time of UAV i from task k to task j

2.2. Conflict Definition

Three terminologies used in this paper are defined: route refers to a set of consecutive
links in the control network; path refers a spatial curve plan that the UAVs follow; and
trajectory is a spatiotemporal concept to represent the time-space curve planned for UAVs.
The multi-UAV trajectory is regarded as a 3D polyline passing through a series of nodes
and links. The trajectory conflict between two UAVs can be regarded as node conflict and
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edge conflict at the same time. Since the flight polyline has multiple links and nodes, it
further increases the complexity of conflict detection, which is a 3D problem.

Time is discretized in a time step of dt s, where timesteps = tmax/dt; dt = 10 s. At
each timestep, the UAV is either in the working state or holding state at the waypoint or in
the flying state. For multi-UAV conflict detection, the following rules are defined:

(a) No two UAVs are on the same task waypoint at the same timestep.
(b) No two UAVs are too close (within a Euclidean distance threshold in 3D space) while

moving along the path at the same timestep.

3. Methodology

In this part, firstly Section 3.1 describes our prior work of trajectory-planning approach
based on control network [14], which is incorporated in the MCTP problem modeling.
Secondly, Section 3.2 details proposed bilevel model framework for cooperative multi-
UAV conflict avoidance planning. The solution approach corresponding to Section 3.2 is
presented in Section 3.3.

3.1. Control-Network-Based Trajectory Planning

Control network approach [14] is integrated for efficient single-UAV trajectory plan-
ning in a complex urban environment. We first give definitions of route, corridor, path,
and trajectory. Route in the control network is a feasible polyline that passes by a series of
control points and links (Figure 3a). An unobstructed corridor can be constructed based
on the valid route (Figure 3b). Path represents a 3D curve smoothed on the basis of route
within the corridor (Figure 3c). A trajectory is a path with time dimension representing the
motion plan of UAV (Figure 3d).
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The key idea of control network is to decompose a large-scale infinite-dimensional
nonlinear optimization problem into a discretized network routing problem, a curve
smoothing problem, and a time-optimal trajectory design problem given a fixed path,
and the latter three problems were all substantially easier than the original one. The
control network is constructed based on 3D building map. In order to express different fly
states and strategies, the control points are then expanded while considering kinodynamic
constraints. The extended 3D Dubins path-smoothing and path-following algorithms are
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then performed within the safe flight corridor for time-optimal trajectory generation (see
Figure 4) .

Figure 4. Trajectory-planning example based on control network in a complex 3D space.

The time-optimal trajectory generated by control network approach allows the UAV to
fly at approximately the maximum speed. Therefore, the optimized trajectory can achieve
speed-time continuity.

3.2. Multi-UAV Cooperative Trajectory Planning

Aiming at multi-UAV system optimization and conflict avoidance for regional mul-
titask execution, we propose a bilevel model (as shown in Figure 5) that is defined as
multi-UAV cooperative trajectory planning (MCTP) to tackle this problem. The upper level
is a genetic algorithm, which optimizes multi-UAV task assignment and scheduling and
generates time-optimal trajectories based on a control network approach. In the lower-level
algorithm, we proposed a multi-UAV task holding time assignment strategy based on
MILP for conflict avoidance.
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Figure 5. Methodology framework.

3.2.1. Upper Level: Multi-UAV Trajectory Planning (MTP) Modeling

Based on the prementioned multi-UAV system constraints, the multi-UAV cooperative
trajectory planning (MCTP) model is proposed based on the extended mTSP problem to
tackle the spatiotemporal conflict of trajectories caused by multi-UAV trajectory planing.
In the upper level, the main task is to optimize task allocation and task scheduling in
the framework of a genetic algorithm. Conflict detection is conducted in each iteration
to decide whether the lower-level algorithm of conflict avoidance should be performed.
Systematic optimization for the MTP model has optimization objectives on operational
costs, total flight distance, total flight time, and total holding time.

F = f1 × q1 + f2 × q2 + f3 × q3 + f4 × q4 (1)

f1 = min

(
m

∑
i=1

Si

)
; i = 1, 2, 3 . . . m (2)
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Si =

{
1, station i is allocated with task
0, otherwise

f2 = min

(
m
∑
i

n
∑
k

n
∑
j

Ri
kj × dkj × Si +

m
∑
i

m
∑
a

n
∑
j

Qi
aj × daj × Si

) (3)

Ri
kj =

{
1, UAV i fly from task k to task j
0, otherwise

Qi
aj =

{
1, UAV i fly from station a to task j
0, otherwise

where q1, q2, q3, q4 are the weights of the objectives in the multiobjective optimization
problem. m is the station number, and n is the task number. dkj indicates the distance
between task k and task j, and daj is the distance between station a and task j.

f3 = min
(

max
(

ti × Si

))
; (4)

ti =
n

∑
j=1

td
j × Di

j +
m

∑
a

n

∑
j

Qi
aj × tc +

n

∑
k

n

∑
j

Ri
kj × ti

kj × Si +
m

∑
a

n

∑
j

Qi
aj × ti

aj × Si; (5)

i ∈ 1, 2, 3 . . . m;

Di
j =

{
1, task j is allocated to UAV i
0, otherwise

where ti is the total time for UAV i to complete all allocated tasks. td
j is the work time cost

on task j. tc is the time cost for UAV battery charging or replacement. ti
kj is the flight time

cost for UAV i from task k to task j, and ti
aj is the flight time cost for UAV i from station

a to task j. It should be noted that the flight times here, namely, ti
kj and ti

aj, are estimated
minimum flight time [14].

Based on the task allocation and scheduling results of upper-level model, multi-UAV
trajectories are obtained in the form of smoothed spatiotemporal 3D curves, each passing
by a series of control points (nodes) and links. Therefore, the trajectory conflict between
two UAVs can be regarded as node conflict and link conflict. Trajectory conflict detection
is then performed in each iteration. Given same start time for multi-UAV, if no conflict
is detected, then the upper-level model gives optimal conflict-free multi-UAV trajectory-
planning results based on given tasks. If conflict is detected, the lower level of the model
steps in to resolve conflict by assign holding time to certain UAVs at certain tasks.

3.2.2. Lower Level: Holding Time Assignment Modeling

The key idea of conflict-free MCTP is to assign holding time to the UAV after task
execution; if properly coordinated, the potential conflict trajectory between UAVs can
be postponed and resolved to achieve a systematic optimization objective on the MCTP
problem. The holding time assignment problem is proposed for conflict-free minimum
holding time optimization.

To avoid possible multi-UAV conflicts without replanning the optimal time trajectory,
holding time is introduced for the route plan. The holding time adds time gaps of different
durations to the task to stagger the planned conflicting flight trajectories. Assigning a
holding time to all tasks is the key point in conflict avoidance-based MCTP problems. The
holding time settings are different in different tasks. It can be set to zero if no conflict is
predicted for the next flight. In other words, if there is no conflict, the UAV can fly directly
to the next task after the task work is completed.
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We propose mixed-integer linear programming (MILP) formulations for the conflict
avoidance holding time assignment problem. The objective is to minimize the total holding
time based on conflict avoidance.

f4 = min ∑
i∈M

∑
k∈N

ti,h
k (6)

ti,d
j ≥ ti

kj + ti,d
k + ti,w

j (7)∣∣∣tu,d
j − ti,d

k − ∆tkj

∣∣∣ ≥ 1 (8)

i ∈ M; M = {1, 2, 3 . . . m}

t ∈ T; T = {1, 2 . . . , tmax/∆t}; ∆t = 10

k, j ∈ N; N = {1, 2 . . . , n}

Equation (7) is a constraint reflecting the state-time graph. The departure time of UAV
i at task j should be greater than or equal to the departure time ti,d

k of UAV i left previous
task k, the flight time ti

kj of UAV i from task k to task j, and the work time ti,w
j of UAV i

at task j, where holding time ti,h
j ≥ 0. Equation (8) is a constraint for trajectory conflict

avoidance. For two tasks, calculate the departure time difference ∆t and compare with the
conflict time difference set T to meet the conflict constraint. The time difference between
the departure time tu,d

j of UAV u at task j and the departure time ti,d
k of UAV i at task k does

not belong to the conflict time difference set ∆t /∈ T.

3.3. Solution Approaches to MCTP
3.3.1. Heuristic Framework

We extend GA for MTP problem solving by using multilayer real number coding and
the corresponding genetic operator. n tasks and m UAVs are encoded in real number by
using a two-layer coding method: the first layer represents task scheduling, and the second
layer represents task allocation. Taking five tasks and two UAVs as an example, as shown
in Figure 6, tasks allocated to UAV1 are {3, 4, 5, 6} and to UAV2 are {2, 1, 7}.

Figure 6. Chromosome multilevel coding.

In MTP, a two-point crossover method is adopted by dividing the chromosome into
two parts, and the crossover is performed to correct task scheduling. For example, when
the crossover bit is after the third bit, each chromosome has two duplicate bits, and the
duplicates are corrected according to the scheduling (as shown in Figure 7). No correction is
needed. A two-point mutation is applied here, and two genes are selected for replacement
mutations, i.e., In Figure 8, the 2 and 5 bits are exchanged to obtain new task scheduling.
The second bit is selected for mutation to obtain new task allocation.
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Figure 7. Crossover.

Figure 8. Mutation.

3.3.2. Holding Time Assignment Problem

In the second level of the model, to address the MCTP problem with spatiotemporal
conflict caused by multi-UAVs that fly on the control network, a holding time assignment
problem is introduced by adding a small period after each task execution. The holding time
optimization problem is modeled based on MILP for all tasks holding pattern optimization
and, most importantly, conflict avoidance. We propose a task trajectory comparison method
based on departure time differences that lead to conflicts as references. Based on this
strategy, potential task conflicts between UAV tasks can be easily identified and resolved
by assigning a conflict-free time difference as the holding time to achieve a systematic
optimization objective on a multi-UAV trajectory-planning problem. The lower-level
algorithm procedure is shown in Table 2.

To examine conflict based on their departure time difference, we compare the assigned
tasks of every two UAVs. If task k and task j conflict on the polyline of flight trajectory,
then the departure time difference is recorded as ∆tkj. Define the difference ∆t between the
departure time of conflicting task k and task j of UAV i and UAV u. Define departure time
differences set ∆t ∈ T where conflict happens. If there is no conflict between task k and
task j of UAV i and UAV u, then ∆t /∈ T.

In Figure 9, ti,d
k denotes the time of departure of UAV i from task k, tu,d

j is the time

of departure of UAV u from task j, and ∆t is the time gap between ti,d
k and tu,d

j . The time
difference between departure times can represent tasks with or without conflict.
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Figure 9. Trajectory conflict with different departure time differences ∆t.

Table 2. Holding time assignment algorithm procedure.

Step 1 Compare Trajectory between Tasks for Conflicts.

Step 2
Calculate conflict trajectories between tasks based on their departure time
difference. A conflict time difference set is introduced for all flight trajectories
between different tasks.

Step 3 Build a holding time assignment algorithm based on MILP.

Step 4 algorithm optimization.

Step 5 Return holding time assignment to upper-level algorithm iterations for fitness
function evaluation.

4. Numerical Study
4.1. Experiment Setup

The numerical experiment is based on a computing device with 16 GB of RAM and 1.7
GHz Ryzen 4750u CPU and was programmed with MATLAB R2020a and JAVA 1.8. DJI’s
Phantom 2 is modeled in the experiment, the main properties are shown in Table 3.



Sustainability 2021, 13, 6807 12 of 21

Table 3. Properties of DJI’s Phantom 2.

Variable Description Value

vmax Maximum horizontal flight velocity 15 m/s
vup Maximum ascending velocity 6 m/s

vdown Maximum descending velocity 2 m/s
m Mass 1 kg

Fmax Maximum lifting force 16 N
Fmin Minimum lifting force 9 N

4.1.1. Virtual City

A virtual city of 1 km2 was constructed with 67 densely distributed buildings. The
length and width of the building is within the range of 30–60 m, and the height is within
the range of 50–60 m. The control points are set based on the rules of the control network.
The corresponding expanded control network contains 33,572 nodes and 7,366,878 links.
Fifty nodes are randomly selected from the control network as the locations of the 50 tasks,
and then 10 nodes are selected as charging stations based on the p-median algorithm.
Considering the various heights required by actual tasks, the heights of these selected
points are different. For example, for traffic monitoring, a height of 50 m is required. The
spatial distributions of these 55 tasks and charging stations are shown in Figure 10.

Figure 10. Tasks and charging stations distributed in the virtual city.

In this section, dense task distribution is adopted to create multiple possible trajectory
conflicts. The cooperative multi-UAV conflict avoidance planning are verified based on
the proposed bilevel model. Two cases with multiple trajectory conflicts are studied under
same tasks and charging station settings. The difference is that in Case 1, the optimization
weight for the objective of the number of UAVs and charging stations q1 is set to 0.05, and
in Case 2, q1 is set to 0.5. This is to compare the system operation effectiveness and analyze
trajectory conflicts based on different multi-UAV fleet sizes.

4.1.2. Real City

The Yuzhong Peninsula in Chongqing (shown in Figure 11), China covers an area of
12.4 square kilometers with 1497 buildings, which generates an expanded control network
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of 188,545 nodes and 17,892,562 links. The spatial distributions of 20 tasks selected and five
charging stations optimized based on p-median are shown in Figure 12.

Figure 11. 3D map modeling of Yuzhong Peninsula in Chongqing, China.

Figure 12. Tasks and charging stations distributed in Yuzhong Peninsula in Chongqing, China.

In this section, the main purpose is to test the proposed multi-UAV planning model
and the effect of UAV endurance in a real urban environment.

4.2. Virtual City MCTP Results and Discussion

As the number of tasks or UAVs increases, conflicts of trajectories are difficult to avoid.
In this experiment, two test cases are analyzed for conflict avoidance under the framework
of the heuristic bilevel algorithm. In the upper level, multi-UAV trajectory planning is
modeled based on the extended mTSP algorithm by a genetic algorithm. The population is
set to 200, and the generation of mutations is set to 200. Task allocation and task scheduling
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are optimized in the upper level. In each iteration, multi-UAV conflict analysis is conducted
based on spatiotemporal trajectories. If there is a conflict between UAVs, the lower-level
algorithm is utilized to assign different holding times to UAVs at tasks to avoid conflict.
The total holding time at all tasks joins the iteration of GA as one of the optimization
objectives.

4.2.1. Case 1 with Eight UAVs

As shown in Figure 13, in this case, eight charging stations and eight UAVs are
required to complete these 50 tasks. Based on the optimal results, the total flight distance
dtotal and flight time ttotal of UAVs are shown in Table 4. Taking UAV u1 as an example,
the total flight time of UAV1 is t1

total = 225.67 s. It takes off from charging station s51
and returns to charging station s60 with eight tasks assigned. The task scheduling is
{s51, i38, i46, i17, i15, i1, i48, i34, i26, s60}.

Figure 13. MCTP results of Case 1 in the virtual city.

Table 4. MCTP tasks allocation and scheduling results: Case 1.

UAV Total Flight
Time (s)

Total Task Work
Time (s)

Total Flight
Distance (m)

Number of
Assigned Tasks Task Scheduling

UAV1 225.67 240 3166.81 8 {s51, i38, i46, i17, i15, i1, i48, i34, i26, s60}
UAV3 225.91 150 3117.41 5 {s53, i30, i39, i23, i11, i16, s58}
UAV4 259.14 270 3463.28 9 {s54, i6, i49, i3, i18, i45, i25, i41, i35, i24, s57}
UAV5 162.98 120 2260.10 4 {s55, i36, i7, i21, i4, s53}
UAV6 256.75 270 3053.24 9 {s56, i43, i50, i14, i2, i12, i33, i28, i40, i5, s56}
UAV7 228.46 150 3132.72 5 {s57, i32, i22, i19, i47, i44, s55}
UAV8 218.76 120 3147.48 4 {s58, i9, i29, i42, i27, s51}

UAV10 254.32 180 3106.79 6 {s60, i20, i31, i8, i37, i10, i13, s54}

UAV u3 takes the longest time to complete the assigned tasks. Suppose eight UAVs
take off at the same time. The maximum time for the multi-UAV system to complete all
tasks and flights is ttotal = 529.14 s, and the total distance of flight is dtotal = 24447.86 m.
However, four possible spatiotemporal trajectory conflicts existed in the original flight
route plans. These conflicts are shown in Figure 14.
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Figure 14. Case 1: four trajectory conflicts.

Based on the optimized multi-UAV route plans, holding time is assigned to the UAV
task to prevent possible conflicts by using a mixed linear programming (MILP) approach.
Each task is associated with a holding time variable. It should be noted that although the
UAV has no task at the charging station and has to take off from the charging station, there
is still a holding time before departure to the first task. This is because a conflict may occur
during the first flight from the charging station to the first task; therefore, the holding time
variable is also set here. The optimized result is shown in Figure 15.

The optimized holding time is assigned by x56 = 20, which corresponds to the sixth
task of UAV10. UAV1 is also assigned a holding time x1 = 20, which indicates that UAV1
should postpone the first flight to avoid conflict between UAV3 and UAV4 in the first flight
trajectory, which is shown in Figure 14.

By assigning holding time to tasks, the total minimum holding time can be obtained,
where F = min ∑i∈M ∑k∈N ti,h

k . In Case 1, F = t1,h
1 + t6,h

10 = 4, which corresponds to a
minimum of 40 seconds of total holding time in the MCTP problem to avoid conflicts.

4.2.2. Case 2 with Five UAVs

Case 2 (in Figure 16) needs five charging stations and five UAVs for 50 tasks. The
flight distance dtotal and flight time ttotal of UAVs are shown in Table 5.



Sustainability 2021, 13, 6807 16 of 21

Figure 15. State-time graph of Case 1. (UAV2 and UAV9 are with no tasks.).

Figure 16. MCTP results of Case 2 in the virtual city.

Table 5. MCTP tasks allocation and scheduling results: Case 2.

UAV Total Flight
Time (s)

Total Task Work
Time (s)

Total Flight
Distance (m)

Number of
Assigned Tasks Task Scheduling

UAV1 343.70 300 4763.52 10 {s51, i4, i37, i24, i14, i8, i23, i33, i36, i39, i45, s52}
UAV2 320.80 330 4240.58 11 {s52, i47, i32, i9, i17, i29, i40, i50, i22, i5, i2, i21, s56}
UAV5 340.79 270 3837.02 9 {s55, i10, i46, i7, i41, i13, i30, i48, i12, i19, s51}
UAV6 312.35 300 4135.37 10 {s56, i1, i44, i35, i26, i11, i16, i25, i3, i6, i28, s58}
UAV8 363.21 300 4460.12 10 {s58, i34, i42, i31, i20, i27, i43, i38, i18, i15, i49, s55}

UAV8 takes the longest time for assigned tasks. Suppose all five UAVs take off at
the same time; then, the maximum time for the multi-UAV system to visit all tasks is
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ttotal = 663.21 s, and the total distance of flight is dtotal = 21,436.62 m In Case 2, three
possible spatiotemporal trajectory conflicts exist in optimized flight route plans. These
conflicts are shown in Figure 17.

Figure 17. Case 2: three trajectory conflicts.

In the optimized results of MCTP, the optimized holding time is assigned by x44 = 20,
which corresponds to the first task of UAV8, which indicates that UAV8 should postpone
the take-off at the beginning to avoid conflict between UAV1 and UAV2 (see Figure 17). The
minimum holding time can be obtained in F = min ∑i∈M ∑k∈N ti,h

k . In Case 2, F = t1,h
8 = 2,

which corresponds to a minimum of 20 seconds of total holding time for the MCTP problem
to avoid conflicts, which is shown in Figure 18.

4.2.3. Comparison between Case 1 and Case 2

Compared with the results of Case 1 and Case 2, while reducing the number of system
hardware deployments (from eight to five), the assignment of tasks is also relatively even,
which greatly reduces the total flight distance of the multi-UAV system. The total distance
dtotal is shortened by 3011 meters. In actual applications, by adding the hardware cost of
the charging station and UAV to the cost of system operation, Case 2 greatly reduces the
system investment and manpower for the operator. With biased weights on UAV hardware,
corresponding results can be obtained for the optimized hardware number. Therefore,
the number of hardware items is also a decision variable in the MCTP herein. This kind
of correspondence increases the complexity of optimization. However, from the other
perspective of metrics, because of the reduced UAVs, the total time cost ttotal is increased by
134.07 seconds compared with Case 1. For time-sensitive applications, this is certainly not
good news. One UAV takes off from a charging station si and does not need to return to the
charging station si after a series of tasks. In Table 4, UAV6 starts from charging station s56
and finally returns to s56. However, in Case 2, as shown in Table 5, each UAV takes off from
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a charging station and returns to a different UAV. This one-to-many UAV and charging
station policy ensures system-level flexibility and robustness in real urban applications.

Figure 18. State-time graph of Case 2. (UAV3, UAV4, and UAV7 are with no tasks.).

4.3. Real City MCTP Results and Discussion

Two test cases are tested for multi-UAV planning under the framework of bilevel
algorithm. In the upper level, multi-UAV trajectory planning is modeled based on the
extended mTSP algorithm by a genetic algorithm. In Case 1, the population is set to 100,
and the generation of mutations is set to 100. In Case 2, the population is set to 500, and
the generation of mutations is set to 500. Task allocation and task scheduling are optimized
in the upper level. In each iteration, multi-UAV conflict analysis is conducted based on
spatiotemporal trajectories. Other experiment configurations remain the same, including
the four objective weights.

In comparison between Case 1 and Case 2 for MCTP planning results, Case 1 (shown
in Figure 19) requires three UAVs, and Case 2 requires two UAVs (shown in Figure 20).
Due to the wide coverage of Yuzhong Peninsula, no trajectory conflict was found in the
optimization process of Case 1 and Case 2. As the actual flight distance in the urban
area has greatly increased, the 30 min flight endurance setting is facing challenges. In
order to access the multiple tasks assigned in this area, the multi-UAV system can make
better use of the advantages of the deployed charging stations to perform multiple tasks in
large-scale urban areas. In Case 2, as the population and generation number increase to
500, the optimization result of multitasking access in this area has minimized infrastructure
deployment costs: only two UAVs and charging stations are needed. At the same time, the
optimized task scheduling of two UAVs makes better use of the functions of the charging
station, greatly increasing the flight distance and flight coverage of large cities. It can be
seen that both UAV1 and UAV2 consider endurance constraints. When the total flight time
and working time of the tasks are close to 30 min, they all return to the charging stations s2
and s5 for charging, and then continue with other tasks. In Case 2, the total flight distance
dtotal = 29,031.87 m. The total flight time ttotal = 1231.59 s.
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Figure 19. MCTP results of Case 1 in the real city: three UAVs.

Figure 20. MCTP results of Case 2 in the real city: three UAVs.

As shown in Table 6, in Case 2, the two mTSP trajectories both cross the east and west
sides of the entire peninsula. After the endurance time exceeds the maximum endurance
time of the drone, UAVs choose to return to the charging station first, then continue with the
tasks, and return to the respective charging station after the tasks are over. In actual multi-
UAV system deployment, if considering the infrastructure cost of UAVs and associated
automatic charging/battery replacement station, and system installation, operation, and
maintenance cost, Case 2 greatly reduces the system investment and manpower for the
operator. Case 2 also provides a cost-optimal and flight-time-balanced deployment strategy
for large-scale real city.
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Table 6. MCTP tasks allocation and scheduling results in the real city.

Total Flight Time (s) Total Flight Distance (m) Task Allocation and Scheduling Computation Time (s)

Case 1: Population 100, Generation 100
UAV1 510.46 5921.48 {s1, i11, i15, i4, i12, i3, i20, i19, s1}

19.96
UAV2 891.6 13,108.13 {s3, i7, i8, i13, s3, i6, i9, i18, s3}
UAV3 643.87 7891.79 {s5, i2, i14, i16, i10, i1, i5, i17, s5}
total 891.6 26,921.41

Case 2: Population 500, Generation 500
UAV1 1231.59 16,544.28 {s2, i8, i9, i1, i10, i6, s2, i2, i14, i3, i20, i19, i17, s2}

453.09UAV2 960.18 12,487.59 {s5, i5, i15, i11, i4, i12, i13, s5, i16, i7, i18, s5}
total 1231.59 29,031.87

5. Conclusions

For urban aerial applications, multi-UAV trajectory planning is of great importance to
future delivery, service patrol, and emergency response services. This paper establishes
a bilevel model for the multi-UAV cooperative trajectory-planning method considering
conflict avoidance. By extending the control network approach, the upper level optimizes
the task allocation and sequencing based on the multitraveling salesman problem (mTSP)
under the framework of a heuristic algorithm. The lower level is based on mixed-integer
linear programming (MILP) to solve the holding time assignment problem, thereby con-
structing a conflict-free system operation strategy. To verify the proposed algorithm for
MCTP, numerical experiments were carried out in both the virtual city and real city. The
different configurations of the optimization objective weight are discussed. At the same
time, aiming at conflict-free cooperative trajectory planning, the bilevel optimization algo-
rithm framework and the holding time optimization model are verified. The results show
a wide range and variety of application prospects for multi-UAV system deployment in
complex urban environments in the future. Future research could discuss the influence
of the variable weight of UAVs in parcel delivery based on the proposed MCTP model.
Real-time tasks and online multi-UAV system planning are also worthy problems for
operational flexibility reasons.
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