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Abstract: Reducing congestion has been one of the critical targets of transportation policies, partic-
ularly in cities in developing countries suffering severe and chronic traffic congestions. Several tra-
ditional measures have been in place but seem not very successful. This paper applies the agent-
based transportation model MATSim for a transportation analysis in Bangkok to assess the impact
of spatiotemporal transportation demand management measures. We collect required data for the
simulation from various data sources and apply maximum likelihood estimation with the limited
data available. We investigate two demand management scenarios, peak time shift, and decentrali-
zation. As a result, we found that these spatiotemporal peak shift measures are effective for road
transport to alleviate congestion and reduce travel time. However, the effect of those measures on
public transport is not uniform but depends on the users’ circumstances. On average, the simulated
results indicate that those measures increase the average travel time and distance. These results
suggest that demand management policies require considerations of more detailed conditions to
improve usability. The study also confirms that microsimulation can be a tool for transport demand
management assessment in developing countries.

Keywords: urban transport; microsimulation; MATSim; developing countries; traffic congestion;
public transport; travel time; peak shift; decentralization

1. Introduction

The global passenger transportation demand was 51 trillion passenger-km in 2014,
which is expected to more than double and reach 110 trillion passenger-km in 2060 [1].
Most of the increase is expected to emerge in developing countries where the population
and economy are growing significantly. Many cities, both in industrialized and develop-
ing countries, have faced severe traffic congestion problems due to increased transporta-
tion demand. Reducing congestion has been one of the key targets of transportation poli-
cies for various purposes, including alleviating economic loss, reducing pollutants and
energy consumption, and reducing travel time. In particular, cities in developing coun-
tries suffer severe and chronic traffic congestions caused by the surging travel demand
and insufficient transportation infrastructure [2]. Many studies have demonstrated that
the road infrastructure cannot be a single solution to relieve congestion [3-6]. Other stud-
ies suggest that a combination of various transportation demand management measures,
including public transport provision [7], pricing [8], information service [9], coordination
with land use [10,11], and active transport promotion [12,13], are needed to tackle conges-
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tion. These measures usually require public policies. Recently, the use of smart technolo-
gies in the transport sector has also been investigated intensively, such as bike-sharing
[12,13], application of big data [14-16], implementation of mobility as a service platform
and information services [17-21], and new urban transit system [22]. Bangkok, Thailand,
is the target city in this study. It is known as one of the most severely traffic-congested
megacities in the world [23]. Various countermeasures to alleviate the congestion have
been implemented, including expansion of road capacity, improvement in public
transport [24], but its congestion remains at a very high level. These measures were mainly
related to infrastructure development and improvement, while the demand management
measures were not successfully implemented. There are various studies that analyze im-
portant aspects of this situation, including automobile dependencies [25], a spatial de-
mand-supply gap of public transportation [24], assessment of accessibility to the metro
system [26], investigation of impact factors on transportation mode choice [27], obstacles
towards sustainable transportation [23], and impact of telecommuting on traffic [28].

Most of these studies employed statistical approaches or static transportation models
rooted in the four-step transportation model design [29]. After 2000, agent-based model-
ing approaches [30] have been applied in transportation research to answer various re-
search questions considering the individuality of travelers and temporal transportation
behavior. This highly disaggregated approach provides some insight into transportation
research, spatial development, quality of life, and social equity, becoming more prominent
in urban policies [31]. Nevertheless, this approach usually requires massively disaggre-
gated activity data [32]. Therefore, applying agent-based models to developing countries
is a challenge in terms of data limitation.

The purpose of this study is to apply the agent-based transportation model MATSim
[33] for transportation analyses in Bangkok to assess the impact of spatiotemporal trans-
portation demand management measures, including working place dispersion and de-
parture time shift. We conducted this research as a part of a Japan-Thailand bilateral in-
ternational research project, and transportation and planning authorities in Thailand pro-
vided various transportation and spatial data. We also utilized unconventional data, in-
cluding data compiled by private companies. We took advantage of existing statistics and
data for the analysis and did not collect new data in the field. However, available data
were not sufficient to generate the input for MATSim. To complement the data, we pro-
posed a method to estimate a model to generate complementary data. With these gener-
ated data, we analyzed the impact of transportation policy measures on travel demand.
Hereafter, Section 2 shows the features of data used in this study, and the needs for com-
plementary data are discussed. Section 3 describes a method to generate the complemen-
tary data for a microsimulation. Section 4 shows the spatiotemporal demand shift policy
scenario. Section 5 describes the analytical results. Section 6 is the discussion and conclu-
sion.

2. Data

In general, official statistics for transportation in developing countries are insufficient
for microsimulation transportation models. In transportation analysis, trip distribution
data are essential information to capture the spatial travel pattern; however, it usually
requires many samples in the survey. In addition, road network data are indispensable
for traffic assignment. Recently, open data, such as OpenStreetMap, are available for
transportation analysis in many cities. For the public transportation analysis, common
format data, such as General Transit Feed Specification (GTFS), are used in many cities,
and it is being utilized as input data for transportation research.

The target area in this study was Bangkok and its five surrounding provinces,
namely, Nonthaburi, Samutprakarn, Pathum Thani, Samut Sakhon, and Nakhon Pathom.
Figure 1 shows the target area. The total population was 15 million in 2017, and the total
area is 7735 km?. Table 1 summarizes the data used in this study.
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Figure 1. Thailand, Bangkok, and five provinces.

Table 1. Data used in this study.

Name

Provider Description

Household Travel Survey (HTS) The Office of Transport and

Travel survey data of 18,833 households accounting
for 38,054 people conducted in 2017

Traffic analysis zone (TAZ)

Traffic Policy and planning 846 zones

Public transport

(OTP)

GTEFS data for rail lines, bus routes, and ferry (2019)

Population and household

Number of population and household (2010)

Employment

National Statistical Offi
ational Statistical e Number of employment (2014)

Population

Population estimates of subdistrict by age and
MapFan DB Data Model gender (2017)

Road network

Road link attributes (2018)

First, the essential data to capture the transportation behavior was the Household
Travel Survey (HTS) provided by the Office of Transport and Traffic Policy and Planning
(OTP). These data record daily personal travel behaviors, including the origin and desti-
nation zones, departure and arrival time, transportation mode with attributes of respond-
ents, including age, gender, and household information. These data contain essential in-
formation for the agent-based simulation model. However, the number of samples was 38
thousand, which is only 0.2% of the population in the target area. These data were not
sufficient to capture the metropolitan-wide travel pattern. Past study indicates that the
trip generation and trip attraction volumes correlate with the population at the origin and
economic activities at the destination, respectively [34]. In this study, we estimated the
zonal trip attraction volume based on the number of employees at the destination zone
and estimated the destination choice model combined with HTS data. Here we utilized
the trip data for all purposes, not limited to commuting trips. We assumed that the num-
ber of activities other than work was also spatially correlated with the number of employ-
ees. Therefore, the trip concentration for all purposes except go-home was also estimated
based on the number of employees.

Here the population by age classes and gender in Table 1 are given only for subdis-
trict level. For the Traffic analysis zone (TAZ), which are smaller zones than the subdis-
tricts, the population was provided for total number only. This study estimated the pop-
ulation by attribute for TAZ as proportional to the belonging subdistrict population by
attributes.
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We utilized MapFan DB Data Model to construct a road network model. A private
company provided these data for the base data of car navigation systems. It included the
road type and the number of lanes for each link. We obtained the GTFS data from OTP
for the public transportation network and its schedule. The public transport modes in-
cluded railway, metro, tram, bus, and ferry. Figure 2 shows the population and employ-
ment density of TAZ and the road and public transportation network of the target area.
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(b)
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Figure 2. Target area data: (a) Population density of TAZ; (b) Employment density; (c) Road network; (d) Public transport

network.

3. Method

Figure 3 shows the analytical flow of this study. First, we estimated the travel time
matrix (skim matrix) using MATSim. For the estimation, tentative origin-destination (OD)
travel demand was generated based on the zonal population and employment. The home-
based trip generation volume was assumed to equal to the population, and the volume of
trip attraction was assumed to be proportional to the employment at the destination zone.
We estimated a gravity model parameter so that the average Euclidean distance equaled
the average trip length of the HTS data. Using this gravity model, we estimated the initial
OD pattern and modified it to make it consistent with the assumed trip generation and
attraction volumes using the Fratar method. Sampling from this OD pattern and depar-
ture time distribution in HTS data, we generated the initial travel plans of agents for
MATSim. As a result, we calculated the skim matrices for car and public transport based
on the simulated travel time, which represented the daily average of travel time between
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zones. The skim matrix for non-motorized mode was obtained by dividing Euclidean dis-
tance between zones by the assumed walking speed of 5 km/h.

Spatial distribution Network data

Population/employm - Tentative OD demand ————

I 7 P 5 A S AT

________________________________

' Expected minimum time |
1 MATSIim
Destination choice model ‘

Subcenter | J -------------
scenario | oo il TAIITET

Departure time shift scenario | Level of service

Figure 3. Analytical flow of the modeling and scenario impact assessment.

Second, we estimated the logit model parameters for mode choice by age class and
gender using HTS data and the skim matrices. The explanatory variable of this model was
travel time by mode only. We calculated the expected minimum time between OD using
estimated parameters of the mode choice model, and this representative time between
zones was used as the explanatory variable for the destination choice model.

Here, for the walking travel, the Manhattan distance can be a better approximation
of the travel distance than the Euclidean distance in practice. Obviously, the Manhattan
distance is larger than the Euclidean distance when the distance between origin and des-
tination is long, and therefore it could overestimate the non-motorized travel share for
short trips. Even though the model parameters were estimated under the assumed dis-
tance to represent the observation, so the bias caused by the assumed distance was ex-
pected to be corrected to some extent. Table 2 shows the estimated parameters of the mode
choice model where the parameters for all the segments met the sign condition except for
females less than ten years old and males more than or equal to 70. The p-values were
almost zero except for the age class less than 10, more than or equal to 70, and males of
50-59. So, most of the models were statistically significant, although McFadden’s R2 of all
models was quite low, i.e., the representability of the mode choice model was poor. This
is because the transportation mode choice is actually affected not only by travel time but
also by various factors, such as availability of car, possibility to accompanied drive with a
family member, fare, reliability on timetable, safety for public transport, etc. The mode
choice decision is, therefore, affected by each individual’s conditions. In this study, most
of the mode choice model parameters satisfied the sign condition and were statistically
significant. Thus, we assumed that the average behavior could be reflected by the model
parameters, which were applied for the transportation mode choice estimation. The other
studies applied alternative approaches to estimating the modal share under the data lim-
itation, for example, modeling based on the expert survey [35] and statistical model using
travel time ratio [36]. They can be candidates for the modal split analysis under the data
limitation. However, we used the discrete choice model that was highly compatible with
agent-based modeling.
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Table 2. Mode choice model parameters.

Male Female
Age Class Transit Walk Time Transit Walk Time
Dummy Dummy coefficlent Dummy Dummy  Coefficient
parameters 0.033 -2.279 -0.002 -0.021 -2.086 0.002
<10 t-value 0.140 -5.933 -0.616 -0.116 -7.025 0.820
p-value 0.532 0.409
McFadden R2 0.001 0.001
parameters 0.583 -1.600 -0.007 1.193 -1.067 -0.008
10-19 t-value 7.316 -12.589 -5.498 15.931 -9.248 -6.555
p-value 0.000 0.000
McFadden R2 0.012 0.014
parameters -0.168 -2.216 -0.009 0.571 -1.508 -0.010
20-29 t-value -3.869 -29.719 -11.188 16.229 -27.096 -15.663
p-value 0.000 0.000
McFadden R2 0.014 0.019
parameters -0.864 -2.994 -0.010 -0.442 -2.624 -0.008
30-39 t-value -17.412 -31.305 -9.589 -10.450 -32.974 -9.566
p-value 0.000 0.000
McFadden R2 0.013 0.010
parameters -1.250 -3.303 -0.011 -0.598 -2.427 -0.006
40-49 t-value -16.161 -23.823 -6.944 -9.872 -24.342 -6.001
p-value 0.000 0.000
McFadden R2 0.015 0.008
parameters -1.601 -3.278 0.000 -0.107 -1.558 -0.005
50-59 t-value -14.968 -16.500 -0.176 -1.072 -11.761 -3.363
p-value 0.860 0.000
McFadden R2 0.000 0.007
parameters -0.325 -2.248 -0.009 0.689 -0.762 -0.008
60-69 t-value -1.544 -8.498 -2.458 3.935 -4.050 -2.939
p-value 0.007 0.002
McFadden R2 0.014 0.015
parameters -0.097 -3.343 0.003 0.956 -0.957 -0.006
70 t-value -0.280 -4.465 0.468 3.204 -2.637 -1.615
p-value 0.641 0.079
McFadden R2 0.001 0.015

Third, we estimated the destination choice model. Here the trip pattern of HTS sur-

vey and the estimation based on the gravity model were largely different due to the small
sample of HTS. On the other hand, the HTS survey contained sample attributes infor-
mation. To reflect both the information of HTS and crude estimate of OD pattern, we es-
timated the destination choice model parameters 6, and p, that maximized the follow-

ing log-likelihood function LL.

qdk

= Y(i,)enq 7

LL=LL1+1LL2, (1)
LL1 =¥, qqlog 2kide_ 2)
Tk Zadar’

exp(BkTijk)Ng.‘
T Nrirs @)
=1XP(OkTiji )N |
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where g, is the number of trips of distance class d, §g; is the estimated number of trips
of distance class d of traveler’s attribute k by model, T;j;, is expected minimum travel time
between zones i and j of attribute k, Ng; is the number of the employee at zone j, Ngy is
the number of residents of attribute k at zone i, Q; is a set of OD pair belonging to distance
classd, n, isthe number of zones, Q;; is travel demand between i and j given by gravity
model and Fratar method, o2 is the variance of OD demand model. By definition, LL1 is
the log-likelihood of travel distance distribution, and LL2 is that of OD travel demand of
the model.

Table 3 indicates the estimates of the destination choice model parameters. The pa-
rameters indicate that the choice probability of the destination zone was higher for shorter
the access time to the zone and larger numbers of the employee at the zone. Most of the
parameters were statistically significant, while some parameters did not have an adequate
estimation of variance; therefore, we could not determine the significance of those param-
eters. As formulated in the likelihood function, the parameters for all segments were esti-
mated simultaneously. There might be correlations between the explanatory variables
among segments that would cause the failure to estimate the variance of some parameters.
Merging the age class may improve the estimation stability. The destination choice model
was statistically significant according to the likelihood ratio.

Table 3. Destination choice model parameters.P

Age Class Parameters Male Female
Estimate  Std. Error t Value Pr (>t) Estimate Std. Error t Value Pr (>t)
<10 0 -0.923 0.0078 -18.9 0 -1.066 0.0104 -102.5 0
p 1.476 0.0089 166.0 0 1.882 NA NA NA
10-19 0 -0.818 0.0064 -127.2 0 -1.020 NA NA NA
p 1.675 0.0100 167.6 0 2.595 0.0070 372.6 0
20-29 0 -0.086 0.0004 -222.3 0 -0.881 0.0142 -61.9 0
p 0.340 NA NA NA 1.775 0.0123 144.5 0
3039 0 -0.090 0.0004 -249.6 0 -0.745 0.0075 -99.1 0
p 0.000 NA NA NA 1.408 NA NA NA
4049 0 -0.006 0.0001 -85.6 0 -0.087 0.0003 -270.6 0
p 0.059 0.0024 24.7 0 0.621 0.0107 57.7 0
50-59 0 -0.087 0.0004 -235.7 0 -1.143 0.0105 -109.3 0
p 0.334 0.0139 24.1 0 1.662 0.0077 215.4 0
60-69 0 -0.080 0.0005 -159.9 0 -0.266 0.0029 -90.5 0
p 0.629 NA NA NA 1.492 0.0072 208.2 0
<70 0 -0.072 0.0007 -100.6 0 -0.725 0.0048 -151.3 0
p 2.489 0.0052 474.7 0 1.871 0.0071 263.3 0
Log-likelihood -3.1 x 107
Initial log-likelihood —6.7 x 107
Likelihood ratio test statistics 7.099 x 107

Prob>chi2

0
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4. Scenarios for Transport Policy Measures

Using the models estimated in the previous section, we estimated the OD travel de-
mand by transport modes and generated agents’ initial daily travel behavior. We gener-
ated the coordinates of origin and destination randomly within the geographical extent of
the origin and destination zones. The agents were assumed to make two trips a day. The
departure time of the two trips was sampled from the HTS. Here, we input these initial
travel behaviors to MATSim by mode separately, and the mode choice module of
MATSim was not applied afterward. In other words, the modal share was fixed to the
initial estimation by the mode choice model and did not feedback the MATSim simulation
results to the mode choice and destination choice behavior. As a result, each agent’s travel
time and distance were simulated for each demand management scenario.

In this study, the decentralization of employment places and the time shift of peak
hours were analyzed as the demand management scenarios. Compared with the business
as usual (BAU) case representing the current employment and departure time, we esti-
mated the impact of these scenarios. The time shift impacts combined with mobility as a
service (MaaS) system in Bangkok have already been analyzed in the other article [37], but
we analyzed the impact of combination with the decentralization. To focus on the impact
analysis, we fixed the other factors, such as population, road infrastructure, and public
transport level of service, to the current level.

As a decentralization scenario, 30% of employees of the zones ranked as top 10% in
terms of density (i.e., these were the CBD where the employment density is very high)
moved into the zones ranked as top 10-20% (i.e., these are potential urban subcenters in
the less-dense area that are being connected or soon to be connected by urban railway
lines). Such employment decentralization will change the destination choice probability
and relieve the traffic congestion in the city center. That will affect the trip length, travel
time, and road speed. Figure 4 shows the location of the zone with changed comparing
with the BAU case: decreased zones displayed in blue and increased zones in reds.

=

z 4 B Change in number
S - of employee |
= 4 m [-25,930,-6,420)
® [-6,420,-3,060)
z | @ [-3,060,-1,950)
o / N Ad B [-1,950,-920)
o o [-920,0) U
2 / \ o [0,910)
/ @ [910, 1,860) H
z \ p ® (1,860, 3,850) M
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© o m (7,040, 28,200)
Y Y
; L \\ \ /| ~
w
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Z ~
o
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- (/ / N
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o
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> / /
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Figure 4. Employment place dispersion scenario.

As a time shift scenario, we arbitrarily shifted the departure time of 30% of agents at
peak time. The morning peak hour was 7:00-9:00 and the evening peak hour was 16:00-
18:00. In this scenario, the sampled 30% of agents departing at the morning peak hour
were forced to depart 2 h later, and the sampled 30% departing at the evening peak hour
was made to depart 2 h earlier. This scenario will affect the road congestion and may
change the travel time and shift the route. It was also expected to affect the public
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transport travel time and route because these factors were different time by time depend-
ing on the time schedule of public transport. Figure 5 shows the departure time distribu-
tions of BAU and time-shift scenarios.

12,000
J

M To work
B To home} BAU

@ To work . :
T hif
B To home} SIS

Number of samples
4000 6000 8000 10,000
1 1

2,000
1

0

LA 111 Illlu

0 2 4 6 8 10 122 14 16 18 20

Time
Figure 5. Departure time distribution (BAU case and time-shift case).

5. Results

We applied these scenarios with MATSim and compared their simulated travel times
and distances. The sample rate was chosen to be 5% for road transport and 1% for public
transport in the simulation, which is a reasonable approach in agent-based modeling to
economize on runtime [38]. The total volumes indicated in the results were scaled back to
100% to be consistent with observed demand volumes. In this section, first, we validate
the model, and then we present the simulated results of the scenarios.

5.1. Validation

The simulation results were compared with the observed data. Table 4 shows the key
travel demand indices of the HTS 2017 and the simulation results produced by MATSim.
The HTS estimation of car travel demand 2 qw 14.9 million trips/day, and 9.1 million
trips/day for motorcycles. Our estimation did not distinguish cars from motorcycles, and
the total demand was calculated to be 17.5 million trips/day. Assuming the passenger car
equivalent value (PCE) of a motorcycle was 0.33, the travel demand of the HTS was equiv-
alent to 17.9 million PCE-trips/day. The difference of this volume to our estimate was 2%.
The number of trips by public transport in our simulation was smaller than that in the
HTS. In MATSim, the public transport module simulated the agent’s behavior to use pub-
lic transport and walk. If the travel time of public transport was too long, the agents did
not use public transport but traveled on foot. In the simulation, a substantial number of
agents were estimated to travel only by walking, reflecting a bias of level of service esti-
mation due to the small sampling.
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Table 4. Observed and simulated transportation indices.

Observation Simulation

(Household Travel Survey, HTS 2017) by MATSIM

Car Motorcycle Public Transport Car Public Transport
Number of trips (million trips/day) 14.9 9.1 9.9 17.5 7.1
Total trip length (million p-km) 201.6 82.7 116.7 329.1 67.2
Average trip length (km/trip) 13.5 9.1 11.8 18.8 9.4
Beeline trip length (km) 9.6 5.9
Travel time (min) 36.0 28.0 68.1 49.5 65.2
Waiting time (min) 8.1 9.9
Average speed(km/h) 22.5 19.5 10.4 22.8 8.6

The total and average trip length of the car in our estimation was much longer than
those of HTS. The simulated trip length was almost double the average Euclidean distance
between ODs. This trip length reflects the network topology and the detouring behavior
to avoid traffic congestion in the simulation. The simulated total trip length of public
transport was much shorter than that of HTS. The simulation underestimated both the
number of trips and the average trip length of public transportation as well. The car travel
time of our estimate was much longer than the HTS, reflecting the estimation of the longer
trip length. The average travel speed was almost the same level as HTS because the model
was calibrated to fit with the average speed. The estimated travel time of public transport
was relatively close to the HTS data, but the estimated travel speed was slower by about
20% because of the shorter trip length in our estimation. While these differences deserve
further investigation, it should be noted that HTS was a comparatively small survey with
a certain level of uncertainty. The resulting traffic flows appear to be sufficient for scenario
analysis.

Figure 6 plots the observed and estimated hourly average link speed. From the ob-
served data panel (a), the speed declined during the morning peak hours. During the day-
time, the traffic speed was fairly low and stable at the same level as the morning peak
hour. In the evening peak-hour, the average speed became lower and reached the bottom
between 19:00 and 20:00. After that time, the speed recovered to free flow toward mid-
night. While our estimation shown in panel (b) indicates that the average speed was too
low in the morning and evening peak hours, the midday speed recovered nearly to the
free-flow speed. Such a difference between the observed situation and the model estima-
tion is probably because we did not have business trips or logistics in the simulation, re-
sulting in the total traffic volume being underestimated. However, when considering the
acceptable morning and evening peak pattern, we decided to calibrate the MATSim to fit
with the daily average speed.
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Figure 6. Hourly average link speed: (a) observed data by iTIC (Intelligent Traffic Information Center Foundation); (b)
estimation in this study; iTIC collects the data from probes on taxis, buses, logistic vehicles, and mobile phones. We com-
piled the data using the raw data from 15 to 24 November 2020 in the TAZ region and calculate hourly average link speed
on weekdays. Panel (b) shows the average speed trajectory of simulated road travel aggregated by departure time.

Even though there were biases in traffic flow and speed estimation, we applied this
model to the sensitivity analysis of the scenarios. The discussion section will address the
issues related to estimation bias.

5.2. Effect of Policy Scenarios

Figure 7 shows the rate of change in total travel time and distance for the scenarios
of time shift, decentralization, and their combination compared with the BAU. The travel
time of car was reduced for all scenarios, while that of public transport increased. Car
travel time was reduced by 10.5% by the time shift scenario, reflecting the alleviation of
congestion by avoiding the peak hour. The decentralization scenario reduced travel time
by 2.4% and alleviated the congestion by shifting the traffic concentration from the center
to the near suburbs. The combined scenario reduced travel time by a car by 13.4%, which
was more than the sum of the two scenarios. That implies synergies in the spatiotemporal
transportation demand management measures.

On the other hand, the travel time of public transport slightly increased for all sce-
narios. All scenarios had the same timetable for public transport. In other words, the sup-
plied level of service was unchanged. The results indicate that a simple departure time
shift would cause an increase in waiting time or a detour depending on the public
transport service level. In this case, the average travel time increased by 1.3% by the time
shift scenario. The decentralization scenario increased the travel time by 1.1%. This sce-
nario did not necessarily move the employment to places that were accessible by public
transport. The combined scenario increased travel time by 1.4%. Spatiotemporal demand
management measures did not necessarily have a uniform effect on public transportation
travel.
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Figure 7. Estimated change rate of (a) Travel time; (b) Distance.

Travel distances declined in the time shift scenario by 1.0% for cars and inclined by
0.7% for public transport. In the simulation, car users could choose shorter routes when
road congestion was reduced. In contrast, the travel distance of public transport increased
probably due to the timetable and change in routes. The decentralization scenario de-
creased the travel distance of cars by 0.3% and increased that of public transport by 1.2%.
Dispersion of employment to near suburbs may reduce the distance between home and
workplace or avoid the detour by congestion for car users. Meanwhile, decentralization
may affect the route choice of public transport or increase the egress distance. The com-
bined scenario decreased the travel distance of a car by 1.4% and increased that of public
transport by 0.8%.

Figures 8 and 9 show the spatial distributions of the rate of change in travel time by
departure zones for car and public transport, respectively. Panel (a) in Figure 8 indicates
that the time shift scenario decreased the car travel time for most zones but increased for
a few zones. The decentralization scenario shown in panel (b) had many zones where the
travel time increased. This result implies that the spatial dispersion of the urban core func-
tion possibly causes longer travel for some departure zones. From this panel, we can find
that zones in the central area, and inner suburbs tended to decrease the travel time. On
the other hand, outer suburbs had relatively more zones that increased the travel time.
Thus, possibly decentralization will increase the congestion in the outer area even though
it reduces the congestion in the central area. The combined scenario shown in panel (c)
decreased the travel time for more zones, and the decreasing rates were larger than the
time shift solely.
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Figure 8. Spatial distribution of car travel time change rate by departure zones: (a) Time shift scenario; (b) Decentralization
scenario; (c¢) Combined scenario.
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Figure 9. Spatial distribution of public transport travel time change rate by departure zones: (a) Time shift scenario; (b)
Decentralization scenario; (¢) Combined scenario.

As shown in Figure 8, there was no clear pattern in the spatial distribution of travel
time change for public transport. The zones where the travel time increases or decreases seem
to be mixed geographically, and many zones had a larger rate of change than car travel.
Smaller differences were likely to be caused by the random variation of different model runs.
Public transport users may be affected more by a change in departure time or destination place
than car users because the travel time and optimal route are sensitive to the timetable and
transit route connections. This result indicates that the spatiotemporal measures of transpor-
tation demand management have to be coordinated carefully for public transport operations.

6. Discussion and Conclusions

In this study, we applied MATSim to the Bangkok metropolitan region in Thailand. Even
with access to the data provided by government authorities through the government-sup-
ported project and complemented by private companies’ data, the input information was in-
sufficient for an agent-based model. Therefore, we developed an estimation method of travel
patterns and synthesized the input data for MATSim. On the other hand, we used GTFS data
for the entire Bangkok metropolitan area for public transportation analyses, which is still not
applied in many studies in transportation research in developing countries.

Applying this model, we analyzed the impact of employment decentralization and peak
time shift on transportation. These spatiotemporal peak shift measures were effective for road
transport to alleviate congestion and reduce travel time. However, the effect of those measures
on public transport was not uniform but different by users’ circumstances. On average, the
simulated results indicate that those measures increased the average travel time.

The effects of peak time shift measures on public transport were different depending on
the timetable and routes. There was no clear spatial pattern of the travel time change. These
results suggest that demand management policy measures for public transport require con-
sideration of more detailed conditions to improve usability. For instance, the employment dis-
persion should be incorporated with transit-oriented development plans to improve the ac-
cess and egress to and from public transport. The time shift measures may need to be tailored
to reflect the individual travel circumstances to reduce the travel time and congestion for the
public transport system. Potentially, MaaS systems may be an effective tool, especially for the
demand management of public transport.

This study conducted the analysis for the base year population in 2015. In practical trans-
portation planning, population forecasts are required. Some studies projected the depopula-
tion of Asian cities in the latter half of this century [39]. We need to reflect on the future popu-
lation and its spatial distribution in the simulation. The spatial distribution of the urban pop-
ulation is also known to be affected by the transport system [3,40]. For future studies, we need
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to incorporate this interaction between transport and land use. In the decentralization sce-
nario, we arbitrarily dispersed the employment from the center to near suburbs. However,
more precise scenarios are required to coordinate with transit and urban development poli-
cies.

The model output can be used not only for estimation of travel time and distance but also
for the other various analysis, such as environmental load, energy efficiency and consumption
[41], effective land use and land value, value capture for transportation investments, and social
disparities. For instance, based on a statistical model, urban structure and road congestion
reduction were demonstrated to have only a limited impact on CO2 emission reduction in the
transport sector [42] using aggregated analysis. Microsimulation models can analyze more
detailed spatiotemporally policy measures that cannot be analyzed by conventional models.
Such microsimulation models may provide in-depth knowledge in policy practice. In partic-
ular, agent-based models are known to be superior in pricing studies and equity analyses.

Another study integrated MATSim with an agent-based land-use model [43] to analyze
whether SDGs may be achieved by urban and transport policies [44]. Our study will incorpo-
rate the land-use model to reflect the population dynamics in Bangkok and will be able to
analyze urban and transportation sustainability.

As mentioned above, this model has some considerable biases. Our analysis did not in-
clude business travel and goods transport. That a major reason for the bias in road speed esti-
mation, congestion, subsequent detour trips, trip length, and travel time. That requires im-
proving the accuracy and stability of mode choice and destination choice models. Further-
more, motorcycles were currently not represented in the simulation explicitly. Given the rele-
vance of this mode in Bangkok, we may need to distinguish motorcycles from cars in the traffic
simulation appropriately. It should also be noted that potentially induced travel was not rep-
resented here. It is conceivable that some trips that were suppressed due to high levels of con-
gestion would be added if congestion was reduced. The model was not able to quantify this
latent demand, as it was not observed in current traffic volumes.

There are various urban problems in Bangkok, including air pollution, rapid aging of
society, securing mobilities for vulnerable people, suburban development on transportation,
gentrification by inner-city development, the fiscal balance of the urban railway project, and
induced urban development by transportation provision. Our model can be applied to a wide
range of urban transport policy problems combined with the land-use model. Data limitation,
however, requires various assumptions in modeling, which may explain at least in part the
estimation bias. Our future studies will address these modeling issues.
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