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Abstract: Ecosystem service values are closely related to land use/cover change, however, the values
affected by land use/cover change in the context of climate variability remain unclear. Based on the
land use/cover data of 2000, 2010, and 2020 in the Yiluo River Basin, we quantitatively analyzed the
impacts of historical land use/cover change on the ecosystem service values. Then the future land
use simulation model was applied to predict the land use/cover distribution in 2030 under three
Representative Concentration Pathways scenarios, and the influences on ecosystem service values
were analyzed further. We found that the total ecosystem service values in the Yiluo River Basin
presented a growth from 9217 million dollars (2000) to 9676 million dollars (2020), which attributed
to the increase of forestland and water bodies in recent years. By 2030, the total ecosystem service
values continued to present an upward trend, while also showing a difference under three scenarios,
this discrepancy was mainly caused by different precipitation conditions. With the introduction of
the ecological protection and high-quality development of the Yellow River basin in the new period,
climate change may be the main factors affecting the ecological field in the future.

Keywords: climate change; ecosystem service values; FLUS; land use/cover change; Yiluo River Basin

1. Introduction

The current change rate and intensity of land use/cover change (LUCC) are far greater
than any period in history, which is cumulatively a major driver of global environmental
change [1–3]. There are many driving factors of LUCC-based anthropogenic activities such
as continued population growth, industrial development, urban expansion, and policy
factors, which are the key drivers over the years [4–6], however, the effects of climate
variability cannot be ignored. Climate variability caused changes in temperature and
rainfall, which may affect the growth of vegetation and the effectiveness of water resources,
and exerted influences on land use/cover further [7–9]. The impacts of climate variability
on land use/cover have attracted more and more attention in recent years, especially the
spatio-temporal evolution characteristics of land use/cover under the background of future
climate variability [10,11].

The changes in the land use/cover scales, compositions and patterns, led to rapid
alterations in ecosystem composition and structure and resulted in significant changes in
the quantity and quality of ecosystem service (ES) supply [12,13]. For example, the change
of farmland area will affect the food supply function, forestland area will affect the function
of climate regulation, and the water area will affect the function of water supply [14,15].
Regarding the impacts of LUCC on ES, the ecosystem service values (ESV), which quantify
and monetize the ES, were usually adopted as the evaluation indicators and the basis for
the execution of ecosystem protection and management [16–18].
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There are two kinds of approaches widely used to evaluate ESVs. One is based on
primary data, the ecological processes and functions that constitute ES are quantified by
the ecological model, and then evaluates the economic values of ES. Such a method is
performed on one or a few kinds of services rather than the comprehensive ESVs [19–21].
The other is the equivalent coefficient method, where ESVs are estimated based on the
equivalent coefficient of various ecosystem services and combined with the unit area of
the ecosystem [16,22,23]. Compared with the previous method, such an approach is more
convenient to evaluate the spatial-temporal distribution of ESVs, especially for the ESVs
evaluation results of LUCC [24–27]. A great number of researchers used this method to
analyze the change of ESVs in different regions of the world, such as in Ebinur Lake [28],
Qinghai-Tibet Plateau [29], Gangetic plain [30], the coastal zone of Tanzania [31], but these
studies were mainly focused on the influences of historical LUCC on ESVs. In addition,
some scholars have carried out works to simulate the influences of LUCC on ESVs in
the future by setting different development scenarios in recent years, including ecological
protection scenario, business-as-usual scenario, food sovereignty scenario [32–35], however,
this approach lacks sufficient scientific basis.

Unlike previous studies, this paper focused on the prediction and assessment of ESVs
in the context of future climate variability. To achieve this target, we selected the future
climate model data in three Representative Concentration Pathways (RCPs) scenarios as
the driving factors of the model, which are credible with comprehensive and high spatial
resolution climate scenarios. Then the future land use simulation model (FLUS) was applied
to predict the land use/cover distribution in 2030 under three RCPs scenarios, and the
discrepancies of the ESVs were calculated and analyzed further. The Yiluo River Basin
was selected as the study area and the objectives of this paper are: (1) analyzing the law of
historical land use/cover change and detecting the reasons for these changes; (2) evaluating
the change of historical ESVs and the impacts of LUCC on ESVs; (3) simulating the land
use/cover distribution in the future, and predicting the impacts of future climate change
on the ESVs. This study will provide scientific decision-making support for sustainable
land use and ecosystem management in the Yiluo River Basin.

2. Materials and Methods

Firstly, based on the land use/cover data of 2000, 2010, and 2020 in the Yiluo River
Basin, we analyzed the law of LUCC by using land use/cover dynamic degree change and a
conversion matrix, and the change of ESVs by using an ESV model. Secondly, we calibrated
and verified the FLUS model, simulated and predicted the land use/cover distribution in
2030 under three RCPs scenarios (RCP2.6, RCP4.5, and RCP8.5), and calculated the ESVs.
The structure of the paper is shown in Figure 1.
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2.1. Study Area

The Yiluo River Basin (109◦43′–113◦10′E, 33◦39′–4◦54′N) is a significant tributary in
the Yellow River, covering an area of around 18,462.96 km2, including more than 20 counties
in Shaanxi and Henan Province. The Yiluo River has two principal tributaries: The Luo
River and the Yi River, where the Luo River is located on the north side and the Yi River
on the south side. The Luo River originates in Shaanxi Province, with a whole length of
446.9 km and an annual runoff of 1.4 billion m3. The Yi River originates in Henan Province
and flows into the Luo River in Yangcun, Yanshi City, which is about 265 km with an
average annual runoff of 1.3 billion m3. The geographical location, elevation, and major
rivers of the Yiluo River Basin are shown in Figure 2.
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The Yiluo River Basin is located in the transition zone between the subtropical zone
and warm temperate zone, belonging to the continental monsoon climate zone, being
cold with little rain in winter and hot with a lot of rain in summer. The average annual
temperature ranges from 7.4 to 9.5 ◦C, and the mean annual rainfall ranges from 460 to
980 mm. Due to the influences of monsoon climate, the rainfall is intensive in summer, and
apt to lead to a peak runoff, which seriously threatens the ecosystem security downstream
of the Yiluo River. In addition, parts of the Loess Plateau located in the northern Yiluo
River Basin have characteristics of a loosening soil structure and sparse vegetation, and
serious soil and water loss during the flood season [36]. In order to maintain the ecosystem
security and eliminate the flood threat, large-scale soil and water conservation projects
have been carried out on the basin, for example, The Grain for Green Project [37].

2.2. Data

In this paper, we selected land use/cover data of 2000, 2010, and 2020, which were
obtained from the National Geomatics Center of China, with a precision of 30 m resolution.
The historical climate data provided by the National Climate Center of the China Meteoro-
logical Administration. The digital elevation model (DEM) data source was shuttle radar
topography mission data set, the slope and aspect were generated from DEM data. The
socioeconomic and roads data were obtained from the Peking University Geographic Data
Platform and the National Catalogue Service for Geographic Information, respectively.

Future climate data were obtained from The Global Climate Model provided by The
Inter-Sectoral Impact Model Inter-comparison Project. The impacts of climate change
existed some uncertainties, including the uncertainty on the climate model output results
and the future emission scenarios [38,39]. In order to reduce the uncertainty of climate
model predictions, we selected five commonly used climate models, namely GFDL-ESM2
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M, HADGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NORESM1-MR, and used
historical measured meteorological data to test these five climate models, the results
showed that the error of IPSL-CM5A-LR simulation was the smallest in the study area.
Therefore, IPSL-CM5A-LR was selected as the climate model for future climate prediction.
The Representative Concentration Pathways (RCPs) is a new scenario developed by the
IPCC for the Fifth Assessment Report in May 2011, which provides a comprehensive and
high spatial resolution climate scenario. In this study, we selected three RCPs scenarios,
RCP2.6, RCP4.5, and RCP8.5, which represent low, medium, and high greenhouse gas
emissions, respectively, to reduce the uncertainty of the carbon emission scenario.

2.3. Detecting Land Use/Cover Change

(1) Dynamic degree change

The single dynamic degree and the comprehensive dynamics degree were widely
used method to describe the LUCC, which can be calculated by the following formula:

K =
Ub −Ua

Ua
× 1

T
× 100%, (1)

LC =
∑n

i=1 ∆LUi−j

2 ∑n
i=1 LUi

× 1
T
× 100%, (2)

where K represents the single dynamic degree of a certain land use/cover in the study
period, when the value of K is positive indicating area increase, otherwise, indicating area
decrease. Ua and Ub are the area of a certain land use/cover category at the initial phase
and the end phase, T is the extent of the study period. LC refers to the comprehensive land
use/cover dynamics degree, LUi represents the area of land use/cover type i at the initial
phase, ∆LUi−j represents the sum of the absolute values of the transformed land use/cover
in the research period. The higher of the comprehensive land use/cover dynamics degree
indicating land use/cover change faster.

(2) Land use/cover conversion matrix

Land use/cover conversion matrix was obtained by the ArcGIS software to analyze the
mutual transformation patterns of land use/cover types, which can be extracted as follow:

Cij = At
ij × 10 + At+1

ij , (3)

where At
ij and At+1

ij refer to the land use/cover data in time t and t+1; Cij represents the
conversion of land use/cover type i to type j.

2.4. Ecosystem Service Valuation

We used the equivalent coefficient method to assess the ESVs in this article. Firstly,
depending on the present situation of the Yiluo River Basin, we divided the ES into 4 types
and 11 services. Then confirmed the equivalent coefficients of the ESVs for each land
use/cover type, which on the basis of the research achievements of Costanza et al. and
Xie et al. [16,22].

Secondly, we set the value of the equivalent coefficients, which can be equivalent
to one-seventh of the economic value of food production per hectare per year refer to
existing research [14,40]. Where one-seventh means that the economic value provided by
natural ecosystems without human input, which is approximately equal to one-seventh of
the economic value of the food production provided by existing farmland. The average
grain yield was 6895.4 kg/hm2 and the average grain price was 0.4 dollars/kg in Yiluo
River Basin from 2010 to 2018, we calculated the value of the equivalent coefficients was
352.7 dollars/hm2. ESVs per unit were equal to the equivalent coefficients multiply by the
value of the equivalent coefficients. The final equivalent coefficient value of the per-unit
ESVs are shown in Table 1.



Sustainability 2021, 13, 6432 5 of 14

Table 1. Ecosystem service values per unit area for different land use/cover types (dollars/hm2).

Primary Classification Secondary Classification Farmland Forestland Grassland Water Bodies Unutilized Land

Provisioning services
Food supply 299.8 109.3 77.6 282.1 0.0

Raw material supply 141.1 250.4 116.4 81.1 0.0
Water 7.1 130.5 63.5 2923.6 0.0

Regulating services

Air quality regulation 236.3 828.8 402.0 271.5 7.1
Climate regulation 127.0 2479.2 1065.0 807.6 0.0

Waste treatment 35.3 701.8 352.7 1957.3 35.3
Regulation of water flows 95.2 1237.8 779.4 36,056.0 10.6

Erosion prevention 363.2 1008.6 490.2 328.0 7.1

Supporting services Maintenance of soil 42.3 77.6 38.8 24.7 0.0
Fertility habitat services 45.8 726.5 447.9 899.3 7.1

Cultural services Aesthetic landscape
provision 21.2 402.0 197.5 666.5 3.5

Finally, the ESVs were obtained by multiplying the area of each land use/cover
category by the corresponding equivalent coefficient value. The calculation formula is
as follows:

ESV = ∑ Ui ×Vi, (4)

Vi = ∑n
j=1 ESVij, (5)

where ESV refers to the values of ecosystem service, Ui represents the area of the land
use/cover type i ecosystem, Vi is the ESV of land use/cover type i ecosystem, and ESVij is
the j kind of ESV of land use/cover type i.

2.5. FLUS Model Simulation and Validation

We used the FLUS model to simulate the future land use/cover, which was a com-
prehensive model for land use/cover simulation by coupling anthropogenic and non-
human effects (free obtained at http://www.geosimulation.cn/flus.html (accessed on
12 October 2008 to 12 October 2023) [41]. This model based on the Cellular Automata
(CA) theory, but with great perfections over the conventional CA, makes land use/cover
simulation with higher accuracy, and more convenient and efficient [42–44].

Considering the availability, quantification, and correlation of the data, we selected a
total of nine driving factors, including the DEM, slope, aspect, population density, GDP,
historical temperature and precipitation, distance to roads, and distance to the railway.
Moreover, the resolution of driving factors, the number of grid rows, and the cell size were
kept consistent.

The model simulation and validation steps were as follows. Firstly, based on the land
use/cover data in 2010, we calculated the land use/cover adaptability probability, then
simulated the land use/cover in 2020 by using the improved CA simulation function. The
simulation result was verified with the actual data in 2020. The Kappa coefficient was 0.82,
which indicated that the simulation accuracy was high, and the FLUS model can better
simulate the spatial distribution of land use in the Yiluo River Basin. Secondly, based on the
land use/cover data in 2020, the driven factors of historical temperature and precipitation,
which are liable to change a lot, were replaced by temperature and precipitation data in
2030. Moreover, the other driving factors were assumed to be maintained as continually
consistent. In this setting, we simulated the land use/cover distribution in 2030 under
future scenarios of RCP2.6, RCP4.5, and RCP8.5.

3. Results
3.1. Land Use/Cover Change during 2000–2020
3.1.1. Temporal Analysis of Land Use/Cover Change

According to the historical land use/cover information, we analyzed the changing
trend of land use/cover in the Yiluo River Basin from 2000 to 2020 (Figure 3). The land

http://www.geosimulation.cn/flus.html
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use/cover types mainly constituted of farmland and forestland of the basin, accounting for
more than 38% and 48%, respectively, followed by grassland and construction land, while
water bodies and unutilized land account for a smaller proportion.
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Figure 4 showed the change of land use/cover area and a dynamic degree from 2000 to
2020. The results showed that the area of farmland and grassland decreased, while the other
land use/cover types increased, and the comprehensive dynamics degree was 0.39 from
2000 to 2020, of which the dynamic degree in 2000–2010 was higher than in 2010–2020. In
recent years, the proportion of cultivated land showed a continuous downward trend, the
area decreased by 668.99 km2 and the dynamic degree was −0.86%. The area of forestland
initially increased and then decreased, increasing by 8.06 km2 while the dynamic degree
was 0.01%. The grassland experienced a sustained slow decrease, decreasing by 43.77 km2

while the dynamic degree was −0.47%. Water bodies and unutilized land with the highest
dynamic degree of 9.27% and 10.05%, respectively, and the area increased by 127.55 km2

and 34.48 km2, respectively. The area of construction land showed a sustained increasing
trend, raised from 643.06 km2 in 2000 to 1185.73 km2 in 2020, increasing by 542.67 km2,
while the dynamic degree reached 8.44%.

3.1.2. Transformation Patterns of Land Use/Cover Types

Figure 5 showed the locations of transformation distribution of land use/cover types
in the Yiluo River Basin from 2000 to 2020, in which Figure 5a showed the land patterns
in 2000 and Figure 5b showed the land patterns in 2020. As showed in the figure, the
conversion area in the Yiluo River Basin reached 2334.98 km2 from 2000 to 2020, which
were mainly cultivated land, forestland, and grassland, accounting for 49.1%, 23.5%, and
15.7%, respectively. Among them, the cultivated land loss was about 1146.47 km2, which
was mainly transformed into construction land (586.58 km2), forestland (278.54 km2), and
water bodies (197.74 km2). Forestland was reduced by 548.77 km2, mainly transformed
into farmland (284.09 km2), grassland (197.74 m2), and construction land (38.2 km2). About
367.63 km2 of grassland area was transformed, mainly converted into cultivated land
(47.29 km2), water bodies (254.95 km2), and construction land (44.18 m2). Water bodies,
construction land, and unutilized land were rarely converted to other land use/cover
categories, while the increase was mainly converted from cultivated land, forestland,
and grassland.
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3.2. Changes in Ecosystem Service Values during 2000–2020
3.2.1. Changes in Ecosystem Service Values of Different Land Use/Cover Type

The ESVs for each land use/cover type and the total values for each study year were
shown in Figure 6. The total ESVs of the Yiluo River Basin presented a growth from
9217 million dollars (2000) to 9676 million dollars (2020), with an increase of 4.98%. Among
them, an increase of 350 million dollars from 2000 to 2010, and 110 million dollars from
2010 to 2020. The ESVs provided by different land use/cover categories were different.
Forestland accounted for the most, more than 75% of the total ESVs, followed by the
cultivated land, grassland, and water bodies, the unutilized land contributed the least.
From 2000 to 2020, cultivated land and grassland decreased by 95 million dollars and
18 million dollars, respectively. Water bodies raised the most, increasing by 565 million
dollars. The forestland and unutilized land were also increased.
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3.2.2. Changes in Different Ecosystem Service Values

During all periods, the value of regulating services contributed the greatest proportion
at more than 77%, followed by supporting services and providing services, while cultural
services accounted for the least of the total ESVs (Table 2). From 2000 to 2020, regulating
services and supporting services showed an increasing trend, while cultural services and
providing services changed slightly with the characteristics of initially increasing and then
decreasing. In the light of the ecosystem service sub-types, climate regulation accounted
for most of the total ESVs, second was regulation of water flows, erosion prevention,
air quality regulation, fertility habitat services, waste treatment, cultural and amenity
services, raw material supply, and food supply. In contrast, maintenance of soil and water
supply contributed the least. Water supply, waste treatment, regulation of water flows,
and cultural and amenity services showed an increasing trend, while the other ecosystem
service sub-types reduced in the whole period.

Table 2. Values of different ecosystem services in the Yiluo River Basin (Million Dollars).

Primary Classification Secondary Classification 2000 2010 2020

Provisioning services
Food supply 341.4 332.2 324.7

Raw material supply 345.9 342.5 337.2
Water 168.7 192.8 205.3

Regulating services

Air quality regulation 967.9S 965.8 954.5
Climate regulation 2433.5 2450.8 2432.6

Waste treatment 717.0 735.8 738.7
Regulation of water flows 1753.0 2047.0 2204.1

Erosion prevention 1236.7 1231.0 1215.3

Supporting services Maintenance of soil 106.4 105.3 103.7
Fertility habitat services 741.5 751.3 748.5

Cultural services Aesthetic landscape provision 404.7 411.8 411.3

3.3. Future Changes in Land Use/Cover and Ecosystem Service Values under Different
RCPs Scenarios
3.3.1. Future Changes in Land Use/Cover under Different RCPs Scenarios

The land use/cover distribution in the Yiluo River Basin by 2030 under different RCPs
scenarios were shown in Figures 7 and 8. Compared with 2020, the area of each land
use/cover type was obviously different in 2030, the cultivated land, forestland, grassland,
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and unutilized land decreased, while the waters and residential sites increased. Under
different RCPs scenarios in 2030, the spatial patterns of farmland, grassland, residential
sites, and bare land in the Yiluo River Basin were basically the same, while the forestland
and water bodies were different. In RCP2.6, forestland decreased by 45.1 km2, water bodies
increased by 18.91 km2. While in RCP4.5, forestland decreased by 50.73 km2, water bodies
increased by 24.2 km2. Under RCP8.5, forestland decreased by 49.88 km2, water bodies
increased by 23.67 km2.
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3.3.2. Future Changes in Ecosystem Service Values under Different RCPs Scenarios

The ESVs changes in Yiluo River Basin by 2030 affected by different RCPs scenarios
were shown in Figure 9. By 2030, the total ESVs continued to present an upward trend,
while the total ESVs showed a difference under the scenario of RCP2.6, RCP4.5, and RCP8.5,
with 9688 million dollars, 9707 million dollars, and 9705 million dollars, respectively.
Compared with those in 2020, the ESVs increased by 12 million dollars, 31 million dollars,
and 29 million dollars, respectively. In terms of the land use/cover types, the ESVS of
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farmland and grassland were the same under the scenario of RCP2.6, RCP4.5, and RCP8.5,
which decreased by 32 million dollars and 4 million dollars, respectively. While there
were differences in the ESVS of woodland and water bodies, the woodland decreased
by 36 million dollars, 40 million dollars, and 39 million dollars, respectively, and the
water bodies increased by 84 million dollars, 107 million dollars, and 105 million dollars,
respectively. The ESVs of unutilized land showed no obvious change trend.
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Table 3 showed the ESVs of ecosystem service types in the Yiluo River Basin under
different RCPs scenarios. According to the type of ES, the values of the regulating services
under the scenario of RCP2.6, RCP4.5, and RCP8.5 showed some difference, with 7569 mil-
lion dollars, 7587 million dollars, and 7585 million dollars, respectively, while provisioning
services, supporting services, and cultural services had no obvious changes. In the light
of the ecosystem service sub-types, there were significant changes in water supply and
regulation of water flows, while there were small changes in ESVs of other ecosystem
service sub-types.

Table 3. Ecosystem service values of the Yiluo River Basin in 2030 under different RCPs scenarios
(Million Dollars).

Primary Classification Secondary Classification RCP2.6 RCP4.5 RCP8.5

Provisioning services
Food supply 317.9 318.0 318.0

Raw material supply 332.9 332.8 332.9
Water 210.0 211.5 211.4

Regulating services

Air quality regulation 945.6 945.3 945.3
Climate regulation 2419.1 2418.2 2418.3

Waste treatment 738.1 738.8 738.7
Regulation of water flows 2263.8 2282.2 2280.4

Erosion prevention 1202.7 1202.3 1202.3

Supporting services Maintenance of soil 102.4 102.4 102.4
Fertility habitat services 745.5 745.5 745.6

Cultural services Aesthetic landscape provision 410.1 410.2 410.2
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4. Discussion

In the past 20 years, the land use/cover in Yiluo River Basin had been undergone great
changes, which were mainly shown in the decrease of farmland and grassland, and the
increase of forestland, water bodies, construction land, and bare land. All of these changes
were mainly due to climate change and human activities.

According to the Statistical Yearbook of Luoyang, the population of Luoyang has
increased by 1 million in the past 20 years, and the GDP of Luoyang has increased from
6.57 billion dollars (2000) to 78.21 billion dollars (2019). Urban development and popu-
lation growth led to a large number of productive space (cultivated land) and ecological
space (forestland, grassland, and water bodies) encroachment by construction land expan-
sion [45,46]. The Yiluo River Basin is a significant tributary in the Yellow River, which
belongs to the key ecological function area. The government had taken the Grain for Green
Project and achieved good results. Simultaneously, public awareness of the protection of
forest resources has increased and deforestation has decreased, these measures increased
the area of forestland [37,47]. In addition, some reservoirs and rubber dams have been built
in the basin in recent years, for example, multi-level water surface engineering in Luoyang
city (14 km), Jinniuling reservoir (storage capacity: 23.8 million m3). Synchronously, some
protection measures of the water bodies have been taken in the basin to restore the water
area, for example, unified water management forbidding occupying river courses. All of
these engineering and measures lead to the increase of water area directly.

Over the past 20 years, climate change was remarkable in Yiluo River Basin. Among
them, the total precipitation showed no significant increase, but with a characteristic of
large inter-annual difference and an increase in the frequency of extreme precipitation
events. The temperature had risen by about 0.45 ◦C/10 a, and the climate showed a
warming and drying trend. Studies have shown that climate change will cause changes
in temperature and precipitation, which affected the characteristics of soil moisture and
temperature, the photosynthesis and water use efficiency of vegetation, regulated the
growth of vegetation, and had impacts on land use/cover further [7,8,48,49]. The rise of
temperature and the change of precipitation characteristics in the Yiluo River Basin may
lead to the decrease of vegetation coverage area [50–53], which were related to ecological
service functions. Based on the land use/cover conversion matrix, some of the forestland
and grassland transformed into other land use/cover types may be due to the influence of
climate change directly or indirectly.

In the study area, the LUCC had important influences on ESVs. From 2000 to 2010, the
total ESVs increased by 350 million dollars, the main reason was because forestland area
increased by 0.79%, and water bodies increased by 58.54% in this period. In 2010–2020, the
total ESVs increased by 110 million dollars, the growth trend significantly reduced com-
pared to the previous stage. The main reason was that the area of forestland and grassland
decreased by 63.25 km2 and 27.25 km2, respectively. Thanks to the water bodies continuing
to increase, this made up for the loss and kept the overall ESVs on an upward trend.

According to the future climate model data, the temperature under different RCPs sce-
narios will be slightly different in the Yiluo River Basin by 2030, but there will be significant
differences in precipitation. In comparison, the discrepancy of future precipitation between
RCP4.5 and RCP8.5 scenarios is small, which is significantly higher than RCP2.6. The ESVs
under the scenarios of RCP2.6, RCP4.5, and RCP8.5 will be 9688 million dollars, 9707 mil-
lion dollars, and 9705 million dollars, respectively. This discrepancy was mainly reflected in
the difference of ESVs between forestland and water bodies. In the future, human activities
will aim to minimize the interference of the physical environment, reducing the occupation
of ecological land, and carry out green and sustainable development patterns [54]. With
the introduction of the ecological protection and high-quality development of the Yellow
River basin in the new period, climate change may be the main factors influencing the
ecological field in the future.

In this study, we did exploratory research on the prediction and assessment of ESVs
in the context of climate variability. We selected three scenarios, RCP2.6, RCP4.5, and
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RCP8.5, to reduce the uncertainty of the carbon emission scenario. Although the results
do not differ much in different scenarios, it is intuitive to witness the impacts of climate
change on the ESVs. Moreover, we used the FLUS model to estimate the land use/cover
situation in 2030, which was widely used to combine with climate factors to simulate
future land use/cover change. However, the model also had some limitations, for example,
insufficient simulation on the dynamic evolution of climate change and vegetation, which
may affect the accuracy of the simulation results. In the following work, we will carry out
our research on the fitting of climate change and ecological evolution, as well as improving
the simulation effect and precision of the model.

5. Conclusions

This paper selected the Yiluo River Basin as the study area, analyzed the impacts of
LUCC on the ESVs, predicted the future distribution of land use/cover and the change of
ESVs in 2030 under different RCPs scenarios. The main achievements were as follows.

(1) In the past 20 years, the land use/cover, affected by climate change and human
activities, in the Yiluo River basin has undergone great changes, which mainly showed
that the area of cultivated land had the most loss, the area of construction land
increased the most, and water bodies and unutilized land had the highest dynamic
degree.

(2) From 2000 to 2020, the total ESVs increased by 459 million dollars, which attributed
to the increase of forestland and water bodies in recent years. Among them, water
bodies increased the most, with an increase of 565 million dollars.

(3) By 2030, the total ESVs continued to present an upward trend compared with 2020,
which increase by 12 million dollars, 31 million dollars, and 29 million dollars, re-
spectively under the scenario of RCP2.6, RCP4.5, and RCP8.5, and this discrepancy in
different scenarios was mainly reflected in forestland and water bodies.

(4) This research will contribute to understanding the land use/cover change effects on
ecosystem services for decision-makers and provide a relevant scientific reference and
support for ecosystem protection and integrated management in the Yiluo River Basin.
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